自噬现象及其分子机制的研究进展
生物自噬过程的研究进展

生物自噬过程的研究进展随着科技的进步和发展,生物领域的研究也已经取得了许多重要的进展。
而自噬作为一种细胞的自我调节和清理机制,近年来在生物学研究中也得到了越来越广泛的关注。
本文将介绍一些生物自噬过程的研究进展。
一、自噬的基本概念自噬是细胞通过溶酶体(lysosome)或其他酶类体内受害物质的加速降解过程。
在某些情况下,细胞需要消耗内部蛋白质、脂质或其他细胞器来维持生存,所以会通过吞噬自身结构来获取能量或原料,这就是自噬。
自噬是由各种自噬体组成的复杂的生物学事件,包括细胞膜的扩张和内袋形成、囊泡完成后的融合、受噬物的降解和产生的废物物质的清除过程。
自噬的过程随时都在发生,这是一个非常重要的基本生物学过程,对生物体的生长、分化、应激反应和抵御病原体等方面都具有重要的作用。
二、自噬受体的发现与研究自噬的过程有许多不同的启动方式,其中最重要的是自噬受体。
自噬受体是一种能识别细胞中垃圾蛋白并“捕捉”它们的复合物,然后将其转运到自噬小体中进行降解。
多年来,许多关于自噬受体的研究一直在进行中。
最近的研究表明,自噬是通过ATG8家族成员和自噬受体融合在一起的。
这种自噬受体要求相应的ATG8家族成员参与组成,并依赖于膜融合来提供受噬物的限定。
三、自噬的重要生物学意义自噬的生物学意义是非常重要的。
近年来的研究表明,自噬在调控能量的平衡、细胞发育和生长、组织的分化和代谢过程中都起着至关重要的作用。
此外,自噬还用于预防癌症的发生和发展,并被用于治疗一系列疾病的药物研究。
四、自噬与疾病的关联自噬的功能异常通常会造成一定的生物学问题。
最近的研究表明,自噬与多种如炎症、神经退行性疾病、代谢性疾病等各类疾病有明显的关联。
例如,自噬和阿尔兹海默病(Alzheimer’s disease,AD)之间存在一定的联系。
自噬在扩大贡献侵蚀细胞的β-淀粉样蛋白(β-amyloid)沉着物的清除中发挥了重要作用;自噬受体FAK在降解β-amyloid方面也具有重要功能,因此给予对自噬和自噬受体抑制的药物也会使β-amyloid沉积增多。
细胞自噬调节机制的探寻与新进展

细胞自噬调节机制的探寻与新进展细胞自噬是细胞内一种重要的清除机制,它可以通过降解细胞内的一些无用或者损坏物质来维持细胞内部环境的稳定性,以及适应由于外界环境变化而可能出现的压力。
近些年来,随着对于自噬的不断探索和深入研究,一些新的结论和进展已经逐渐浮出水面。
细胞自噬的基本特征概述细胞自噬这一过程的主要特征是通过细胞内的一系列物质和酶的协同作用,通过将细胞内的各种物质降解,并将其转化成与细胞新陈代谢相关的代谢物,从而维持细胞内的平衡、适应环境的变化、清除有毒有害的分子,同时确保多种生命活动的顺利进行。
在自噬的过程中,细胞本身负责向细胞核和胞浆中的代谢物质释放同样方面,细胞负责一些蛋白质的翻译、折叠、以及降解,这些过程都需要细胞内部多种物质的协作。
同时值得注意的是,自噬作为细胞自我保护机制的一种形式,一旦细胞内部自噬的过程受到障碍,就会导致细胞内环境失衡和功能异常,引发很多疾病的产生,在疾病的治疗和预防方面也有着重要的意义。
细胞自噬的执行者细胞自噬的执行者主要是一些小泡状的细胞器,它们被认为是自噬的运作平台,专门负责在细胞内将需要降解的物质转移至自噬体内部。
