实数系基本定理等价性的完全互证
2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则确界原理 ;Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ;Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 .一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:定理 1 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”:定理 2 设是一闭区间套. 则存在唯一的点,使对有.推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗, ↘, .3. 用“区间套定理”证明“Cauchy收敛准则”:定理 3 数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理6 ( Weierstrass ) 任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7 每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理8 数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:。
实数完备性基本定理相互证明

关于实数连续性的基本定理关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明以上的定理表述如下:实数基本定理:对R 的每一个分划A|B ,都∃唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。
确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。
单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。
区间套定理:设{,[n a ]n b }是一个区间套,则必存在唯一的实数r,使得r 包含在所有的区间里,即∞=∈1],[n n n b a r 。
有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。
紧致性定理:有界数列必有收敛子数列。
柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是:εε<->>∃>∀||,,,0m n x x ,N m N n N 有时当。
这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。
那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。
(二)实数基本定理的等价证明一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理证明:设数列}{n x 单调上升有上界。
令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ∀≤,},而A=R ﹨B ,则A|B 是实数的一个分划。
事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。
又对任给a ∈A ,b ∈B ,则存在0n ,使a <0n x ≤b ,即A 、B 不乱。
故A|B 是实数的一个分划。
根据实数基本定理,A ,a R r ∈∀∈∃使得对,b r aB ,b ≤≤∈有。
实数完备性六个定理的互相证明

0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
四个实数系的基本定理的完全互证

职成教苑714289877@四个实数系的基本定理的完全互证ʏ㊀常州铁道高等职业技术学校学生工作处㊀熊晗颖㊀㊀摘要:实数系的基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础㊂能够反映实数连续性的定理很多,它们彼此等价,教材中以确界存在定理为基础,将这些定理进行一次循环证明就验证了它们的等价性㊂本文把确界存在定理㊁单调有界定理㊁闭区间套定理㊁Cauchy 收敛原理这四个定理的所有互推方法列了出来,旨在更加深刻地理解他们之间的关系㊂本文主要采用了构造的方法,也采用了反证法等证明方法㊂关键词:确界存在定理;单调有界定理;闭区间套定理;Cauchy 收敛原理在高等数学领域中,实数系基本定理常见的有确界存在定理㊁单调有界定理㊁闭区间套定理㊁Cauchy 收敛定理㊂这些定理是极限理论乃至整个数学分析理论的基础㊂每一个课本上都是以一个定理为基础循环证明其它定理,一是因为在教程上一一列出来没有必要,二是这些过程太复杂,有些定理证明还是相当有难度的㊂鉴于这部分内容的重要性与复杂性,本文将其所有的证明情形列出来㊂这五个定理,其实他们属于同一类型,他们都指出,在某一条件下,便有某 点 