年产30万吨合成氨工艺设计
年产30万吨合成氨课程设计

年产30万吨合成氨课程设计目录1概述 (2)1.1设计题目 (2)1.2 设计具体内容范围及设计阶段 (2)1.3设计的产品的性能、用途及市场需要 (2)1.4设计任务的依据 (3)1.5 产品方案 (4)2 技术分析 (4)2.1合成氨反应的特点 (4)2.2合成氨反应的动力学 (4)2.2.1反应机理 (4)2.3氨合成工艺的选择 (5)2.4系统循环结构 (5)2.5分离工艺 (6)3 生产流程简述 (6)4 工艺计算 (7)4.1 原始条件 (7)4.2 物料衡算 (8)4.3热量衡算 (16)5主要设备选型 (24)5.1 废热锅炉设备工艺计算 (24)5.2主要设备选型汇总表 (26)5.3主要设备图 (27)6设计心得 (29)参考文献 (30)1.概述1.1设计题目:年产30万吨合成氨合成工段设计1.2 设计具体内容范围及设计阶段本次设计的内容为合成氨合成工段的设计,具体包括以下几个设计阶段:1. 进行方案设计,确定生产方法和生产工艺流程。
2. 进行化工计算,包括物料衡算、能量衡算以及设备选型和计算。
3. 绘制带控制点的工艺流程图。
4. 进行车间布置设计,并绘制设备平立面布置图。
5. 进行管路配置设计,并绘制管路布置图。
6. 撰写课程设计报告。
1.3设计的产品的性能、用途及市场需要(1) 氨的物化性能合成氨的化学名称为氨,氮含量为82.3%。
氨是一种无色具有强烈刺激性、催泪性和特殊臭气的无色气体,比空气轻,相对密度0.596,熔点-77.7℃;沸点-33.4℃。
标准状况下,1米3气氨重0.771公斤;1米3液氨重638.6公斤。
极易溶于水,常温(20℃)常压下,一个体积的水能溶解600个体积的氨;标准状况下,一个体积水能溶解1300个体积的氨氨的水溶液称为氨水,呈强碱性。
因此,用水喷淋处理跑氨事故,能收到较好的效果。
氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继续氧化并与水作用,便能得到硝酸。
工艺冷凝液余热回收利用

98研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2021.01 (下)1 工艺流程描述中海石油华鹤煤化有限公司年产30万吨合成氨,52万吨大颗粒尿素项目是中国海油第一套煤化工示范项目。
如图1工艺冷凝液由尿素蒸汽冷凝液、氨加热器蒸汽冷凝液、全厂凝结水回收器及扩容器冷凝液组成,最终汇集回收至脱盐水装置,用于生产脱盐水。
工艺冷凝液(进界区压力≥0.27MPa,平均温度约93℃,流量115m 3/h)经过工艺冷凝液换热器(E24001)与脱盐水进行换热后,温度降为65℃左右,然后,再进入工艺冷凝液换热器(E24002)与循环水进行换热,换热后温度降为36℃左右,最后,进入冷凝液水箱(常压)。
采暖水经采暖循环泵加压,送至采暖水换热器,经采暖水管网送至公司各用户,3台换热器热源为低压蒸汽管网提供的0.6MPa 低压蒸汽,经2015~2018年运行,实际消耗在6t/h。
公司地处黑龙江省东北部,全年气温较低,采暖季候一般在10月15日至次年4月15日,近6个月采暖季候,因此,实施此项目改造,对节省蒸汽,降低消耗,意义重大。
图1 改造前工艺冷凝液流程示意图2 项目改造简述2.1 改造思路在换热站内部增设一板式换热器,工艺冷凝液通过板式换热器对采暖循环水(500t/h)进行加热,被冷却的工艺冷凝液回到脱盐水站继续与E24001脱盐水换热器换热,换热后的工艺冷凝液经E24002旁路回至冷凝液水箱用于脱盐水制水,而被加热的采暖循环水继续进入蒸汽加热器,根据采暖水温度调节低压蒸汽加入量,以达到回收工艺冷凝液热量、节约低压蒸汽的目的。
2.2 改造具体实施如图2所示,在2#蒸汽减压站位置工艺冷凝液总管线上工艺冷凝液余热回收利用陈立国,李洪(中海石油华鹤煤化有限公司,黑龙江 鹤岗 154100)摘要:通过对全厂工艺冷凝液余热回收改造,将温度为93℃左右的蒸汽冷凝液经板式换热器换热与采暖水换热,将采暖水换热至51℃左右,送至全厂供暖,将工艺冷凝液余热回收,节约了采暖蒸汽,创造了良好的经济效益。
贵州某年产30万吨甲醇及合成氨项目施工组织设计

第一章总则1.1编制说明本施工组织设计主要依据**煤化工一期工程合成氨、甲醇装置建筑工程的设计图纸、经考察了解到的现场情况、业主及设计单位的有关意向和要求、现行建筑施工规范、施工手册、本企业施工过的类似工程的经验以及企业技术经济情况而编制。
1.1.1**煤化工一期工程合成氨、甲醇装置建筑工程由贵州**化工有限责任公司在贵州省**县***兴建。
1.1.2本施工组织设计的内容严格按照招标文件中对技术标的要求编制,全篇由十三部分组成,主要论述了施工总体策划部署及各分部、分项工程的施工组织、施工布置、施工方法和措施等。
1.1.3本施工组织设计在实施过程中,还将视工程的具体情况,对一些重点部位和特殊工序编制详细的施工方案和作业指导书。
1.1.4 编制单位:1.1.5 编制日期:2009年2月1.2编制目的本施工组织设计是为**煤化工一期工程合成氨、甲醇装置建筑工程施工而编制的。
编制的指导思想是:编制时为业主着想,施工时对业主负责,竣工时让业主满意,同时在经济上合理,技术上可靠的前提下,保质、保量、保工期。
1.3 编制原则本施工组织设计是指导本工程施工过程中各项生产活动的技术、经济综合性文件。
1.4编制依据1.4.1**科技股份有限公司编制的《**煤化工一期工程合成氨、甲醇装置建筑工程施工招标文件》(DWG.NO.200702-C-02-002);1.4.2由“**科技股份有限公司”设计的本工程施工图纸;1.4.3国家及贵州省相关工程建设政策、法规;1.4.4我公司类似工程的施工管理经验和技术装备状况;1.4.5我司对本工程建设地区水文地质、地理、气候条件及地下构筑物的调查了解及对遵义地区、贵州省对施工单位有关的规定和要求;1.4.6国家及行业、地方规范、标准:规范、标准、文件一览表1.4.7本企业有关施工标准和方法及作业指导书等我司已通过ISO9002质量体系及ISO14001环保体系的认证,本工程主体结构、装饰装修、设备基础及坑池、厂区总图等各分部工程施工全过程将全面按照我公司编制的质量、环境整合型程序文件中的规定运作。
年产30万吨合成氨工艺设计

合成氨是一种重要的工业原料,广泛应用于农业、化工、医药等领域。