这些小包方式呈现出“二倍体”的样子,具有随着需求的增长而不断扩大的能力,形状也会逐渐发生改变。
在自噬体内部还有一种特殊的分解的酶来进行物质降解和代谢,这种酶叫做自噬酶,它被认为是细胞自噬的核心之一。
经过自噬体和自噬酶的共同作用,细胞可以在需要时对一些不必要的、有毒的或者缺乏其他生命活动所需的代谢物进行有效地清除,并且再利用对其它的生命活动或细胞机能的恢复。
自噬过程的正常进行对于细胞自身、器官甚至是整个生物体的生命体征维护和完美发展都有很重要的作用。
细胞自噬的调节机制细胞自噬是否可以正常进行常常取决于一些对于自噬调节机制的正常运作。
细胞自噬的调节机制通常可以被分为mTOR定位调节、ATG9L1的调控、细胞内钙离子的控制以及磷酸肌酸激酶和MAPK酶等的协助。
细胞自噬机制研究新进展

细胞自噬机制研究新进展细胞自噬机制是一种逐步引导细胞的完整或部分物质分解,从而实现细胞重新利用和功能维持的重要生物学过程。
自噬是一种常态生理现象,而当细胞生存环境出现异常的时候,如营养状况、缺氧、感染或者外源因素等,细胞自噬机制会随之调整以应对环境变化,从而维持细胞的正常生理状态。
随着对自噬机制的研究不断深入,发现了大量的自噬相关基因和调控因子,这些因子对于自噬过程的平衡是至关重要的。
例如,mTORC1是一个重要的自噬抑制因子,当细胞营养摄取充足时会被激活,从而抑制自噬过程。
而Beclin-1等自噬相关分子则是主要的自噬激活因子,它们调节自噬发生的关键节点。
近年来,针对自噬机制研究的新成果不断涌现,其中最值得一提的是杨氏体自噬机制的发现。
杨氏体是一种新发现的细胞内微生物,它能感染滋补单壁菌和马拉维病毒。
以往的研究表明,杨氏体能通过特定的侵染策略,在暴露于宿主的自噬机制后,尤其是磷酸酯酶VCIP135(也称为VLPS)和Atg5等基因找到自噬过程的漏洞。
这就促进了自噬过程的开启,从而加快细胞对细菌的死亡和分解,实现更快的清除作用。
由此可见,杨氏体自噬机制的发现对于细胞免疫和抗菌研究是具有重要意义的。
此外,还有近年来相关研究报道称,通过RNAi技术靶向调控自噬抑制因子mTORC1信号通路,也可以达到对肿瘤治疗的积极作用。
该技术可以抑制肿瘤细胞生长,并通过增强自噬过程降低人体对肿瘤的免疫抵抗力,从而减缓肿瘤细胞生长速度。
总的来说,细胞自噬机制的研究正处于一个快速发展的时期;这类研究的广泛应用领域也在逐步扩大,未来有望开拓更多的细胞测序、基因编辑、肿瘤等方面的应用前景。
当然,随着细胞自噬技术的推广与应用,也需要注意细胞自噬机制对于动植物的生长发育、免疫和代谢等的潜在影响,以便更好的保证该技术的安全性和稳定性。
细胞自噬的基础知识与研究进展

细胞自噬的基础知识与研究进展细胞自噬(autophagy)是指细胞自身分解和回收废弃物质的一种过程,具有维持细胞内环境平衡、细胞生长、代谢和身体适应力等方面的重要作用。
它是细胞生物学领域中的一大研究热点,得到了广泛关注。
一、细胞自噬的三种类型细胞自噬分为三种类型:微型自噬(microautophagy)、宏型自噬(macroautophagy)和小体自噬(chaperone-mediated autophagy,CMA)。
其中,微型自噬与宏型自噬是非选择性自噬,而小体自噬则是选择性自噬。
微型自噬是指细胞通过直接将废物分解成小的空泡来完成清除废物的过程。
宏型自噬则是通过将废物包裹进一个由双层膜组成的泡膜内,使其与溶酶体融合、分解的过程。
