实数系基本定理等价性的完全互证[1]

实数系基本定理等价性的完全互证[1]
实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124 

D ecem.,2008 

教学园地

实数系基本定理等价性的完全互证

刘利刚

(浙江大学数学系,浙江杭州 310027)

摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法.

关键词: 实数系;连续性;等价;极限

收稿日期:2005206210

实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从.

我们使用的教材[1]中给出的实数系的六个基本定理及其描述为:

1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界.

2)递增(减)有界数列必有极限(pp .34).

3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n =

…,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞

n =1

I n 必不空且为单点集.

4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列

.5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列.

6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

在证明之前,我们首先必须要理解这六个定理的每一个在说些什么,只要概念清楚了,并且理解其方法,证明并不难.

定理1)~5)属于同一类型,它们都指出,在某一条件下,便有某种“点”存在,这种点分别是确界(点)(定理1)),极限点(定理2)5)),公共点(定理3)),子列的极限点(定理4)).定理

6))是属于另一种类型,它是前5个定理的逆否形式.

1 教材中的证明

教材[1]中完成的证明如图1所示.另外,教材中给出练习的有:图1 教材[1]中完成的基本定理之间的证明

4)]2)pp .45

3)]1)pp .47

1)]6)pp .309

6)]1)pp .309

5)]1)pp .309

我们首先回顾一下教材中给

出的证明过程[1].分析:单调有界数列必收敛,事实上就是收敛到其确界.有了这个理解后,就很容易利用确界存在定理1)来证明2)了:只要将确界找到,证明此确界就是数列极限即可.

证明 不妨设数列{x n }单调递增.由于{x n }有界,由1)知它的确界存在且有限,设为Β.由上确界定义,Β是{x n }的上界,即Πn ∈N ,x n ΦΒ;且ΠΕ>0,Β-Ε不是上界,即?N ,使得x N >Β-Ε.

由于{x n }单调递增,所以Πn >N ,ΒΕx n Εx N >Β-Ε,即 x n -Β <Ε.

由极限定义可知,li m n →∞

x n =Β,即{x n }收敛.2)]3)pp .41

分析:由于闭区间套的每个区间的左端点单调递增有上界,右端点单调递减有下界,即可得它们都收敛,然后利用闭区间套的长度趋向零证明这两个极限相等,为所有闭区间的公共点,并且唯一性也易得证.

证明 设I n =[a n ,b n ],a n Φb n ,由I n +1

b n 都存在,并且Ν为{a n }的上确界,Γ为{b n }的下确界.因为 I n =b n -a n →0,故Γ=li m n →∞a n +li m n →∞

(b n -a n )=Ν,这说明Ν=Γ∈I n ,从而.至此已证明∩∞

n =1

I n 非空.再由∩∞

n =1I n

3)]4)pp .44

分析:按二等分取闭区间,每个闭区间含有数列的无穷多项.由闭区间套定理套住的唯一点就是某个子列的极限.

证明 设{x n }是有界数列,则存在闭区间I 1使得Πx n ∈I 1.将I 1等分为左右两个闭区间,则至少有一个半区间包含{x n }中的无穷多项,取为I 2.同样的办法将等分后取出I 3,…最终得到一闭区间套I 1=I 2=…=I n =…, I n →0,每个I n 中包含{x n }中的无穷多项.

根据闭区间套定理,存在唯一点∩∞

n =1

I n ={Ν}.下面构造收敛到Ν的子列:任取x n 1∈I 1,由于I 2包含{x n }中的无穷多项,故必能在I 2取出n 1项以后的项n 2,即x n 2∈I 2,n 2>n 1.类74224期刘利刚:实数系基本定理等价性的完全互证

似地,?x n 3∈I 3,n 3>n 2,…最后得到一子列{x n k },x n k ∈I k ,从

Ν-x n k Φ I n →0 (k →∞)

得x n k →Ν(k →∞).{x n k }就是要找的子列.

4)]5)pp .299

分析:首先易知Cauchy 数列有界,从而存在收敛子列,再证明此收敛子列的极限就是原数列的极限.

证明 易知Cauchy 基本数列有界,由Bo lzano 2W eierstrass 定理,{x n }存在收敛的子列{x n k },设其极限为Ν.由{x n }是Cauchy 基本数列,故ΠΕ>0,?N 0,Πn ΕN 0, x n -x N 0 <Ε;

由x n k →Ν(k →∞),对于上述的Ε,?K ,Πk ΕK , x n k -Ν <Ε;

取N =m ax (n k +1,N 0+1),当n >N 时,取k 0>K 使得n k 0>N ,

x n -Ν Φ x n -x n k 0 + x n k 0-Ν <2Ε,

这说明x n →Ν(n →∞)

3)]6)pp .308

分析:用闭区间套定理反证.取不存在开覆盖的半区间构成闭区间套,由此易得矛盾.证明 反证法.假设[a ,b ]不存在有限开覆盖,则将[a ,b ]等分后至少有一个半区间也不存在有限开覆盖,记为I 1;同样将I 1等分后至少有一个半区间也不存在有限开覆盖,记为I 2;…这样得到一闭区间套I 1=I 2=…=I n =…, I n →0,每个I n 都不存在有限开覆盖.