存在,这种点分别是确界(点)(确界存在定理),极限点(单调有界定理和Cauchy 收敛原理),公共点(闭区间套定理),子列的极限点㊂1㊀利用确界存在定理证明其它定理1.1㊀用确界存在定理证明单调有界定理证㊀不妨设x n {}单调递减有下界,根据确界存在定理,由x n {}构成的数集必有下确界α,满足:(1)∀n ɪN +:x n ȡα,(2)∀ε>0,∃x n 0:x n 0<α+ε㊂取N =n 0,∀n >N :α-ε<αɤx n ɤx n 0<α+ε,因而x n -α<ε,于是得到lim n ңɕx n =α㊂同理可证数列x n {}单调增加且有上界的情况㊂1.2㊀用确界存在定理证明闭区间套定理证㊀由a n +1,b n +1[]⊂a n ,b n [],n =1,2,3, 得a 1ɤ ɤa n -1ɤa n <b n ɤb n -1ɤ ɤb 1㊂由确界存在定理有:a n {}单调增加且有上确界ξ1,b n {}单调减少且有下确界ξ2,则ȵlim n ңɕb n -a n ()=0,ʑξ1=ξ2,设lim n ңɕa n =lim n ңɕb n =ξ由于ξ是a n {}的上确界,也是b n {}的下确界,于是有a n ɤξɤb n ,n =1,2,3, ,即ξ属于所有的闭区间a n ,b n []㊂若另有实数ξᶄ属于所有的闭区间a n ,b n [],则也有a n ɤξᶄɤb n ,n =1,2,3,令n ңɕ,由极限的夹逼性得ξᶄ=lim n ңɕa n =lim nңɕb n =ξ㊂1.3㊀用确界存在定理证明Cauchy 收敛原理引理:基本数列必定有界取ε0=1,因为x n {}是基本数列,所以∃N 0,∀n >N 0:x n -x N 0+1<1㊂令M =max x 1,x 2, ,x N 0,x N 0+1{},则对一切n ,成立x n ɤM ㊂证㊀必要性:设x n {}收敛于a ,按定义,∀ε>0,∃N ,∀n ,m >N :x n -a <ε2,x m -a <ε2,于是x m -x n ɤx m -a +x n -a <ε㊂充分性:由引理,基本数列x n {}必定有界㊂由确界存在定理,数列x n {}必有上确界,记ξ=supn >N x n{},则ξ为x n {}的极限㊂2㊀利用单调有界定理证明其它定理2.1㊀用单调有界定理证明确界存在定理证㊀设S 是非空有上界的实数集合,又设T 是由S 的所有上界所组成的集合,现证T 含有最小数,即S 有上确界㊂取a 1∉T ,b 1ɪT ,显然a 1<b 1㊂现按下述规则一次构造一列闭区间:a 2,b 2[]=a 1,a 1+b 12éëêêùûúú,若a 1+b 12ɪT a 1+b 12,b 1éëêêùûúú,若a 1+b 12∉T ìîíïïïï,a 3,b 3[]=a 2,a 2+b 22éëêêùûúú,若a 2+b 22ɪT a 2+b 22,b 2éëêêùûúú,若a 2+b 22∉T ìîíïïïï㊀显然a n {}单调递增有上界b 1,b n {}单调递减有下界a 1,由单调有界定理,a n {}与b n {}收敛,且lim n ңɕa n =lim n ңɕb n =ξ,现只需说明ξ是集合T 的最小数,也就是集博看网 . All Rights Reserved.714289877@ 职成教苑合S 的上确界㊂当ξ∉T ,即ξ不是集合S 的上界,则存在x ɪS ,使得ξ<x ㊂由lim n ңɕb n =ξ,可知当n 充分大时,成立b n <x ,这就与b n ɪT 发出矛盾,所以ξɪT ㊂若存在ηɪT ,使得η<ξ,则由lim n ңɕa n =ξ,可知当n 充分大时,成立η<a n ㊂由于a n ∉T ,于是存在y ɪS ,使得η<a n <y ,这与ηɪT 发生矛盾㊂从而得出ξ是集合S 的上确界㊂2.2㊀用单调有界定理证明闭区间套定理证㊀由条件①可得a 1ɤ ɤa n -1ɤa n <b n ɤb n -1ɤ ɤb 1㊂显然:a n {}单调增加有上界,b n {}单调减少有下界a 1,由单调有界定理,a n {}与b n {}都收敛㊂设lim n ңɕa n =ξ,则lim n ңɕb n =lim n ңɕb n -a n ()+a n []=lim n ңɕb n -a n ()+lim n ңɕa n =ξ,ξ的惟一性显然成立㊂2.3㊀用单调有界定理证明Cauchy 收敛原理证㊀必要性(略)㊂充分性:由引理1基本数列必有界,其次再证明基本数列x n {}的子列有极限㊂取单调减少的基本数列x n {}的子列x n k {}为例㊂令ε=1n ,则存在N n ()及n 1,n 2>N ,使得x n 1-x n 2<1n ,不妨假设对固定的x n k ,必有x n k <x n k -1,当n k -1,n k >N 时,有x n k -1-x n k <1n㊂否则,由于x n {}为无穷数列,必有当n >N时,x n ʉx n k (k =1,2,3, )为常数列,显然收敛㊂结论成立㊂又因为x n k {}⊆x n {},且x n k {}有界,由单调有界定理知,x n k {}收敛㊂记lim n ңɕx n k =a ㊂即对任意ε>0,存在N ,当k >N 时有:x n k -a <ε最后再证lim n ңɕx n =a ㊂因为x n {}是基本数列,所以∀ε>0,∃N ,∀n ,m >N :x n -x m <ε2㊂在上式中取x m =x n k ,其中k 充分大,满足n k >N ,并且令k ңɕ,于是得到x n -a ɤε2<ε,此即证明数列x n {}收敛㊂3㊀利用闭区间套定理证明其它定理3.1㊀用闭区间套定理证明确界存在定理证㊀设S 是非空有下界的实数集合,又设T 是由S 的所以下界所组成的集合,现证T 含有最小数,即S 有下确界㊂构造一列闭区间,存在唯一的实数ξ属于所有的闭区间a n ,b n [],通过反证法可得证ξ是集合T 的最大数,也就是S 的下确界㊂当ξ∉T ,即ξ不是集合S 的下界,则存在x ɪS ,使得ξ>x ㊂由lim n ңɕa n =ξ,可知当n 充分大时,成立a n >x ,这就与a n ɪT 发出矛盾,所以ξɪT ㊂若存在ηɪT ,使得η>ξ,则由lim n ңɕb n =ξ,可知当n 充分大时,成立η>b n ㊂由于b n ∉T ,于是存在y ɪS ,使得y <b n <η,这与ηɪT 发生矛盾㊂从而得出ξ是集合S 的下确界㊂3.2㊀用闭区间套定理证明单调有界定理证㊀设数列x n {}单调递增有上界,记单调递减数列M n {}是x n {}的全体上界,则x 1<x 2< <x n <M n <M n -1< <M 2<M 1,显然有x n +1,M n +1[]⊂x n ,M n [],且limn ңɕM n -x n ()=0,所以x n ,M n []{}形成了一个闭区间套㊂由闭区间套定理,存在唯一实数ξ属于所有的闭区间x n ,M n [],且lim n ңɕx n =lim n ңɕM n =ξ,同理可证单调减少有下界的情况㊂3.3㊀用闭区间套定理证明Cauchy 收敛原理证㊀必要性(略)㊂充分性:设x n {}为基本数列,且a 1ɤx n ɤb 1,n ɪN +,将a 1,b 1[]二等分,令c 1=a 1+b 12得到两个长度相同的子区间a 1,c 1[]㊁c 1,b 1[],分别记为J 1㊁J 2,据它们在实数轴上的左右位置和基本数列的定义即可发现:在左边的J 1和右边的J 2中,至少有一个子区间只含有数列x n {}中的有限项㊂这从几何上看是很直观的,若在J 1和J 2中都有数列中的无穷多项,则可以在J 1中取x n ,在J 2中取x m 使得n ,m 都可以任意大,同时满足不等式x m -x n ȡb -a2这与x n {}为基本数列的条件矛盾,所以可以从a 1,b 1[]去掉只含有数列x n {}中有限项子区间J 1和J 2(若两个子区间都是如此则任取其一)将得到的区间记为a 2,b 2[],重复上述步骤,无限进行下去,便得区间套a k ,b k []{},且满足闭区间套中的每个区间长度是前一个区间长度的12,每一个a k ,b k []中含有数列x n {}中从某项起的所有项㊂所以存在ξ是a n {},b n {}从两侧分别单调收敛于ξ㊂现只需证明基本数列x n {}收敛于ξ㊂∀ε>0,∃n ɪN ,使a n ,b n 进入点ξ的邻域,即有a n ,b n []⊂ξ-ε,ξ+ε()㊂因a k ,b k []中含有数列x n {}中从某项起的所有项,所以∃N 1,当n >N 1时成立x n -ξ<ε㊂4㊀利用Cauchy 收敛原理证明其它定理4.1㊀用Cauchy 收敛原理证明确界存在定理证㊀设S 是一个有上界的集合㊂取实数b 1,使对所有x ɪS ,都有x <b 1㊂取a 1ɪS 并考察区间a 1,b 1[]的中点a 1+b 12,若a 1+b 12是S 的上界,则令a 2=a 1,b 2=a 1+b 12;若a 1+b 12不是S 的上界,则令a 2=a 1+b 12,b 2=b 1㊂于是总可得到区间a 2,b 2[],使b 2是S 的上界㊂a 2,b 2[]中有S 点且b 2-a 2=12b 1-a 1()再对闭区间a 2,b 2[]进行同样的处理,又可得到闭区间a 3,b 3[],使得b 3是S 的上界,a 3,b 3[]中有S 的点且b 3-a 3=b 2-a 22=b 1-a 122㊂重复此步骤,可得到一个闭区间的序列a n ,b n []{},满足下列条件:博看网 . All Rights Reserved.职成教苑714289877@(1)a n +1,b n +1[]⊂a n ,b n [],n =1,2,3, ㊂(2)b n -a n =b 1-a 12n -1,n =1,2,3, ㊂(3)对每个n ɪN ,b n 是S 的上界且a n ,b n []ɘS ʂ⌀,由(1)和(2)知,当m >n 时有b m -b n =b m -b n <b n -a n=12n -1b 1-a 1(),可见b n {}为基本数列,由柯西收敛原理知b n {}收敛,设b n {}收敛于M ㊂任意x ɪS 和任意n ɪN ,均有x ɤb n ,所以x ɤM ,即M 为S 的上界㊂对∀ε>0,由于b n -a n {}的极限为0,所以有n 0使b n 0-a n 0<ε,又因为b n 0ȡM ,所以a n 0ȡb n 0-εȡM -ε由(3)知a n 0,b n 0[]中有S 的点,这表明M -ε不是S 的上界,所以S 是M 的上确界,所以(2)成立㊂4.2㊀用Cauchy 收敛原理证明单调有界定理证㊀假设x n {}单调减少且有下界,但不收敛,则∃ε0,对∀N ,∃m >n >N 使得x n -x m ȡε0,即x m -x n ɤε0㊂取N 1=1,则∃m 1>n 1>N 1使得x m 1-x n 1ɤε0;取N 2=m 1,则∃m 2>n 2>N 2使得x m 2-x n 2ɤε0; ;取N k =m k -1,则∃m k >n k >N k 使得x m k -x n k ɤε0,如此下去,得到子列x n k {},x m k {}满足:kε0ȡx m k -x n k ()+ +x m 2-x n 2()+x m 1-x n 1()ȡx m k-x m k -1()+ +x m 2-x m 1()+x m 1-x n 1()=x m k -x n 1所以x m k -x n 1ң+ɕ,k ңɕ㊂这与x n {}有界矛盾,从而x n {}收敛㊂同理可证单调增加有上界的情形㊂4.3㊀用Cauchy 收敛原理证明闭区间套定理证㊀设m >n ,有0ɤa m -a n <b n -a n ң0(n ңɕ),所以数列a n {}是一基本数列,顾lim n ңɕa n =ξ,由此得到㊀lim n ңɕb n =lim n ңɕb n -a n ()+lim n ңɕa n =ξ㊂由于数列a n {}单调增加,数列b n {}单调减少,可知ξ是属于所有闭区间a n ,b n []的唯一实数㊂参考文献[1]陈纪修.於崇华.数学分析第二版上册[M ].北京:高等教育出版社,2004.[2]包丙寅.实数基本定理的等价性证明[J ].赤峰学院学报,2010,26(07).[3]胡永生.浅谈致密性定理的不同证明方法[J ].中国校外教育下旬刊,2008,(03).[4]扶炜.实数完备性六大基本定理的等价性证明[J ].信阳农业高等专科学校学报,2012,22(02).[5]刘利刚.实数系基本定理等价性的完全互证[J ].数学的实践与认识,2008,38(24).[6]常利利.数学分析同步辅导与课后习题详解[M ].第二版.上册.长春:吉林大学出版社,2008:7.责任编辑㊀孙晓东(上接第37页)4.2㊀多方面评价,全方位发展首先,弱化评价的选拔目的,重视学生发展的过程的均衡㊂促进每一个学生的全面发展是我国基础教育的根本任务,作为评价教学效果的重要指标,基础教育的根本目的不应是选拔拔尖性人才,而是帮助每一个学生发现其学习过程中存在的问题,以获得在未来获得更好的发展㊂其次,评价标准应更加多元化㊂每个学生都有自己的性格特长和钟爱的优势领域,因而在教育评价上就不能 单以分数论英雄 ,用一把尺子衡量所有学生㊂评价标准应包含道德品质㊁学业考试成绩㊁身体素质以及综合实践能力等多项标准,并且每项标准所占权重应均等,从而彻底打破考试卷面得分在学生评价中的 垄断地位 ㊂最后,避免单独使用结果评价,应将过程评价与结果评价相结合㊂过程评价是指在学生学习过程中,经常进行的对学生知识掌握情况㊁能力发展水平的评价㊂其目的不在于打分,而在于发现问题㊂结果评价是对学生学习成果的整体评价,在基础教育阶段,通常以打分的方式出现㊂评价的根本目的在于促进学生的发展而不仅仅是评定学生学习的阶段性成果㊂发现学生在学习过程中出现的问题并给予改进建议是促进学生迅速成长的有效途径,因而评价指标应更全面㊁合理,而不是仅给学生一个单一的分数认定㊂4.3㊀明确责任主体,加强监督管理建议国家将减负政策的全面落实纳入法治管理范围㊂如果教育主管部门放任不管,拒不履行责任,就应当承担相应的法律责任;如果校领导和教师违反减负政策要求,也应接受相应处罚;如果家长擅自给学生加压,也应承担相应的后果㊂加强对校外辅导机构的监管力度,杜绝超前教学㊁课业负担过重等不利于学生成长的教学方式,从而促进中小学生的健康成长㊂参考文献[1]聂清杰.中小学生负担过重的原因及对策[J ].国家高级教育行政学院学报,2000,(05):25-26.[2]朱晓芬. 减负 不要走向极端[J ].湖北教育:政务宣传,2001,(09):8-8.[3]姚佳胜,方媛.政策工具视角下我国减负政策文本计量研究[J ].上海教育科研,2019,(02):10-15.[4]张冰,程天君.新中国成立以来学生 减负 历程的回顾与反思[J ].教育科学,2019,35(06):33-39.[5]何东昌.中华人民共和国教育史纲[M ].海南:海南出版社,2002:203.[6]陈的非. 文革 期间中,小学课程与教学改革研究[D ].长沙:湖南师范大学.[7]王硕. 减负 背景下小学生家长家教观念研究[D ].芜湖:安徽师范大学,2019.[8]新华社.中共中央办公厅㊀国务院办公厅㊀关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见[J ].河南教育(基础版),2021,(09):4-8.[9]罗秀艳.提升教学实践能力促进教师专业发展[J ].科学中国人,2015,(1X ):104.责任编辑㊀孙晓东博看网 . All Rights Reserved.。
实数系完备性基本定理的等价性分析

-
A | ≤Bn
-
An ,又因为
lim (
n→∞
Bn
-
An )
= 0,所以 A =
B,记作 P = A = B,则存在唯一一点 P,使得 P∈[An ,Bn ],
n = 1,2,3…,所以证明成立.