而小体自噬则是通过由Hsc70蛋白、LAMP-2A和HSP90组成的复合物来识别、捕获并分解特定蛋白质的过程。
二、细胞自噬的生化机制细胞自噬不仅涉及大量的细胞生物学蛋白质,还涉及到一些细胞内化学物质。
自噬的基本过程首先涉及由Atg(autophagy-related gene)基因编码的多种蛋白质在细胞内的调节作用。
这些蛋白质可以调节自噬与外环境的联系,以及与涉及的细胞运输相关的分解系统的作用。
细胞自噬的开始通常是由Atg1和Atg13等蛋白复合体的存在调节的,这些蛋白质作为自噬衍生的起点,启动成为自我糖化的起点。
蛋白复合体说大多是保存在细胞滋生蛋白(ER)突出物内或腺苷酸酰化酶(mTOR)等控制细胞自我代谢的重要酶中。
细胞自噬的早期主要涉及细胞内与mTOR有关的信号转导通路和PtdIns3K(磷脂酰肌醇3-激酶)通路。
其中,mTOR通路通过进一步活化Ras相关蛋白、主导蛋白(PKB或AKT)等蛋白的更多生物活性,使得下游的Atg1和Atg13蛋白被阻止,从而抑制细胞自噬的过程。
而PtdIns3K通路则是自噬开始的关键,它通过生成PtdIns3P(磷脂酰肌醇3-磷酸)在细胞的自噬小泡形成中发挥了作用。
细胞自噬机制的研究进展

细胞自噬机制的研究进展细胞自噬是一种重要的细胞代谢途径,通过分解和回收细胞内部的有害或无用物质,维持细胞内环境的稳定性,并起到调节细胞生长、维持生命活动的作用。
近年来,对细胞自噬机制的研究取得了许多重要的进展,从细胞自噬的启动、调控到自噬相关疾病的研究均有新的突破。
首先是细胞自噬的启动机制。
细胞自噬最早的启动信号是一种被称为ATG1/ULK1 kinase的蛋白酶,它能够与自噬剂源泡膜(phagophore)结合,激活其他ATG蛋白的功能,从而启动自噬。
最近的研究表明,ATG1/ULK1 kinase的激活还受环境因素和细胞代谢状态的影响,例如细胞内的营养水平和能量状态。
这些发现揭示了细胞自噬启动的新机制,为了解自噬调控提供了新的线索。
其次是细胞自噬的调控机制。
自噬过程需要大量的ATG蛋白参与,这些蛋白通过形成复合物,调控自噬各个阶段的发生和进行。
其中,两个关键复合物是PI3K-III复合物和ATG12-ATG5-ATG16复合物。
PI3K-III复合物通过合成一种称为PI(3)P的信号分子,在细胞膜上构建自噬剂源泡膜。
ATG12-ATG5-ATG16复合物则参与自噬剂源泡膜的扩张和囊泡的合并。
最近的研究还发现,一些细胞膜上的磷脂酰肌醇磷脂酰肌醇酶(PI(3)P)与ATG蛋白之间的相互作用也对自噬的调控具有重要作用。
这些调控机制的研究有助于我们进一步理解细胞自噬的分子机制。
此外,细胞自噬还与一些疾病的发生和发展密切相关。
许多疾病,如肿瘤、神经变性病和心血管疾病等都与细胞自噬的异常有关。
例如,自噬的减少会导致细胞内垃圾物质的堆积,进而引发细胞的恶变和肿瘤的发生。
而神经变性病如阿尔茨海默病和帕金森病则与自噬的缺陷有关。
近年来,针对自噬异常的调控策略也成为了疾病治疗的重要研究方向。
综上所述,细胞自噬机制的研究正迅速推进,从自噬的启动机制、调控机制到与疾病的关系,都有了许多新的进展。
随着技术的不断发展,相信细胞自噬机制的研究将为细胞生物学和疾病治疗提供更深入的见解和新的方向。
自噬现象及其分子机制