设∩∞

n =1

I n ={Ν},由于Ν∈[a ,b ],必?O Ν,使得Ν∈O Ν.由于 I n →0,故n 充分大时,I n

现在给出教材中给出的习题的证明.

4)]2)pp .45

分析:由有界性知数列有收敛子列,由单调性可知数列收敛到此子列的极限.

证明 不妨设数列{x n }单调递增.由于{x n }有上界,下界即为x 1,由Bo lzano 2

W eierstrass 定理,{x n }存在收敛的子列{x n k },设其极限为Ν

.于是ΠΕ>0,?K ,Πk ΕK , x n k -Ν <Ε

由于{x n }也是单调递增数列,Ν必为{x n k }的上界,于是对上述的Ε,当n >n K , x n -Ν =Ν-x n <Ν-x n K <Ε,这说明x n →Ν(n →∞).

3)]1)pp .47

分析:按二等分取闭区间,使每个闭区间含有数集的确界.由闭区间套定理套住的唯一点就是数集的确界.

证明 只证上确界的情况.假设非空集合A 有上界M ,取a 1∈A ,b 1=M ,则a 1Φb 1.记I 1=[a 1,b 1].令c =a 1+b 12,若c 为A 的上界,则取a 2=a 1,b 2=c ,否则取a 2=c ,b 2=

b 1,显然都有a 2Φb 2,且A ∩[a 2,b 2]≠<.记I 2=[a 2,b 2].以此类推,得到闭区间套I 1=

I 2=…=I n =…, I n →0,每个I n 与A 的交非空.由闭区间套定理,存在唯一的Ν,∩∞n =1

I n 842数 学 的 实 践 与 认 识38卷

={Ν}.由于b n →Ν,且ΠΓ<Ν,?I k ,a k >Γ,而I k ∩A ≠<,必?x ∈A ,x Εa k ,从而x ΕΓ,即Γ不是A 的上界.由此得知Ν为A 的上确界.

1)]6)pp .309

分析:这个技巧在于取能被有限覆盖的闭区间右端点的上确界,证明此上确界就是整个区间的右端点.

证明 设{O Α}为闭区间[a ,b ]的开覆盖.定义A ={x [a ,x ]能被有限覆盖,x ∈[a ,b ]}.由于a ∈A ,可知A 是有界非空集,由确界存在定理,知Β=sup A 存在.显然ΒΦb ,若Β

Β′∈A ,这与Β=sup A 矛盾.

5)]1)pp .309

分析:事实上,由5),2),4)证明1)的思路是一样的,类似于由3)证1)的方法,构造闭区间套,然后不是直接利用闭区间套定理,而是来证明数列{a n }和{b n }的收敛性即可.

证明 5)]1):证明{a n },{b n }为Cauchy 基本数列,得知它们都收敛.

2)]1):由{a n },{b n }为单调有界数列得知它们收敛.

4)]1):由{a n },{b n }为有界数列,得知它们存在收敛子列,然后再利用单调性得出它们都收敛(即利用4)]2)的方法).

2 闭区间套定理与其他定理互证的方法

用闭区间套定理证明问题时,关键是要构造一个满足一定条件的区间套序列,然后由区间套定理套出一个公共点,这个点往往就是满足问题要求的点.在构造闭区间套序列时,常采用二等分法,其过程一般为:

Step 1 先考虑一个区间[a 1,b 1],使它具有某种性质P ;

Step 2 然后把[a 1,b 1]二等分,证明至少有一个子区间里具有性质P ,记这个子区间为[a 2,b 2];

Step 3 不断重复这一步骤,于是得到一个区间列{[a n ,b n ]},它满足条件:

(i )[a n ,b n ]=[a n +1,b n +1],n =1,2,…

(ii )li m n →∞(b n -a n )=li m n →∞b 1-a 12n -1=0

(iii )每一个区间[a n ,b n ]都具有性质P .

由3)证明其他定理:

3)]1),3)]6)已在上面给出.

3)]2),3)]4),3)]5)证明类似于3)]1)的证明,所不同的是要证明唯一公共点Ν就是数列的极限(或某子列的极限).

至于由其他定理来证明3),2)]3),6)]3)已给出,而1)]3),4)]3),5)]3)的过程都类似于2)]3)的过程,只是分别利用1),4),5)去证明{a n }和{b n }的确界,子列的极限,或极限就是公共点.

94224期刘利刚:实数系基本定理等价性的完全互证

3 有限开覆盖定理与其他定理互证的方法

不论用6)来证明前面5个定理,还是由前面5个定理来证明6),都是用反证法.一般地,利用定理6)来证明闭区间[a ,b ]具有某种性质P ,其一般步骤为:Step 1 证明对于[a ,b ]中的每一点x ,都有一个邻域O ?(x ),而此邻域具有性质P ,所有这样的邻域构成闭区间[a ,b ]的一个开覆盖;

Step 2 根据有限开覆盖定理,可从中选取有限个O ?1(x 1),O ?2(x 2),…,O ?k (x k )来覆盖

[a ,b ];

Step 3 利用O ?i (x i )(i =1,2,…,n )具有的性质P ,证明闭区间[a ,b ]也具有这种性质P .6)]1)pp .309

分析:由上确界的否定可知,某数不是上确界,则必有其一邻域都是上界或都不是上界,这些邻域构成开覆盖,若能选取有限多个则得到矛盾.