( 三) 从区间套定理出发,证明有限覆盖定理
证明 反证法: 假设在 M 中不能选出有限个开区间去
覆盖[A,B]. 将[A,B]等分为两个子区间,则其中至少有一
个子区间不能用 M 中有限个开区间来覆盖. 记不能覆盖的
区间为[A1 ,B1 ],则[A1 ,B1][A,B],且 B1
- A1
=
1 2
(B-
A) . 再将[A1 ,B1]等分为两个子区间,同样,其中至少有一个 子区间不能用 M 中有限个开区间来覆盖. 记不能覆盖的区间
为[A2 ,B2 ],则[A2 ,B2][A1 ,B1 ],且
区间套定理、有限覆盖定理、聚点定理、柯西收敛准则.
定理一: 确界原理,A 为集合,且 A 为非空数集,若集合
A 有上界或下界,则集合 A 必有上确界或下确界.
定理二: 单调有界定理,在实数系中,无论单调递增数
列或单调递减数列,必有极限存在.
定理三: 区间套定理,若{ [An ,Bn ],An ,Bn ∈R} 是一个 区间套,则存在唯一一点 P,使得 P∈[An,Bn],n = 1,2,3,….
高教视野
GAOJIAO SHIYE
7
实数系完备性基本定理的等价性分析
◎万 骏 ( 三峡大学,湖北 宜昌 443002)
【摘要】本文阐述了实数系完备性的 6 个基本定理,依 次证明,从而证明其等价性.
实数系完备性基本定理的等价性分析

实数系完备性基本定理的等价性分析实数系完备性基本定理是数学中有重要意义的定理,它证明了实数系是完备的,也就是说,任何一个实数系中的任何一个非零多项式都有唯一的根。
本文将从实数系完备性基本定理的等价性出发,来分析它的意义和印象。
首先,实数系的完备性基本定理的等价性指的是:任何一个给定的非零多项式都有唯一的根,而这一特性决定了实数系的特殊性质以及它在数学上的重要性。
只有当实数系满足它的所有要求时,它才能够满足一系列结果,包括但不限于:实数系是一个完整的结构,可以容纳任意复杂的数学问题,并且只有它可以产生有效的数学解答;实数系也可以实现几何学上的许多特别复杂的性质,有助于提供几何学上十分有用的信息,从而使得它有可能用来解决几何应用问题。
其次,实数系完备性基本定理的等价性也可以推广到其他数学结构中,如实数的子结构实数点系列、实数的延伸结构复数系列以及数学的抽象结构域系列,他们在所有的情况下都保留了实数系完备性基本定理的等价性。
例如,在实数点系列中,任何一个给定的多项式都有唯一的实数点根,这也是实数系完备性基本定理的等价性,这一定理有助于证明实数的有效性,而在进行数学计算时,它也是必不可少的。
同样的,在复数系列中,任何一个给定的复数都有唯一的虚数根,而在域系列中,任何一个有限的基本元素和有限的操作都可以确定出唯一的域,从而证明实数系完备性基本定理的等价性。
另外,实数系完备性基本定理在其他数学研究领域也有其重要性,例如非线性动力系统的研究、矩阵计算与特征值分析、信号与系统理论等。
它们都依赖于实数系完备性基本定理的等价性,它们需要实数系满足其完备性,才能够得出有效且精确的解决方案。
总之,实数系完备性基本定理的等价性对于数学的发展具有重要的意义,它证明了实数系是完备的,且有助于证明实数的有效性,这也是实数系在数学上的重要性。
它的等价性也可以被推广到其他数学结构中,它不仅为实数系提供有效的解决方案,而且也为其他数学研究领域提供有助的信息。
实数六大定理证明

实数六大定理证明这六大定理分别为:确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理,还有一个柯西收敛准则。
实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,它们彼此等价,以不同的形式刻画了实数的连续性,它们同时也是解决数学分析中一些理论问题的重要工具,在微积分学的各个定理中处于基础的地位。