为了满足市场需求,设计一套年产30万吨合成氨的工艺流程是非常必要的。
以下是一个关于年产30万吨合成氨工艺设计的详细描述。
1.原料合成氨的主要原料是氢气和氮气。
在设计工艺流程时,需要考虑原料的纯度和供应。
可以选用化工厂附近的气体供应公司作为原料供应商,以确保原料的质量和稳定性。
2.反应器反应器是合成氨工艺中最关键的设备之一、合成氨的主要反应是哈贡斯法,即通过高温和高压下将氮气和氢气反应生成氨气。
反应器的设计需要考虑反应温度、压力、催化剂的选择和载体的设计等因素。
3.冷凝器由于反应生成的氨气含有大量热能,需要通过冷却过程将其转化为液态。
冷凝器的设计需要考虑冷却剂的选择、冷却剂的流量和温度等因素,以确保氨气能够高效地冷凝成液体。
4.吸收器合成氨工艺中经常使用吸收器来去除氨气中的杂质,如二氧化碳等。
吸收器的设计需要考虑吸收剂的选择、吸收剂的流量和浓度等因素,以确保氨气的纯度符合要求。
5.除尘器合成氨工艺中会产生一些固体颗粒,需要通过除尘器去除。
除尘器的设计需要考虑除尘剂的选择、过滤面积和过滤速度等因素,以确保固体颗粒能够有效地被去除。
6.控制系统合成氨工艺中,需要精确控制反应温度、压力、物料流量等参数。
设计一个可靠的自动控制系统,能够对这些参数进行监控和调节,以确保工艺的稳定性和安全性。
7.能耗优化在工艺设计中,需要考虑能耗的优化,以减少生产成本和环境影响。
可以采用节能设备、优化工艺流程和回收废热等措施,减少能源的消耗。
8.安全设计合成氨是一种具有较高毒性和易燃性的化学物质,因此在工艺设计中需要重视安全性。
需要设计安全设施,如泄漏报警系统、防爆设备等,并制定严格的操作规程和应急预案,以确保工艺的安全进行。
以上是关于年产30万吨合成氨工艺设计的一个大致描述。
根据具体的实际情况和要求,还需要进行更为详细的工艺设计和设备选择。
工艺设计的关键是在保证产品质量和生产效益的基础上,实现能源节约和环境友好。
年产30万吨合成氨工艺设计

年产30万吨合成氨工艺设计1. 引言合成氨是一种重要的化工原料,广泛应用于肥料、塑料、药品、染料等工业领域。
年产30万吨合成氨工艺设计即是针对每年生产30万吨合成氨的工艺进行设计。
本文将从原料准备、反应装置、分离装置和能源供应等方面进行详细介绍,以实现合成氨工艺的高效、稳定和可持续生产。
2. 原料准备合成氨的主要原料是氢气和氮气。
氢气可以通过蒸汽重整或煤气化产生,氮气则通常采购自外部供应商。
原料的准备过程包括氢气的制备和氮气的供应。
2.1 氢气制备氢气制备可以通过蒸汽重整法或煤气化法实现。
蒸汽重整法将天然气或液化石油气与蒸汽在热催化剂的作用下进行反应,生成氢气和一氧化碳。
煤气化法则将煤或其他含碳物质与氧气反应,生成合成气,再经过变换反应生成氢气。
2.2 氮气供应为保证合成氨工艺的稳定运行,需要从外部供应商采购足够的氮气。
氮气的供应应符合相关的质量标准,并与氢气进行充分的混合准备。
3. 反应装置合成氨的工艺主要是通过氢气和氮气的合成反应实现的。
合成反应需要在适当的温度和压力下进行,并且通常采用催化剂进行催化。
3.1 反应温度合成氨反应的温度通常在350到550摄氏度之间。
温度过高会导致催化剂烧结和氨的副反应增加,温度过低则会导致反应速率过慢。
因此,需要通过优化反应温度,以提高合成氨工艺的效率和产量。
3.2 反应压力合成氨反应通常在100到300兆帕之间的高压下进行。
增加压力可以提高氢气和氮气的折合摩尔浓度,促进反应的进行,但同时也会增加设备的压力对设备材料的要求。
因此,需要综合考虑反应速率、设备成本和安全性等因素,确定适宜的反应压力。
3.3 催化剂选择合成氨反应通常采用铁-铑催化剂。
铁对氮气的吸附和解离具有较好的催化作用,而铑可以提高催化剂的活性和稳定性。
催化剂的选择和优化是合成氨工艺设计中的关键问题,需要综合考虑催化剂的催化效率、稳定性和成本等因素。
4. 分离装置合成氨反应产生的混合物中含有大量的氨、氮气、氢气等挥发性成分,需要通过分离装置对这些成分进行分离和回收。
(完整版)年产30万吨合成氨原料气脱碳工段工艺设计毕业论文

本科毕业设计年产30万吨合成氨原料气脱碳工段工艺设计Decarbonization Process design on synthetic ammonia目录摘要 ............................................................................................................................................................ Abstract ........................................................................................................................ 错误!未定义书引言 ............................................................................................................................................................第一章总论 ....................................................................................................................................1.1 概述..........................................................................................................................1.1.1 氨的性质...................................................................................................................1.1.2 氨的用途及在化工生产中的地位 ..........................................................................1.2 合成氨的发展历史......................................................................................................1.2.1 氨气的发现...............................................................................................................1.2.2 合成氨的发现及其发展 ..........................................................................................1.2.3 世界合成氨工业发展 ..............................................................................................1.3 文献综述......................................................................................................................1.3.1合成氨脱碳................................................................................................................1.3.2合成氨脱碳的方法概述 ...........................................................................................1.4 设计的依据..................................................................................................................第二章流程方案的确定 ...............................................................................................................2.1各脱碳方法对比...........................................................................................................2.1.1化学吸收法................................................................................................................2.1.2物理吸收法................................................................................................................2.1.3物理化学吸收法........................................................................................................2.2碳酸丙烯酯(PC)法脱碳工艺基本原理 .................................................................2.2.1 PC法脱碳技术国内外现状 .....................................................................................2.2.2发展过程....................................................................................................................2.2.3技术经济....................................................................................................................第三章生产流程的简述 ...............................................................................................................3.1 气体流程......................................................................................................................3.1.1 原料气流程...............................................................................................................3.1.2 解吸气体回收流程...................................................................................................3.2液体流程.......................................................................................................................3.2.1 碳酸丙烯酯脱碳流程简述 ......................................................................................3.2.2 稀液流程循环...........................................................................................................3.3存在的问题及解决的办法 ..........................................................................................3.3.1综合分析PC法脱碳存在的主要问题有 ................................................................3.3.2解决办法....................................................................................................................第四章物料衡算和热量衡算 ....................................................................................................4.1工艺参数及指标...........................................................................................................4.1.1计算依据CO2在PC中的溶解度关系 ...................................................................4.1.2 PC的密度与温度的关系 .........................................................................................4.1.3 PC的蒸汽压 .............................................................................................................4.1.4 PC的黏度 .................................................................................................................4.2物料衡算.......................................................................................................................4.2.1各组分在PC中的溶解量 ........................................................................................4.2.2溶剂夹带量................................................................................................................4.2.3溶液带出的气量........................................................................................................4.2.4出脱碳塔净化气量....................................................................................................4.2.6 入塔液中CO2夹带量..............................................................................................4.2.7 带出气体的质量流量 ..............................................................................................4.2.8 验算吸收液中净化气中CO2的含量 .....................................................................4.2.9出塔气的组成............................................................................................................4.3热量衡算.......................................................................................................................第五章吸收塔的结构设计..........................................................................................................5.1确定吸收塔塔径及相关参数 ......................................................................................5.1.1基础数据....................................................................................................................5.1.2求取塔径....................................................................................................................5.1.3核算数据....................................................................................................................5.1.4填料层高度的计算....................................................................................................5.1.5 