Β是有界数集A 的上确界Ζ(i )Β是上界,且(ii )任何小于Β的数都不是上界.其否定为:Β是有界数集A 的上确界Ζ(i )Β不是上界,或(ii )还有比Β小的数成为上界证明 用反证法.假设有界数集A 没有上确界,设其上界为M ,任取a 1,a 2∈A ,不妨设a 1

这样内的每一点x ,都找到一个开邻域O ?(x ),它要么属于第一类,要么属于第二类.这些邻域构成闭区间的一个开覆盖.

由有限开覆盖定理,必存在有限个子覆盖O ?1(x 1),O ?2(x 2),…,O ?k (x k ).由于M 是上界,所以M 所在的区间应为第一类的,相邻接的开区间有公共点,也应为第一类的,经过有限次邻接,可知a 所在的开区间也是第一类的,这便得出矛盾.

6)]3)

分析:若闭区间套的交为空,则对任何元素都至少不属于某一个闭区间,这样就有它的一个开邻域都不包含于这个闭区间;于是若只有有限个的话就导致矛盾了.

证明 用反证法.假设区间的交∩∞

n =1I n =<,则Πx ∈[a 1,b 1],?I x ,x |I x ,于是??x ,使得O ?x (x )∩I x =<.这样[a 1,b 1]内的每一点x ,都找到一个开邻域O ?(x ),它与区间套内的某一区间的交为空.这些邻域构成闭区间[a 1,b 1]的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O ?1(x 1),O ?2(x 2),…,O ?k (x k ).设O ?i (x i )∩I n i =<,则取N =m ax{n 1,n 2,…,n k },有O ?i (x i )∩I N =<,Πi =1,2,…k ,这与O ?1(x 1),O ?2(x 2),…,O ?k (x k )构成[a 1,b 1]

的开覆盖矛盾,由此证明了∩∞

n =1

I n ≠<.证明交集的唯一性是简单的,略.

6)]4)

分析:用有限开覆盖定理证明2),4),5)的做法是一样的,由反证假设,对任何一点,可找到一个开邻域,其邻域内至多包含数列中的有限项.若只有有限个开覆盖,则得到矛盾.

证明 设A 是有界无限数集,界为[m ,M ].用反证法.假设A 没有任何子列收敛,即Πx ∈[m ,M ],x 不是A 的极限点,即??,使得O ?(x )至多包含A 中的有限项.这样[m ,M ]内的每一点x ,都找到一个开邻域O ?(x ),它至多包含数集的有限项.这些邻域构成闭

052数 学 的 实 践 与 认 识38卷

区间[m ,M ]的一个开覆盖.

由有限开覆盖定理,必存在有限个子覆盖O ?1(x 1),O ?2(x 2),…,O ?k (x k ),由于每个开邻域至多包含数集的有限项,这与A 是无限数集矛盾.

6)]2)

证明 设{x n }是单调递增上有界数列,界为[x 1,M ].用反证法.假设{x n }不收敛,则Πx ∈[m ,M ],??,使得O ?(x )至多包含{x n }中的有限项(若对任何邻域都有无穷多项,利用{x n }的单调性可知x 为{x n }的极限,见下面附证).这样[m ,M ]内的每一点x ,都找到一个开邻域O ?(x ),它至多包含{x n }的有限项.这些邻域构成闭区间[m ,M ]的一个开覆盖.由有限开覆盖定理,必存在有限个子覆盖O ?1(x 1),O ?2(x 2),…,O ?k (x k ),由于每个开邻域至多包含数集的有限项,矛盾.

上面证明过程中用到一个命题:设{x n }为单调递增数列,若点x 的任何邻域都有{x n }的无穷多项,则x n →x (n →∞).其证明为:首先可知x 为{x n }的上界(否则不可能邻域包含无穷多项).且ΠΕ>0,?x n 0,x n 0∈O Ε(x ),即x -x n 0= x n 0-x <Ε.于是Πn >n 0,x -x n

6)]5)

证明 用反证法.假设Cauchy 基本数列{x n }不收敛.首先易知{x n }有界[m ,M ],则Πx ∈[m ,M ],x 不是{x n }的极限,则?Ε0>0,ΠM ,?n >M , x n -x ΕΕ0

.对上述的Ε0,由{x n }是Cauchy 基本数列,?N ,Πn ,m >N , x n -x m <Ε02

.这样,?m 1>N , x m 1-x ΕΕ0,因此当n >N 时,

x n -x Ε x m 1-x - x n -x m 1 >Ε02

, 从而O Ε02

(x )中至多包含{x n }中的有限项.这样[m ,M ]内的每一点x ,都找到一个开邻域O ?(x ),它至多包含{x n }的有限项.这些邻域构成闭区间[m ,M ]的一个开覆盖.以下同上,略.

由其他定理证明6):3)]6),1)]6)的证明上面已给出.而仿照3)]6)的证明,容易给出2)]6),4)]6),5)]6)的证明方法.

4 其他定理互证的方法

定理1),2),4),5)的互证相对容易些.有时可采用构造闭区间套的方法来得到{a n },{b n }其确界,极限就是所要找的点(类似用闭区间套定理来证明).事实上,只要能用闭区间套定理的方法,都可以类似改动利用1),2),4),5)来证明,所不同的是利用1),2),4),5)去证明唯一公共点Ν是{a n }和{b n }的确界,极限(或某子列的极限).如仿照3)]6)的证明,容易给出2)]6),4)]6),5)]6)的证明方法.