7个基本定理的相互等价不能说明它们都成立,只能说明它们同时成立或同时不成立,这就需要有更基本的定理来证明其中之一成立,从而说明它们同时都成立。
引进方式主要是承认戴德金公理,然后证明这7个基本定理与之等价,以此为出发点开始建立微积分学的一系列概念和定理。
在一些论文中也有一些新的等价定理出现,但这7个定理是教学中常见的基本定理。
扩展资料实数系的公理系统设R是一个集合,若它满足下列三组公理,则称为实数系,它的元素称为实数:对任意a,b∈R,有R中惟一的元素a+b与惟一的元素a·b分别与之对应,依次称为a,b 的和与积,满足:1、(交换律)对任意a,b∈R,有a+b=b+a,a·b=b·a。
2、(结合律)对任意a,b,c∈R,有a+(b+c)=(a+b)+c,a·(b·c)=(a·b)·c。
3、(分配律)对任意a,b,c∈R,有(a+b)·c=a·c+b·c。
4、(单位元)存在R中两个不同的元素,记为0,1分别称为加法单位元与乘法单位元,使对所有的a∈R,有a+0=a,a·1=a。
5、(逆元)对每个a∈R,存在R中惟一的元素,记为-a,称为加法逆元;对每个a∈R\{0},存在R中惟一的元素,记为a^(-1),称为乘法逆元,使a+(-a)=0。
a·a^(-1)=1。
实数完备性的六大基本定理的相互证明共个

实数完备性的六大基本定理的相互证明共个实数完备性的六大基本定理是实分析中的重要结果,其中包括单调有界原理、上确界原理、下确界原理、戴德金(Dedekind)分割原理、稳定原理和柯西(Cauchy)收敛准则。
这些定理互相独立,但可以相互推导和证明。
下面我将按照给定的字数要求,大致叙述这些定理之间的证明关系。
1.单调有界原理→上确界原理首先我们证明单调有界原理蕴含上确界原理。
假设存在一个非空有上界的实数集合A,我们可以定义一个从A到R (实数集)的单调递增序列。
考虑一个函数f:N→A,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令An={a∈A,a≤f(n)};2.由于A有上界,所以An也有上界;3.根据单调有界原理,An存在上确界。
令f(n)为An的上确界。
现在我们可以看出,这个序列f(n)是一个单调递增的序列,并且对于任意a∈A,存在一个自然数n使得a≤f(n)。
因此f(n)就是A的上确界。
2.上确界原理→下确界原理接下来我们证明上确界原理蕴含下确界原理。
假设存在一个非空有下界的实数集合B,我们可以定义一个从B到R (实数集)的单调递减序列。
考虑一个函数g:N→B,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Bn={b∈B,g(n)≤b};2.由于B有下界,所以Bn也有下界;3.根据上确界原理,Bn存在下确界。
令g(n)为Bn的下确界。
现在我们可以看出,这个序列g(n)是一个单调递减的序列,并且对于任意b∈B,存在一个自然数n使得g(n)≤b。
因此g(n)就是B的下确界。
3.戴德金分割原理→单调有界原理接下来我们证明戴德金分割原理蕴含单调有界原理。
假设存在一个非空无上界的实数集合C,我们可以定义一个从C到R (实数集)的单调递增序列。
考虑一个函数h:N→C,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Cn={c∈C,h(n)≤c};2.C没有上界,因此Cn也没有上界;3.根据戴德金分割原理,Cn的上确界不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析: 按二等分取闭区间, 使每个闭区间含有数集的确界. 由闭区间套定理套住的唯一点就是数集的 确界.
证明: 只证上确界的情况. 假设非空集合 A 有上界 M , 取 a1 ∈ A, b1 = M , 则 a1 ≤ b1 . 记 I1 = [a1, b1] .
令 c = a1 + b1 2
不存在有限开覆盖矛盾.