发表时间:2011-6-2 来源:《中外健康文摘》2011年第8期作者:刘杉珊李薇[导读] 自噬是真核细胞特有的普遍生命现象,在维持细胞自我稳态、促进细胞生存方面起重要作用。
刘杉珊李薇(吉林大学第一医院血液肿瘤中心吉林长春130021)【中图分类号】R329 【文献标识码】A【文章编号】1672-5085 (2011)8-0448-04【摘要】自噬是真核细胞特有的普遍生命现象,在维持细胞自我稳态、促进细胞生存方面起重要作用,广泛参与多种生理和病理过程。
自噬与细胞卫士p53的关系密切,目前已成为肿瘤研究中的一个新热点。
本文对自噬的概念、生物学特性、自噬过程及其信号调控、以及与p53的关系作以概述,同时简要概述了目前自噬的研究方法和检测方法并提出问题和展望,为进一步研究自噬奠定基础。
【关键词】自噬分子机制p53近年来,自噬作为II型程序性细胞死亡,越来越成为除凋亡之外备受关注和研究的领域。
目前自噬不仅被证实是一种细胞自我死亡的方式,同时也是一种细胞的自我保护机制,在肿瘤、老化和神经退化等细胞增殖和死亡紊乱疾病中发挥着重要的作用。
因此通过对自噬的发生过程、分子机制、信号调控、及与细胞卫士P53之间关系的总结,为进一步研究其机制调控和临床应用奠定坚实的基础。
1 自噬的概念自噬又称为II型程序性细胞死亡(type II programed cell death)是以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”的一系列生化过程。
正常细胞内的物质主要有两种降解途径,一种通过蛋白酶体被降解,另一种是通过自噬作用。
自噬主要降解细胞质的长寿命蛋白和一些细胞器的降解,这种降解有助于细胞内组分和细胞器的正常更新,而蛋白酶体主要降解胞内的短寿命蛋白[1]。
根据细胞内底物运送到溶酶体腔方式的不同,哺乳动物细胞可分为3种主要方式:大自噬(macroautophagy)、小自噬(microautophagy)和分子伴侣介导自噬(chaperone—mediated autophagy, CMA)。
细胞自噬的研究进展

细胞自噬的研究进展细胞自噬是细胞内部一种重要的基本代谢过程,是一种细胞质内自噬体膜包裹并降解包裹物的细胞生物学过程。
自噬既是细胞繁殖和分化的基本过程,也是机体应对氧化应激、营养胁迫、感染和腫瘤等外部或内部刺激的主要体内防御机制,同时还在许多疾病的发生和发展中发挥着举足轻重的作用。
目前,对于自噬的研究已经引起了广泛的关注。
本文将会详细介绍细胞自噬的研究进展。
一、自噬的发现历史及分子机制研究自噬这一现象最早由异物、细菌和用染料染色的细胞器等被发现。
20世纪50年代,贝尔格曼等人发现吞噬细菌的细胞器,而后来发现该细胞器从肝细胞发生,被称作“自噬体”;在20世纪60年代,巴塞尔大学的克里帕等人首次提出了自噬的概念,从那时起,自噬的研究进入了快速发展的阶段。
在分子机制研究方面,目前已经发现了许多关键蛋白,包括控制自噬的Atg蛋白家族。
Atg蛋白家族由Atg1-Atg36等蛋白针对自噬体的各个生理阶段而分化成不同的亚群。
目前已经确认的Atg蛋白中,Atg1、Atg13、Atg17、Atg29和Atg31形成复合体,已经在酿酒酵母中得到验证;Atg6、Atg5、Atg12、Atg16形成E3酶复合体,调控自噬体反应膜的扩增;Vps34, Beclin 1、Vps15和Atg14L可以形成复合体——PI3K复合体III,恰恰是在这个过程中,生产出了诱导自噬的信号Lipid-Dyct-4-P和毒性带有的酰化脂——Dyct-PE。