至此,我们已完成了实数系六个基本定理的完全互证方法的分析,归纳了从任何一个定理到其他定理的证明方法.这些定理的互证被这样梳理后,使得学生理解这些证明不再那么抽象和无所适从了.

参考文献:

[1] 欧阳光中,姚允龙,周渊.数学分析(上册)[M ].上海:复旦大学出版社,2003.

15224期刘利刚:实数系基本定理等价性的完全互证

252数 学 的 实 践 与 认 识38卷

[2] 华东师范大学数学系编.数学分析[M].北京:高等教育出版社,1980.

[3] 王向东,高成修,安枫灵.数学分析的概念与方法(上册)[M].上海:上海科学技术文献出版社,1988.

Com plete Proof for Equivalence of Fundam en tal

Theorem s of Real Nu m ber System

L I U L i2gang

(D epartm ent of M athem atics,Zhejiang U niversity,H angzhou310027,Ch ina)

Abstract: T h is paper p resents comp lete p roof of the equivalence of six fundam ental theo rem s

of real num ber system.T he general app roaches fo r the p roof are comp rehensively summ arized,

w h ich m akes all the abstract p roof be an easy task and be easily understood.

Keywords: Sto lz theo rem;L′Ho sp ital rule;li m it;difference

关于实数完备性的基本定理

第七章 实数的完备性 §1 关于实数完备性的基本定理 1. 验证数集? ?? ? ??+-n n 1) 1(有且只有两个聚点11 -=ξ 和12 =ξ. 分析:根据聚点定义2'',分别找各项互异的收敛数列 {}n x ,{}n y ?? ?? ? ??+-n n 1) 1(,使其极限分别为-1和1.再由聚点定义2,用反证法,对1,±≠∈?a R a ,关键在找存在ε,使U(ε,a )内含有? ????? + -n n 1)1(中有限多个点. 解:记()()() 2,11 211,2111 22=-= -=+ -=-n n y n x n n n n 则 {}n x ,{} n y ? ? ?? ? ??+-n n 1)1(,且1lim ,1lim -==∞ →∞→n n n n y x .由定义2''知, 1,121=-=ξξ为???? ?? +-n n 1)1(的两个聚点. 对1,±≠∈?a R a ,则取{}1 ,1min 2 1 0+-=a a ε, ? ?? ??? + -n n 1)1(落在U(0,εa )内部至多只有有限点, 则α不是其聚点. 2.证明 任何有限数集都没有聚点. 分析:由聚点定义2即可证明.

证明:由定义2知,聚点的任何邻域内都含有数集的无穷多个点,而对于有限数集,不可能满足此定义,因此,任何有限数集都没有聚点。 3.设{}),(n n b a 是一个严格开区间套,即满足 ,1221b b b a a a n n <<<<<<< 且0)(lim =-∞ →n n n a b .证明:存在唯一的一点 ξ,使),2,1( =<

实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:12学时 § 1 关于实数集完备性的基本定理(3学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . 三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1.

ⅰ> 对 , 有 , 即 , 亦即后一个闭区间 包含在前一个闭区间中 ; ⅱ> . 即当 时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 和 , 其中 递增, 递减. 例如 和 都是区间套. 但 、 和 都不是. 2. Cantor 区间套定理: Th 3 设 是一闭区间套. 则存在唯一的点 ,使对 有 . 简言之, 区间套必有唯一公共点. 四. Cauchy 收敛准则 —— 数列收敛的充要条件 : 1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy 列 : ⑴ . ⑵ .

第七章 实数的完备性

第七章实数的完备性 § 1 关于实数集完备性的基本定理 一区间套定理与柯西收敛准则 定义1 区间套: 设是一闭区间序列. 若满足条件ⅰ)对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中; ⅱ). 即当时区间长度趋于零. 则称该闭区间序列为闭区间套, 简称为区间套 . 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和, 其中递增,递减. 例如和都是区间套. 但、和都不是. 区间套定理 定理7.1(区间套定理) 设是一闭区间套. 则在实数系中存在唯一的点, 使对有 . 简言之, 区间套必有唯一公共点. 二聚点定理与有限覆盖定理

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的 一个聚点. 数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间. 定理 7.2 ( Weierstrass ) 任一有界数列必有收敛子列. 聚点原理 :Weierstrass 聚点原理. 定理7.3 每一个有界无穷点集必有聚点. 列紧性: 亦称为Weierstrass收敛子列定理. 四. Cauchy收敛准则——数列收敛的充要条件 : 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy列 : ⑴. ⑵. 解⑴ ;

对,为使,易见只要. 于是取. ⑵ . 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 , 又 . 当为奇数时,

. 综上 , 对任何自然数, 有 . …… Cauchy 列的否定: 例2 . 验证数列不是Cauchy列. 证对, 取, 有 . 因此, 取,…… 三 Cauchy收敛原理: 定理数列收敛是Cauchy列. ( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原 则给出证明 )