现在给出教材中给出的习题的证明.
z (4) ⇒ (2) pp.45
分析: 由有界性知数列有收敛子列, 由单调性可知数列收敛到此子列的极限.
证明: 不妨设数列{xn}单调递增. 由于{xn}有上界, 下界即为 x1 , 由 Bolzano-Weierstrass 定理, {xn}
∞
I | In |→ 0 , 称{In} 为闭区间套. 则闭区间套{In} 的交 In 必不空且为单点集. n=1
(4) Bolzano-Weierstrass 定理(pp.44): 有界数列必有收敛子列.
(5) Cauchy 收敛准则(pp.299): 数列{xn}收敛 ⇔ {xn}是基本数列.
(6) 有限开覆盖定理(pp.308): 若开区间族{Oα } 覆盖了有界闭区间 [a, b] , 则从{Oα } 中必可挑出有限
证明: 设 In = [an , bn ], an ≤ bn , 由 In+1 ⊂ In 可知 an ≤ an+1, bn+1 ≤ bn , 由此可见 an ↑ 且 an ≤ b1 , bn ↓
且 bn
≥ a1 ,
因此 ξ
=
lim
n→∞
an
,
η
=
lim
n→∞
bn
都存在,
并且ξ 为{an}的上确界,
η 为{bn} 的下确界.
是直接利用闭区间套定理, 而是来证明 an 和 bn 收敛性即可.
证明: (5) ⇒ (1): 证明{an}, {bn} 为 Cauchy 基本数列, 得知它们都收敛.
(2) ⇒ (1): 由{an}, {bn} 为单调有界数列得知它们收敛.
(4) ⇒ (1): 由{an}, {bn} 为有界数列, 得知它们存在收敛子列, 然后再利用单调性得出它们都收敛(即利 用(4) ⇒ (2)的方法 ).
4
Step 2. 然后把[a1, b1]二等分, 证明至少有一个子区间里具有性质 P , 记这个子区间为[a2 , b2 ] ;
Step 3. 不断重复这一步骤, 于是得到一个区间列{[an , bn ]}, 它满足条件:
(i) [an , bn ] ⊃ [an+1, bn+1], n = 1,2,L
分析: 按二等分取闭区间, 每个闭区间含有数列的无穷多项. 由闭区间套定理套住的唯一点就是某个 子列的极限.
证明: 设{xn} 是有界数列, 则存在闭区间 I1 使得 ∀xn ∈ I1 . 将 I1 等分为左右两个闭区间, 则至少有一
个半区间包含 {xn} 中的无穷多项, 取为 I2 . 同样的办法将等分后取出 I3 , …最终得到一闭区间套
实数系基本定理等价性的完全互证
刘利刚
(浙江大学数学系, 浙江 杭州 310027)
摘要: 本文综合给出了实数系六个基本定理的等价性的完全互证方法, 并归纳了各种证明方法的规律, 旨 在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系; 连续性; 等价; 极限
实数系基本定理是数学分析中重要组成部分, 是分析引论中极限理论的基础, 也称为实数系的连续性 定理. 能够反映实数连续性的定理很多, 它们是彼此等价的. 现有的教材都是按照某一顺序将这些定理进 行一次循环证明就验证了它们的等价性[1, 2]. 虽然不同的教材对于循环证明的顺序有所不同, 但每一次循 环证明看起来都似乎没有关联, 并没有综合归纳其中的方法技巧. 这么多相互独立的证明使得不少学生都 感到数学分析中这部分内容太抽象, 难以理解. 因而当遇到一个教材中没有给出的 2 个定理之间的等价性 证明时就无从下手. 为此, 在讲述这些定理的时候, 我们把这些定理的相互证明详细地整理出来, 并且归 纳给出了这些定理的完全互证方法与规律, 使学生在学习这部分内容时不再感到无所适从.
证明: 不妨设数列{xn}单调递增. 由于{xn}有界, 由(1)知它的确界存在且有限, 设为 β .
由 上 确 界 定 义 , β 是 {xn} 的 上 界 , 即 ∀n ∈ N, xn ≤ β ; 且 ∀ε > 0 , β − ε 不 是 上 界 , 即 ∃N , 使 得
xN > β − ε .
个开区间 Oα1 , Oα2 ,L, Oαn 同样覆盖了[a, b] : [a, b] ⊂ Oα1 U Oα2 ULU Oαn .
在证明之前, 我们首先必须要理解这六个定理的每一个在说些什么, 只要概念清楚了, 并且理解其方 法, 证明并不难.