二、自噬与疾病2.1自噬与肿瘤自噬在抑制肿瘤发生和发展等方面具有重要作用。
研究发现,与恶性肿瘤细胞相比,正常细胞中自噬的水平更高,持续时间更长,而且触发自噬可以降低肿瘤细胞的代谢活性,减慢肿瘤细胞的增殖速度。
当细胞出现缺氧、营养不足、蛋白质聚集等应激情况时,自噬会被激活,减少代谢产物的积累,帮助细胞应对应激,降低细胞受到损伤的风险,从而有效抑制肿瘤的发生和发展。
同时,自噬还可以通过消化和降解有害物质,避免对细胞造成进一步的伤害。
细胞自噬机制的研究进展

细胞自噬机制的研究进展近年来,细胞自噬机制在生物学领域引起了广泛关注。
细胞自噬是一种与细胞新陈代谢密切相关的自我调节过程,通过吞噬并降解细胞内的废弃物、受损蛋白质和细胞器,从而维持细胞内环境的稳定。
细胞自噬对于细胞存活与死亡、器官发育与组织修复等过程具有重要调节作用。
本文将结合最新的研究进展,探讨细胞自噬机制的研究进展。
细胞自噬的基本过程可分为诱导、吞噬、运输及降解四个步骤。
诱导是指细胞应激或缺乏营养等刺激下,启动自噬相关途径的过程。
吞噬是指通过膜袋形成将细胞内废弃物包裹并封入液泡中的过程。
运输是指被封入液泡内的废弃物通过运输蛋白向溶酶体运送的过程。
降解是指废弃物在溶酶体内被水解酶降解为营养物质和其他有用物质的过程。
近年来,研究人员通过细胞自噬相关基因的敲除和过表达等方法,揭示了细胞自噬调控过程中的关键分子。
其中,原始自噬蛋白1(ATG1)和自噬蛋白12(ATG12)是自噬相关途径中最早被鉴定出的关键分子。
ATG1被认为是一个重要的自噬相关磷酸化激酶,ATG12与ATG5形成共价连接,参与丝裂原细胞器聚集和液泡形成过程。
此外,细胞自噬还需要通过ATG9介导的运输途径来调控。
ATG9是唯一已知参与自噬运输的跨膜蛋白,它通过囊泡-囊泡融合和内吞作为动态的驱动力。
ATG9的敲除研究表明,它在维持正常细胞自噬过程中具有不可替代的作用。
细胞自噬的调控机制非常复杂,与多个信号通路密切相关。
最近的研究表明,AMP激活的蛋白激酶激活蛋白激酶(AMPK)和线粒体信号通路与细胞自噬之间存在密切关系。
AMPK通过抑制mTORC1(哺乳动物雷帕霉素靶蛋白复合物1)的活化,从而促进细胞自噬的启动。
此外,线粒体信号通路也可以通过调节线粒体燃烧和ROS产生来参与细胞自噬的调节。
近年来,细胞自噬的研究不仅限于单个细胞,还扩展到组织和器官水平。
研究人员发现,在肿瘤发展和糖尿病等疾病进程中,细胞自噬的异常调控往往起到重要作用。
一些肿瘤细胞通过抑制细胞自噬来逃避免疫系统的检测和降解,从而促进肿瘤的生长和转移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自噬现象及其分子机制的研究进展发表时间:2011-06-02T10:04:12.903Z 来源:《中外健康文摘》2011年第8期作者:刘杉珊李薇[导读] 自噬是真核细胞特有的普遍生命现象,在维持细胞自我稳态、促进细胞生存方面起重要作用。
刘杉珊李薇(吉林大学第一医院血液肿瘤中心吉林长春 130021)【中图分类号】R329 【文献标识码】A【文章编号】1672-5085 (2011)8-0448-04【摘要】自噬是真核细胞特有的普遍生命现象,在维持细胞自我稳态、促进细胞生存方面起重要作用,广泛参与多种生理和病理过程。