实数的基本定理

第三章 关于实数的基本定理及闭区间上连续函数性质的证明 六个基本定理: 1实数戴德德公理 确界原理 2数列的单调有界定理 3区间套定理 4聚点定理 致密性定理 5数列柯西收敛准则 6有限覆盖定理 定理(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界. 定理 单调有界数列必收敛. 证明 不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}n a a sup =.下面证明a 就是{}n a 的极限. 事实上,任给0>ε,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当N n ≥时有 n N a a a <<-ε. 另一方面,由于a 是{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n .所以当N n ≥时有 εε+<<-a a a n , 即a a n n =∞ →lim .同理可证有下界的递增数列必有极限,且其极限即为它的下确界. (区间套定理) 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,, ,2,1=n ,即 ξ≤n a n b ≤, .,2,1 =n (2) 证 由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(??)有 ξ==∞ →∞ →n n n n a b lim lim , (4) 且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。 最后证明满足(2)的ξ是唯一的。设数ξ'也满足 ,,2,1, =≤'≤n b a n n ξ

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

向量和向量范数

3.4 向量和矩阵范数 3.4.1 内积与向量范数 为了研究方程组Ax=b解的误差和迭代法收敛性,需对向量及矩阵的"大小"引进一 种度量,就要定义范数,它是向量"长度"概念的直接推广,通常用表示n维实向量空间,表示n维复向量空间. 定义4.1设(或),,,实数或 复数,称为向量x与y的数量积也称内积. 非负实数,称为向量x的欧氏范数或2-范数. 定理4.1设设(或)则内积有以下性质: (1) ,当且仅当x=0时等号成立; (2) ,或; (3) ,或; (4) ; (5) (3.4.1) 称为Cauch-Schwarz不等式. (6) ,称为三角不等式. 定义4.2向量的某个实值函数N(x),记作,若满足下列条件: (1) ‖x‖≥0,当且仅当x=0时等号成立(正定性); (2) (齐次性); (3) (三角不等式); 则称是上的一个向量范数.

对于,由内积性质可知它满足定义4.2的三个条件,故它是一种向量范数.此外还有以下几种常用的向量范数. (称为∞-范数) (称为1-范数) 容易验证及均满足定义4.2的三个条件.更一般的还可定义 但只有p=1,2,∞时的三种范数是常用的向量范数. 例如给定,则可求出 定理4.2设是上任一种向量范数,则N(x)是向量x的分量的连续函数. 定理4.3设与是上任意两种向量范数,则存在常数,使 (3.4.2) 不等式称为向量范数等价性. 以上两定理证明可见[2],[3]. 讲解: 在向量得内积(x,y)的性质中,定理4.1的(5)为Cauch-Schwarz不等式(3.4.1)是经常使用的,下面给出证明,显然当x=0或y=0时(3.4.1)成立,现设,考察 若取 则上式为 于是

实数系基本定理

关于实数连续性的基本定理 这七个定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相 互等价的,即任取其中两个定理,它们可以相互证明。它们在证明过程中相互联系。对同一个定理的证明,虽然不同的定理作为工具会使证明有简繁之分,有的用的是类似的证明方法,有的出发点与站的角度不同,但最后却都能殊途同归。而有时使用同一个定理,也可能有不同的方法。即使方法相同,还可以有不同的细节。作为工具,它们又各具特点。而这些都是值得我们去注意与发现。 (一)实数基本定理的出现 关于实数的这些基本定理,总结起来就是一句话,实数系在分析上是完备的,直观来看 就是没有“洞”的。有人也许会说,中学时我就知道实数就是直线,直线当然是没有“洞”的,还用得着这么啰嗦吗?实际上,这里有一个逻辑循环,只有先肯定实数没有“洞”,才能够把它等同于直线,初等数学就这样默认了直观的前提,但是在分析学中就得往前研究,讨论一下这里的没有“洞”到底是怎么回事。 以上的定理表述如下: 实数基本定理:对R 的每一个分划A|B ,都?唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。(论证实数系的完备性和局部紧致性) 确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。 单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。 区间套定理:设{,[n a ]n b }是一个区间套,则必存在唯一的实数r,使得r 包含在所有的 区间里,即 ∞ =∈1 ],[n n n b a r 。 有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。 紧致性定理:有界数列必有收敛子数列。 柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是: εε<->>?>?||,,,0m n x x ,N m N n N 有时当。 这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。 上确界的数学定义:有界集合S ,如果β满足以下条件 (1)对一切x ∈S ,有x≤β,即β是S 的上界; (2)对任意a <β,存在x ∈S ,使得x >a ,即β又是S 的最小上界, 则称β为集合S 的上确界,记作β=supS (同理可知下确界的定义)

向量范数

向量范数 定义1. 设,满足 1. 正定性:║x║≥0,║x║=0 iff x=0 2. 齐次性:║cx║=│c│║x║, 3. 三角不等式:║x+y║≤║x║+║y║ 则称Cn中定义了向量范数,║x║为向量x的范数. 可见向量范数是向量的一种具有特殊性质的实值函数. 常用向量范数有,令x=( x1,x2,…,xn)T 1-范数:║x║1=│x1│+│x2│+…+│xn│ 2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2 ∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│) 易得║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞ 定理https://www.360docs.net/doc/2814187390.html,中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使 m║x║α≤║x║β≤M║x║ 可根据范数的连续性来证明它.由定理1可得 定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则 ║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→ ∞) 其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k) →x(k→∞),或 . 三、矩阵范数 定义2. 设,满足