定理(1)~(5)属于同一类型, 它们都指出, 在某一条件下, 便有某种“点”存在, 这种点分别是确界(点) (定理(1)), 极限点(定理(2)(5)), 公共点(定理(3)), 子列的极限点(定理(4)). 定理(6)是属于另一种类型, 它是 前 5 个定理的逆否形式.
I1 ⊃ I2 ⊃ L ⊃ In ⊃ L, | In |→ 0 , 每个 In 中包含{xn}中的无穷多项.
2
∞
I 根据闭区间套定理, 存在唯一点 In = {ξ} . 下面构造收敛到 ξ 的子列: 任取 xn1 ∈ I1 , 由于 I2 包含{xn} n=1
中的无穷多项, 故必能在 I2 取出 n1 项以后的项 n2 , 即 xn2 ∈ I2 , n2 > n1 . 类似地, ∃xn3 ∈ I3 , n3 > n2 , … 最后得到一子列{xnk } , xnk ∈ Ik , 从
因为
∞
I | In |= bn
− an
→0,
故η
=
lim
n→∞
an
+ lni→m∞(bn
− an ) = ξ
,
这说明 ξ
=η ∈In ,
从而.
至此已证明 In
n=1
非空.
∞
∞
I I 再由 In ⊂ In 及| In |→ 0 可知集合 In 至多包含一点.
n=1
n=1
z (3) ⇒ (4) pp.44
(3)
(4)
(5)
pp.308
(6)
图 1. 教材[1]中完成的基本定理之间的证明.
我们首先回顾一下教材中给出的证明过程[1].
z (1) ⇒ (2) pp.34
分析: 单调有界数列必收敛, 事实上就是收敛到其确界. 有了这个理解后, 就很容易利用确界存在定 理(1)来证明(2)了: 只要将确界找到, 证明此确界就是数列极限即可.
[β , β '] ⊂ Oα0 , 且 β '< b , 可知[a, β '] 也能被有限覆盖, 从而 β '∈ A , 这与 β = sup A 矛盾. z (5) ⇒ (1) pp.309
分析: 事实上, 由(5),(2),(4)证明(1)的思路是一样的, 类似于由(3)证(1)的方法, 构造闭区间套, 然后不
2. 闭区间套定理与其他定理互证的方法
用闭区间套定理证明问题时, 关键是要构造一个满足一定条件的区间套序列, 然后由区间套定理套出 一个公共点, 这个点往往就是满足问题要求的点. 在构造闭区间套序列时, 常采用二等分法, 其过程一般 为:
Step 1. 先考虑一个区间[a1, b1] , 使它具有某种性质 P ;
,
若 c 为 A 的上界,
则 取 a2 = a1, b2 = c ,
否 则 取 a2 = c, b2 = b1 ,
显 然 都 有 a2 ≤ b2 ,
且
A I [a2 , b2 ] ≠ φ .记 I2 = [a2 , b2 ] . 以此类推, 得到闭区间套 I1 ⊃ I2 ⊃ L ⊃ In ⊃ L, | In |→ 0 , 每个 In 与
由于{xn}单调递增, 所以 ∀n > N , β ≥ xn ≥ xN > β − ε , 即| xn − β |< ε .
由极限定义可知,
lim
n→∞
xn
=
β
2) ⇒ (3) pp.41
分析: 由于闭区间套的每个区间的左端点单调递增有上界, 右端点单调递减有下界, 即可得它们都收 敛, 然后利用闭区间套的长度趋向零证明这两个极限相等, 为所有闭区间的公共点, 并且唯一性也易得证.
1. 教材中的证明
教材[1]中完成的证明如图一所示. 另外, 教材中给出练习的有:
(4) ⇒ (2) pp.45 (3) ⇒ (1) pp.47 (1) ⇒ (6) pp.309 (6) ⇒ (1) pp.309 (5) ⇒ (1) pp.309
1
pp.34
pp.41
pp.44
pp.299
(1)
(2)
我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: (1) 确界存在定理(pp.12): 上(下)有界的非空数集必存在唯一上(下)确界. (2) 递增(减)有界数列必有极限(pp.34).
(3) 闭区间套定理(pp.41): 设 I1, I2 ,L In ,L 是一串有界闭区间, I1 ⊃ I2 ⊃ L ⊃ In ⊃ L, 且 In 的长度
(ii)
lni→m∞(bn
存在收敛的子列{xnk } , 设其极限为ξ . 于是 ∀ε > 0, ∃K , ∀k ≥ K ,| xnk − ξ |< ε
3
由于{xn}也是单调递增数列, ξ 必为{xnk } 的上界, 于是对上述的 ε , 当 n > nK ,