自噬与细胞卫士p53的关系密切,目前已成为肿瘤研究中的一个新热点。
本文对自噬的概念、生物学特性、自噬过程及其信号调控、以及与p53的关系作以概述,同时简要概述了目前自噬的研究方法和检测方法并提出问题和展望,为进一步研究自噬奠定基础。
【关键词】自噬分子机制 p53近年来,自噬作为II型程序性细胞死亡,越来越成为除凋亡之外备受关注和研究的领域。
目前自噬不仅被证实是一种细胞自我死亡的方式,同时也是一种细胞的自我保护机制,在肿瘤、老化和神经退化等细胞增殖和死亡紊乱疾病中发挥着重要的作用。
因此通过对自噬的发生过程、分子机制、信号调控、及与细胞卫士P53之间关系的总结,为进一步研究其机制调控和临床应用奠定坚实的基础。
1 自噬的概念自噬又称为II型程序性细胞死亡(type II programed cell death)是以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”的一系列生化过程。
正常细胞内的物质主要有两种降解途径,一种通过蛋白酶体被降解,另一种是通过自噬作用。
自噬主要降解细胞质的长寿命蛋白和一些细胞器的降解,这种降解有助于细胞内组分和细胞器的正常更新,而蛋白酶体主要降解胞内的短寿命蛋白[1]。
根据细胞内底物运送到溶酶体腔方式的不同,哺乳动物细胞可分为3种主要方式:大自噬(macroautophagy)、小自噬(microautophagy)和分子伴侣介导自噬(chaperone—mediated autophagy, CMA)。
无论大自噬还是小自噬都可以选择性和非选择性吞噬大的物质,CMA为胞浆内蛋白结合到分子伴侣后转运到酶体腔中,被溶体酶消化。
由于目前对大自噬及其在疾病发生的作用的研究日益增多,所以本综述着重介绍大自噬。
2 自噬的诱导当细胞受到饥饿、高温、低氧及荷尔蒙等外界刺激, 或细胞器的损坏、突变蛋白的积聚及微生物的侵袭等应激时, 可引起细胞自噬的发生。
雷帕霉素靶点TOR蛋白激酶(target of rapamycin)作为细胞中氨基酸、ATP和激素的感受器, 是调控细胞生长的关键因子之一,其是细胞氮水平的负调节剂,参与自噬反应的调节[3]。
研究表明, TOR对自噬反应的调节与细胞的营养条件有关,当营养充足时, 细胞中TOR被激活而抑制自噬,而当细胞处于饥饿状态时, TOR被抑制而促进自噬。
在哺乳动物细胞中又有Tor蛋白,同时Tor蛋白也随着周围环境的改变来调节自噬但是调节机制要较酵母细胞复杂。
在哺乳动物细胞中mTor的上游负调节有I型PI3K激酶,PDK1和AKt/PKB,而PTEN能拮抗PI3K而促进自噬。
同时伴随着自噬的发生。
TOR 的失活引起Atg结构的改变, 如Atg13p部分去磷酸化, 在营养充足时Atg13可高度磷酸化而不易于Atg1激酶结合从而抑制自噬发生。
相反,在细胞处饥饿状态时Atg13可很快与Atg1结合,从而增加自噬。
同时mTor可增强与Atg17p和Atg1p之间的相互作用,从而调节其激酶活性。