气相总传质单元高度 ..............................................................................................5.1.6塔附属高度................................................................................................................第六章塔零部件和辅助设备的设计与选取.....................................................................6.1 吸收塔零部件的选取..................................................................................................6.1.1筒体、封头等部件的尺寸选取 ...............................................................................6.1.2防涡流挡板的选取....................................................................................................6.1.3液体初始分布器........................................................................................................6.1.4 液体再分布器...........................................................................................................6.1.5 填料支撑装置...........................................................................................................6.1.6接管管径的确定........................................................................................................6.2 解吸塔的选取..............................................................................................................6.3贮槽的选择...................................................................................................................结论..........................................................................................................................................................致谢.......................................................................................................................... 错误!未定义书参考文献 ...............................................................................................................................................年产30万吨合成氨原料气脱碳工段工艺设计摘要:本设计为年产30万吨合成氨原料气脱碳工段工艺设计,是由指导老师指定的产量和生产规模,结合生产实习中收集的各类生产技术指标以及参考文献所提供的数据为依据而设计的。
年产30万吨合成氨工艺设计

年产30万吨合成氨工艺设计作者姓名000专业应用化工技术11-2班指导教师姓名000专业技术职务副教授(讲师)目录摘要 (4)第一章合成氨工业概述 (5)1.1氨的性质、用途及重要性 (5)1.1.1氨的性质 (5)1.1.2 氨的用途及在国民生产中的作用 (6)1.2 合成氨工业概况 (6)1.2.1发展趋势 (6)1.2.2我国合成氨工业发展概况 (7)1.2.3世界合成氨技术的发展 (9)1.3合成氨生产工艺 (11)1.3.1合成氨的典型工艺流程 (11)1.4设计方案确定 (13)1.4.1原料的选择 (13)1.4.2 工艺流程的选择 (14)1.4.3 工艺参数的确定 (14)第二章设计工艺计算2.1 转化段物料衡算 (15)2.1.1 一段转化炉的物料衡算 (16)2.2 转化段热量衡算 (24)2.2.1 一段炉辐射段热量衡算 (24)2.2.2 二段炉的热量衡算 (32)2.2.3 换热器101-C、102-C的热量衡算 (34)2.3 变换段的衡算 (35)2.3.1 高温变换炉的衡算 (35)2.3.2 低温变换炉的衡算 (38)2.4 换热器103-C及换热器104-C的热负荷计算 (41)2.4.1 换热器103-C热负荷 (41)2.4.2 换热器104-C热负荷 (42)2.5 设备工艺计算 (42)2.6 带控制点的工艺流程图及主要设备图 (46)2.7 生产质量控制 (46)2.8 三废处理 (47)摘要氨是重要的基础化工产品之一,在国民经济中占有重要地位。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