1. 正定性:║X║≥0,║X║=0 iff X=0 2. 齐次性:║cX║=│c│║X║, 3. 三角不等式:║X+Y║≤║X║+║Y║ 4. 相容性: ║XY║≤║X║║Y║ 则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数. 注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩 阵向量乘使我们定义矩阵范数向量范数的相容性: ║Ax║≤║A║║x║ 所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的. 定理3. 设A是n×n矩阵,║?║是n维向量范数则 ║A║=max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0} 是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性 或者说是相容的. 单位矩阵的算子范数为1 可以证明任一种矩阵范数总有与之相容的向量范数.例如定义: ║x║=║X║,X=(xx…x) 常用的三种向量范数诱导出的矩阵范数是 1-范数:║A║1= max{║Ax║1:║x║1=1}= 2-范数:║A║2=max{║Ax║2:║x║2=1}= ,λ1是AHA的 最大特征值. ∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}= 此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.

实数完备性基本定理相互证明

关于实数连续性的基本定理 关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明 以上的定理表述如下: 实数基本定理:对R 的每一个分划A|B ,都?唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。 确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。 单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。 区间套定理:设{ ,[n a ] n b }是一个区间套,则必存在唯一的实数r,使得r 包含 在所有的区间里,即 ∞ =∈1 ] ,[n n n b a r 。 有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。 紧致性定理:有界数列必有收敛子数列。 柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是: ε ε<->>?>?||,,,0m n x x ,N m N n N 有时当。 这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。 (二)实数基本定理的等价证明 一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理 证明:设数列}{n x 单调上升有上界。令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ?≤,}, 而A=R ﹨B ,则A|B 是实数的一个分划。事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。又对任给a ∈A ,b ∈B ,则存在0 n ,使 a < 0n x ≤ b ,即A 、B 不乱。故A|B 是实数的一个分划。根据实数基本定理, A ,a R r ∈?∈?使得对,b r a B ,b ≤≤∈有。

向量和向量范数

3.4向量和矩阵范数 3.4.1内积与向量范数 为了研究方程组Ax=b解的误差和迭代法收敛性,需对向量K亡卫"及矩阵止£ R晦的”大小”引进一种度量,就要定义范数,它是向量"长度”概念的直接推广,通常用I 表示n维实向量空间,J '表示n维复向量空间. 定义4.1 丘设(或C ”)补…,心),厂叽…亠),实数苗或〔2)二宀=主氓严=的共馳) 复数,称为向量x与y的数量积也称内积. Ha" D" ■ (£卅严 非负实数,称为向量x的欧氏范数或2-范数. 定理4.1设心J -二广|设(或匚'-1)则内积有以下性质: (1)(仏工)。,当且仅当x=0时等号成立; ⑵,…r 工「_ J 或- (3)(2 ■ 0闪或Gj)?O M),^yeC"; ⑷(1”昜?(兀刃十(兀对庄丁上弋C*; (5)||(5勺忖個(3.4.1) 称为Cauch-Schwarz不等式. (6)订m,称为三角不等式. 定义4.2向量-「-的某个实值函数N(x),记作-",若满足下列条件: (1)I I x||》0当且仅当x=0时等号成立(正定性); (2)|二 -I ■||」「—R(齐次性); ⑶匸'V1-1 ::-1(三角不等式); 则称-'L-亠I -■是1'.■上的一个向量范数.

于是 I 仗或10昭)3刃十帥I ,由内积性质可知它满足定义 4.2的三个条件,故它是一种向量范数.此外还 (称为i-范数) 但只有p=1,2, ?时的三种范数是常用的向量范数 例如给定X -(12?餌 ,则可求岀 Plli=M^ll a =Vi4,||x|L=3 定理4.2 设M ?|| / || 是. "上任一种向量范数,则 N (x )是向量x 的分量罚,鬥,的连续函 (3.4.2) 不等式称为向量范数等价性. 以上两定理证明可见[2],[ 3]. 讲解: 在向量丄-亠-得内积(x,y )的性质中,定理 4.1的(5)为Cauch-Schwarz 不等式(3.4.1)是经常 使用的,下面给出证明,显然当 x = 0或y = 0时(3.4.1)成立,现设■■- 7 '■,考察 0 M 仗+為,狀十= fcx )十22仗”y )十/(”刃 若取 ■: 有以下几种常用的向量范数 (称为《范数) 对于 容易验证丨y #及丨n ; I 均满足定义4.2的三个条件.更一般的还可定义 定理4.3 设“与1仏是 上任意两种向量范数,则存在常数 ,使

数学分析之实数的完备性

数学分析之实数的完备性 《数学分析》教案 第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:14学时 ? 1 关于实数集完备性的基本定理(4学时) 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一(确界存在定理:回顾确界概念( Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 . 二. 单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . - 1 - 《数学分析》教案 三. Cantor闭区间套定理 : 1. 区间套: 设是一闭区间序列. 若满足条件

?> 对, 有 , 即 , 亦即后 一个闭区间包含在前一个闭区间中 ; ?> . 即当时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个“闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和 , 其中递增, 递减. 例如和都是区间套. 但、 和都不是. 2. Cantor区间套定理: Th 3 设是一闭区间套. 则存在唯一的点,使对有 . 简言之, 区间套必有唯一公共点. 四( Cauchy收敛准则——数列收敛的充要条件 : - 2 - 《数学分析》教案