3 自噬过程自噬其发生过程大致分为3个阶段:(1)在饥饿、氧化应激损伤等情况下,粗面内质网的非核糖体区域、高尔基体等来源的自噬体膜脱落形成杯状分隔膜,包绕在被降解物(如蛋白质降解产物,细胞器和核糖体等)周围[3,4] ;(2)分隔膜逐渐延伸,将要被降解的胞浆成分完全包绕形成双层膜自噬体;(3)自噬体通过细胞骨架微管系统运输至溶酶体,与之融合形成自噬溶酶体并降解其内成分,自噬体膜脱落再循环利用。
因此自噬可被视为细胞的“回收工厂”,其不仅促进能量的利用同时转运无功能的蛋白和细胞器。
而调节这个复杂的过程的分子水平有五个关键阶段[5]:(1)形成吞噬泡(2)Atg5-12复合物与Atg16L并且多聚化(3)LC3形成并且插入吞噬泡膜(4)包绕预被降解物(5)自噬体与溶酶体融合。
3.1吞噬泡的形成酵母细胞的吞噬泡膜形成于PAS,而哺乳动物细胞吞噬泡膜来其于内质网[6,7],高尔基体[3,8,9]等,甚至可能在严密调控下来源于细胞核[10]。
酵母细胞形成吞噬泡膜需要Atg1激酶与Atg13和Atg17复合物,该复合物可能通过跨膜蛋白Atg9补充脂质而促进吞噬泡膜的扩增[4,11]。
这个过程可通过Tor激酶调节,其磷酸化Atg13从而阻止其与Atg1激酶作用[13]哺乳动物细胞吞噬泡的形成过程仍需要进一步研究。
III型PI3K激酶,Vps34和Atg6/Beclin-1在哺乳动物细胞的吞噬泡形成和自噬的作用已经很好的认识。
Vps34参与细胞膜的形成,但其需要与Beclin-1和其他调控蛋白来选择性的参与自噬过程[14]。
PI3P在吞噬泡的延伸和不断补充Atg蛋白过程中起重要作用,Vps34与PI3K以PI为底物获得PI3P过程中,Vps34是十分重要的[15]。
Vps34与Beclin-1作用可增加PI3P的水平。
其他与Vps34与Beclin-1复合物结合促进自噬调节蛋白为UCRAG,BIF-1,Atg14L和AMBRA[16,17] ,或抑制自噬蛋白Rubicon, Bcl-2[18,19]. Beclin-1与Bcl-2结合可破坏Beclin-1与Vps34的作用,所以Beclin-1与Bcl-2,Bcl-XL作用与内质网可抑制自噬[21]。
3.2 Atg5-Atg12复合物形成由Atg3、Atg5、Atg7、Atg10、Atgl2和LC3(Microtubule—associated protein 1 light chain 3,MAP1-LC3)参与组成的两条泛素样蛋白加工修饰过程,在Atg 12结合过程和LC3修饰过程起着至关重要的作用。
有的两个泛素样蛋白系统参与形成Atg5-Atg12复合物和LC3, Atgl2首先由El样酶Atg 7活化,之后转运至E2样酶Atgl0,最后与Atg5结合,形成自噬体前体。
Atg5-12复合物与Atg16L结合形成Atg5、Atgl2和Atgl6L 以复合物形式存在,这种结合一方面促进了自噬泡的伸展扩张,使之由开始的小囊泡样、杯样结构逐渐发展为半环状、环状结构;另一方面,Atg5复合物与自噬泡膜的结合还促进了LC3-向自噬泡的募集。
Atg5-12复合物不依赖于自噬的作用,一旦自噬体形成,Atg5-Atgl2-Atgl6L复合物就脱离胞膜,使之Atg5-12复合物不是自噬的标志物。
3.3 LC3形成第二条泛素样蛋白加工修饰过程参与LC3B 的形成,LC3B由哺乳动物细胞Atg8同源染色体编码。
LC3B 被Atg4分解,生成LC3B-I,并暴露出其羧基末端的甘氨酸残基。