本设计是以天然气为原料年产三十万吨合成氨的设计。
近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流,技术改进主要方向是开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等方面上。
年产30万吨合成氨脱碳工段工艺设计

合成氨脱碳工段工艺设计的目标是实现年产量为30万吨的合成氨的脱碳处理。
脱碳是通过去除氨气中的二氧化碳来净化合成氨的过程。
以下是关于合成氨脱碳工段工艺设计的详细说明。
1.工艺概述:合成氨脱碳工段的主要目标是将合成氨中的二氧化碳浓度降低到规定水平以下,以满足产品质量要求。
脱碳过程采用吸收法,通过将合成氨与吸收剂接触来去除二氧化碳。
脱碳过程是在一套多级吸收装置中进行的。
2.设备选择:在设计合成氨脱碳工段时,需选择合适的吸收装置和相应的吸收剂。
常见的吸收装置包括板式吸收器、填料吸收塔或喷雾吸收器。
在选择吸收剂时,应考虑其吸收效率和再利用性。
3.工艺流程:合成氨脱碳工段的主要流程包括氨气进料、吸收装置、二氧化碳排出以及废气处理。
具体流程如下:-氨气进料:合成氨从合成氨工段进入脱碳工段,浓度约为60-80%。
-吸收装置:合成氨与吸收剂接触,吸收剂可以是各种吸收液,如碱性溶液。
吸收装置分为多个级别,通过多级吸收可以提高脱碳效率。
-二氧化碳排出:将富二氧化碳的吸收液与空气进行反应,将二氧化碳释放出来。
常见的方法是通过加热、压缩或换热来实现。
-废气处理:二氧化碳排出后的废气需要进行处理,通常采用气体净化设备来去除废气中的污染物。
4.工艺参数:合成氨脱碳工段的工艺参数包括吸收剂浓度、吸收剂流量、吸收剂-氨气接触时间和温度等。
这些参数的选择会影响脱碳效率和能耗。
-吸收剂浓度:一般选择适当浓度的吸收液,以实现高效的气液接触。
-吸收剂流量:流量的选择需要考虑吸收装置的吸收能力和分离效果。
-吸收剂-氨气接触时间:合理的接触时间可以提高脱碳效果。
-温度:适当的温度可以促进脱碳反应的进行。
5.安全措施:在合成氨脱碳工艺设计过程中,需考虑操作安全及环境保护。
其中包括废气处理设备的选择和设计,以及设备的安全运行控制系统。
综上所述,合成氨脱碳工段工艺设计应包括吸收装置和吸收剂的选择,合理的工艺流程和参数设定,以及必要的安全措施。
只有通过完善的工艺设计和操作管理,才能实现30万吨合成氨的脱碳处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年产30万吨合成氨工艺设计作者姓名000专业应用化工技术11-2班指导教师姓名000专业技术职务副教授(讲师)目录摘要 (4)第一章合成氨工业概述 (5)1.1氨的性质、用途及重要性 (5)1.1.1氨的性质 (5)1.1.2 氨的用途及在国民生产中的作用 (6)1.2 合成氨工业概况 (6)1.2.1发展趋势 (6)1.2.2我国合成氨工业发展概况 (7)1.2.3世界合成氨技术的发展 (9)1.3合成氨生产工艺 (11)1.3.1合成氨的典型工艺流程 (11)1.4设计方案确定 (13)1.4.1原料的选择 (13)1.4.2 工艺流程的选择 (14)1.4.3 工艺参数的确定 (14)第二章设计工艺计算2.1 转化段物料衡算 (15)2.1.1 一段转化炉的物料衡算 (16)2.2 转化段热量衡算 (24)2.2.1 一段炉辐射段热量衡算 (24)2.2.2 二段炉的热量衡算 (32)2.2.3 换热器101-C、102-C的热量衡算 (34)2.3 变换段的衡算 (35)2.3.1 高温变换炉的衡算 (35)2.3.2 低温变换炉的衡算 (38)2.4 换热器103-C及换热器104-C的热负荷计算 (41)2.4.1 换热器103-C热负荷 (41)2.4.2 换热器104-C热负荷 (42)2.5 设备工艺计算 (42)2.6 带控制点的工艺流程图及主要设备图 (46)2.7 生产质量控制 (46)2.8 三废处理 (47)摘要氨是重要的基础化工产品之一,在国民经济中占有重要地位。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
本设计是以天然气为原料年产三十万吨合成氨的设计。
近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流,技术改进主要方向是开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等方面上。
设计采用的工艺流程简介:天然气经过脱硫压缩进入一段转化炉,把CH4和烃类转化成H2,再经过二段炉进一步转化后换热进入高变炉,在催化剂作用下大部分CO和水蒸气反应获H2和CO2,再经过低变炉使CO降到合格水平,去甲烷化工序。
关键词:合成氨天然气ABSTRACTAmmonia is one of the important basic chemical products, occupies an important position in national economy. Ammonia production after years of development, has now developed into a mature chemical production process.This design is the design of the natural gas as raw material to produce three hundred thousand tons of synthetic ammonia. Synthetic ammonia industry develops very fast in recent years, large scale, low energy consumption, clean production is the mainstream in the development of synthetic