泛函数与范数的定义

泛函数-正文 又称泛函,通常实(复)值函数概念的发展。通常的函数在R n或C n(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。设Ω为R n中的区域,Г1表示边界嬠Ω的片断, 表示一函数集合。考虑对应 ,式中F为具有2n+1个自变数的函数:为寻求J(u)的局部极值,在一定条件下取J(u)的加托变分 如果在u=u0达到局部极值,则u0适合欧拉方程δJ(u)=0。在应用中,常以数学或物理的某个微分方程为背景产生一定泛函数,使原问题化成泛函数极值问题。当代分析学中,变分方法有广泛应用。一般把问题化成Tx=0的形式,即对应于某泛函数φ的欧拉方程,其中φ定义在一巴拿赫空间X中的开集S上且加托可微:算子T称为梯度算子,φ称为T的场位。人们常遇到二阶微分系统,由此产生二次泛函数极值问题,是当代变分法常见的研究对象。 泛函数φ:S嶅X→R(X为拓扑空间)称为在x∈S处下半连续,如果对每个实数r<φx,有x的邻域U(x),使得r<φz,凬z∈U(x)∩S。称φ在x∈S处下半序列连续,如果对每个序列 。其连续性及有界性如同对算子相应的性质所做的规定。 设φ是定义在线性集合S上的实(复)值泛函数。如果φ(x+y)=φ(x)+φ(y),φ称为加性的;如果φ(λx)=λφ(x),λ∈R(C)称为齐性的;如果同时有加性及齐性称为线性的。当φ

取实值时,加性得放松为次加性,其定义为:φ(x+y)≤φ(x)+φ(y);齐性得放松为正齐性,其定义为:?(λx)=λ?(x)(λ≥0);如果同时有次加性及齐性,则称φ具有次线性;如果对于λ∈(0,1),有φ(λx+(1-λ)y)≤λφ(x)+(1-λ)φ(y),则称φ为凸的;如果当x≠y时上式中的≤必为<,则称φ为严格凸的。在一些问题中,容许凸泛函数φ取值+∞,但φ扝+∞,这时称φ为真凸的。此外,还有所谓凸集S上的拟凸泛函数φ:S嶅K→R(K为线性空间),使φ(tx+(1-t)y)≤max{φx,φy},x,y∈S, t∈(0,1)。在赋范空间K中无界集S上定义的泛函数φ称为强制的,如果有函数с:(0,+∞)→R,с(t)→+∞(t→+∞)使得φ(z)≥с(‖z‖),凬z∈S。 线性泛函数是线性算子理论研究的对象之一,也是研究空间性质及结构的工具。例如,局部凸拓扑线性空间K有对偶空间K,K的元素就是定义在K上的连续线性泛函数。对K可赋予简单收敛拓扑或有界收敛拓扑。偶K、K间的关系对认识空间的性质和研究算子的性质都有基本意义。 相应于多重线性算子有多重线性泛函数。例如,设K1、K2是同一数域上的线性空间,定义在积空间K1×K2上的映射φ:K1×K2→R(或C)称为双线性泛函数,如果K2(K1)中元素固定时φ成为K1(K2)上的线性泛函数。当K1=K2=K,K1及K2中取等同的x∈K,则得φ(x,x),称为二次泛函数。对希尔伯特空间中线性算子谱理论的研究,双线性泛函数形式作为表示工具是方便的。二次泛函数在变分法中的应用更是为人熟知的。 拟赋范空间、局部凸拓扑线性空间、赋范空间等的表征主要在于分别在各空间上定义的次加性泛函数,即拟范数、半范数族、范数等。测度空间中的测度,即对应于某种集合的值也可理解为泛函数。对于给定函数的不定积分也可类似地看待。 范数 向量范数

实数完备性的等价命题及证明

一、问题提出 确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的 还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆 盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖. 定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要 恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具. 下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类

:(4)~(7) 阅读参考类 :(8)~(10) 习题作业类 下面来完成(1)~(7)的证明. 二、等价命题证明 (1)(用确界定理证明单调有界定理) (2)(用单调有界定理证明区间套定理) (3)(用区间套定理证明确界原理) *(4)(用区间套定理证明有限覆盖定理) *(5)(用有限覆盖定理证明聚点定理) *(6)(用聚点定理证明柯西准则) *(7)(用柯西准则证明单调有界定理) (1)(用确界定理证明单调有界定理) 〔证毕〕 (返回) (2)(用单调有界定理证明区间套定理)设区间套.