同样LC3B-I也被E1样酶Atg7活化,转运至第二种E2样酶Atg3,并被修饰成膜结合形式LC3B-II。
LC3B-II定位于前自噬体和自噬体,使之成为自噬体的标志分子。
一旦自噬体与溶酶体融合,自噬体内的LC3II即被溶酶体中的水解酶降解。
哺乳动物细胞内源性Atg5和Atgl2主要以结合形式存在;而胞浆可溶性LC3B-I和膜结合型LC3B-II的比例在不同组织和细胞类型变化很大。
哺乳动物细胞自噬过程中两条泛素样加工修饰过程可以互相调节,互相影响。
自噬形成过程中LC3合成增多,使之成为自噬的标志物。
GABARAP(氨基丁酸受体相关蛋白)也是同样的自噬过程,GABARAP-II与LC3-II作用于自噬体。
3.4 包绕预被降解物自噬一般是认为随机吞噬入胞液中。
电镜照片展示自噬体包含有多种成分,包括线粒体、内质网和高尔基体膜[22]。
然而,有证据表明扩增的吞噬泡膜可以选择性吞噬蛋白和细胞器。
可能与LC3B-II,其作为自噬的受体,与靶向分子配体作用(如蛋白,线粒体)而促进选择性摄取和降解。
在酵母细胞中,Uth1P和Atg32可能促进选择性摄取线粒体,这个过程是小自噬[23,24] 。
3.5 囊泡的融合和分解当成熟的自噬体的外膜与溶酶体融合时, 内囊泡被释放。
膜融合后, 直接释放到溶酶体内腔的不是被吞噬的胞质组分, 而是包含一层膜的自噬体。
膜必须先被溶酶体的水解酶破坏, 进而水解自噬体的内容物。
在一些溶酶体蛋白水解酶活化和囊泡的酸化过程中, Atg15p脂酶被证明是自噬体降解所必需的。
最初溶酶体的跨膜蛋白Atg22p被认为是溶酶体内溶解所必需的。
而近来的研究则显示Atg22p是细胞通过自噬作用,利用胞质产生氨基酸所必需的一种透性酶, 是细胞在饥饿条件下存活必不可少的酶[25]。
3.6 其它Sec基因(Sec12、Sec16、Sec23/24)参与了自噬体膜的形成。
另外,中间丝、微管等细胞骨架成分也参与了自噬体形成晚期步骤的完成。
4 自噬过程的信号调控4.1 营养信号当营养缺乏时即可诱导自噬的发生。
在酵母细胞和哺乳动物细胞中,TOR通路和Ras-cAMP-PKA两条通路感受营养水平,调节细胞分裂和增殖,并且负向调节自噬过程。
4.1.1 TOR复合体1(TOR complex1 TORC1)TORC1对雷帕霉素抑制敏感,在营养状态被雷帕霉素抑制的TORC1可促进自噬,表明TOR本身可下调自噬。
细胞外的氨基酸通过转运蛋白如SLC1A5和SLC7A5转入细胞膜,mTOR可直接或磷酸化感知[26]。
然而,最新在果蝇和哺乳动物细胞中发现Rag蛋白,可通过将mTORC1移至于含有mTORC1激活剂Rheb的亚细胞结构而感受氨基酸[27,28]。
其他研究表明氨基酸通过III型PI3K(hVps34)激活mTOR.氨基酸激发hVps34而激活mTOR,进而抑制自噬。
在酵母细胞中,TORC1除了调节Atg1/ULK复合物,同时也通过磷酸化Tap42抑制自噬,Tap42通过作用于自噬的负向调节剂PP2A的催化亚群而抑制自噬[29]。
4.1.2 Ras/PKA通路在酵母细胞和哺乳动物细胞中Ras/PKA通路在感受葡萄糖起着重要的作用。
在酵母细胞中,Ras/PKA通路通过抑制TOR而抑制自噬,表明Ras/PKA通路抑制自噬作用与TOR- Tap42通路平行。
Ras/PKA可抑制自噬可能通过Atg1调节,Atg1是PKA的磷酸化底物。