实数的连续性公理证明确界存在定理

实数的连续性公理证明确界存在定理 定理一实数基本定理(戴德金实数连续性定理)实数系R按戴德金连续性准这是连续的,即对R的任意分划A|B,都存在唯一的实数r,它大于或等于下类A的每一实数。小于或等于上类B中的每一个实数。 定理二单调有界有极限单调上升(下降)有上(下)界的数列必有极限存在。 定理三确界定理在实数系R内,非空的有上(下)界的数集必有上(下)确界存在。 定理四区间套定理设是一个区间套,则必有唯一的实数r,使得r包含在所有的区间套里,即。 定理五Borel有限覆盖定理实数闭区间的任一个覆盖E,必存在有限的子覆盖。 定理六Bolzano-Weierstrass紧致性定理有界数列必有收敛子数列。 定理七Cauchy收敛原理在实数系中,数列有极限存在的充分必要条件是: 任给>0,存在N,当n>N,m>N时,有。 定理一—三是对实数连续性的描述,定理四—定理六是对实数闭区间的紧致性的描述,定理七是对实数完备性的描述。上述七个定理都描述了实数的连续性(或称完备性),它们都是等价的。下面给出其等价性的证明: 定理一定理二: 设数列单调上升有上界。令B是全体上界组成的集合,即 B=,而A=R\B,则A|B是实数的一个分划。事实上,由有上界知B不 空。又单调上升,故,即A不空。由A=R\B知 A、B不漏。又,

则,使,即 A、B不乱。故A|B是实数的一个分划。根据实数基本定理, 存在唯一的使得对任意,任意,有。下证。事实上, 对,由于,知,使得。又单调上升。故当n>N时, 有。注意到,便有。故当n>N时有 ,于是。这就证明了。若单调下降有下界, 则令,则就单调上升有上界,从而有极限。设极限为r,则 。定理二证完。 定理二定理三: 只需证明在实数系R内,非空的有上界的数集必有上确界存在。设数集X 非空,且有上界。则,使得对,有。又R是全序集,对, 与有且只有一个成立。故,有与有且只有一个成 立。故r是X的上界与r不是X的上界有且只有一个成立。X有上界,实数是X的上界。若不存在实数不是X的上界,则由上知,实数都是X的上界,这显然与X非空矛盾。故,使得不是X的上界,是X的上界。则使得。 用的中点二等分,如果是X的上界,则取 ;如果不是X的上界,则取。继续用 二等分,如果是X的上界,则取;如果 不是X的上界,则取。如此继续下去,便得到两串序列 。其中都不是X的上界且单调上升有上界(例如),都是X的上界且 单调下降有下界(例如)。并且(当时)。由单调上升 有上界知有存在,使得。下证。①事实上,对

实数系基本定理的等价性证明

实数系基本定理的等价性证明 摘 要 说明了确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理、有限覆盖定理这六个定理是等价的.也就是说,以这六个定理中的任意一个作为公理都可以推出另外五个.本文把闭区间套定理作为公理,证明了这六个定理之间是相互等价的. 关键词 上、下确界、闭区间套、有限覆盖、收敛、等价性 在数学分析课程中我们学习了实数系的六个基本定理,即确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理和有限覆盖定理.实数系这六个基本定理是相互等价的,即以其中任何一个定理作为公理都可推出另外五个定理. 在《数学分析》教材中,一般都是以确界原理作为公理,然后去证明其余 的五个定理.我们现以“闭区间套定理”作为公理,然后去推证其余的五个定理,并证明这六个定理是等价的. 六个定理的顺序: ① 确界原理 ② 单调有界定理 ③ 闭区间套定理 ④ 致密性定理 ⑤ 柯西收敛原理 ⑥ 有限覆盖定理 按以下顺序给予证明: ③?⑥?④?⑤?①?②?③ 1 闭区间套定理?有限覆盖定理[]1 闭区间套定理 若闭区间列][{}n n b a ,满足: ①[]n n b a ,?[]11,++n n b a ,n =1,2,3,…; ②∞ →n lim ()n n a b -=0 ; 则存在唯一ξ,使得∞ →n lim n a =∞ →n lim n b =ξ,ξ是所有区间的唯一公共点. 有限覆盖定理 若开区间所成的区间集E 覆盖一个闭区间[]b a ,,则总可从E 中选出有限个区间,使这有限个区间覆盖[]b a ,.

证明 用反证法 设[]b a ,不能被E 中有限个区间所覆盖.等分区间[]b a ,为两个区间,则至少有一个部分区间不能被E 中有限个区间所覆盖,把这一区间记为 []11,b a .再等分[]11,b a ,记不能被E 中有限个区间所覆盖的那个部分区间为 []22,b a .照这样分割下去,得到一个区间列][{}n n b a ,,这区间列显然适合下面两 个条件: (i ) 每一[]n n b a ,皆不能被E 中有限个区间所覆盖; (ii ) []b a ,?[]11,b a ?[]22,b a ?…; (iii )n b -n a = n a b 2-→0; 有条件(ii )及(iii ),于是由闭区间套定理,必有唯一点ξ∈[]b a ,使n a →ξ, n b →ξ.按覆盖概念及定理所设条件,在E 中至少存在一个开区间,设为)(βα,,使 ξ∈)(βα, 即 α<ξ<β 有数列极限的性质知道,?正整数N ,当n >N 时,有 α<n a <n b <β 即当n >N 时,有 []n n b a ,?)(βα, 也就是用E 中一个区间)(βα,就可覆盖所有形如[]n n b a ,﹙n >N ﹚的区间,与(i )矛盾. 定理证毕 2 有限覆盖定理?致密性定理[]2 致密性定理 有界数列必有收敛的子列. 证明 设{}n x 为有界数列,a 是它的一个下界,b 是它的一个上界,于是下列两种情形之一成立: (i ) α∈[]b a ,,使在α的任何邻域中都有{}n x 的无穷多项;

相关文档
最新文档