ammonia equipment, technical improvement is the main direction of development of better performance of catalyst, reducing ammonia synthesis pressure, the development of new materials gas purification methods, reduce fuel consumption, recovery and rational utilization of low heat, etc.Introduction to the design process used: compressed natural gas after desulfurization enter reformer, the CH4 and hydrocarbons into H2, and then further transformed after Sec furnace heat exchanger into the hypervariable furnace, most CO and watervapor in the catalyst reaction for H2 and CO2, and then through the low variant oven down to an acceptable level of CO, to the methanation processes.Key words:Ammonia gas第一章合成氨工业概述1.1氨的性质、用途及重要性1.1.1氨的性质,在标准状态下是无色气体,比空气轻,具有特殊的刺激性臭味。
人氨分子式为NH3们在大100c m3/m3氨的环境中,每天接触八小时会引起慢性中毒。
主要化学性质:(1)、NH₃(挥发性)遇HCl(挥发性)气体有白烟产生,可与氯气反应。
电离方程式:(2)、氨水(一水合氨,NH3·H2O)可腐蚀许多金属,尤其铜,氨区内一般要求不准用铜材质设备,一般若用铁桶装氨水,铁桶应内涂沥青。
(3)、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH₃也可以被氧化成N₂。
(4)、NH₃能使湿润的红色石蕊试纸变蓝。
在水中产生少量氢氧根离子,呈弱碱性.(5)、氨与酸反应生成铵盐:NH₃+HCI=NH₄CI氨在英文中有时会被称作anhydrous ammonia(译为无水氨),以和在英文中与它名称类似的氨水区别。
中文中很少有人会把氨气和氨水混为一谈。
氨气溶于水得到氨水,氨水的主要成分是一水合氨,但是不能认为一水合氨就是氨水。
而且氨水成碱性的原因就是一水合氨在水中电离出氢氧根离子。
市售氨水浓度为25%-28%。
NH₃· H₂O ⇌ NH₄++OH-其性质和氨气完全不一样。
实验室的稀氨水一的浓度一般为1M至2M。
氨的饱和水溶液(大约18M)的密度是0.880g cm,故可称之为.880 Ammonia。
主要物理性质:(1)有刺激性气味的气体氨对人体的眼、鼻、喉等有刺激作用,吸入大量氨气能造成短时间鼻塞,并造成窒息感,眼部接触以造成流泪,接触时应小心。
如果不慎接触过多的氨而出现病症,要及时吸入新鲜空气和水蒸气,并用大量水冲洗眼睛。
(2)密度小氨气的密度为0.771g/L(标准状况下)(3)沸点较高氨很容易液化,在常压下冷却至-33.5℃或在常温下加压至700KPa至800KPa,气态氨就液化成无色液体,同时放出大量的热。
液态氨汽化时要吸收大量的热,使周围物质的温度急剧下降,所以氨常作为制冷剂。
以前一些老式冰棍就是利用氨气制作的(4)易溶于水(5)氨极易溶于水,在常温、常压下,1体积水能溶解约700体积的氨。
1.1.2氨的用途及在国民生产中的作用氨是基本化工产品之一,用途很广。
化肥是农业的主要肥料,而其中的氮肥又是农业上应用最广泛的一种化学肥料,其生产规模、技术装备水平、产品数量,都居于化肥工业之首,在国民经济中占有极其重要的地位。
各种氮肥生产是以合成氨为主要原料的,因此,合成氨工业的发展标志着氮肥工业的水平。
以氨为主要原料可以制造尿素、硝酸铵、碳酸氢铵、硫酸铵、氯化铵等氮素肥料。
还可以将氨加工制成各种含氮复合肥料。
此外,液氨本身就是一种高效氮素肥料,可以直接施用,一些国家已大量使用液氨。
可见,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。
氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业部门。
将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。
现代国防工业和尖端技术也都与氨合成工业有密切关系,如生产火箭的推进剂和氧化剂,同样也离不开氨。
此外,氨还是常用的冷冻剂。
合成氨工业的迅速发展,也促进和带动了许多科学技术部门的发展,如高压技术、低温技术、催化技术、特殊金属材料、固体燃料气化、烃类燃料的合理利用等。
同时,尿素和甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。
所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门[4]。
1.2合成氨工业概况·1.2.1发展趋势氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位;同时也是能源消耗的大户,世界上大约有10%的能源用于生产合成氨。
氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70%的比例。
未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行”。
①原料路线的变化方向。
从世界燃料储量来看,煤的储量约为石油、天然气总和10倍,自从70年代中东石油涨价后,从煤制氨路线重新受到重视,但因以天然气为原料的合成氨装置投资低、能耗低、成本低的缘故,预计到20世纪末,世界大多数合成氨厂仍将以气体燃料为主要原料。
②节能和降耗。
合成氨成本中能源费用占较大比重,合成氨生产的技术改进重点放在采用低能耗工艺、充分回收及合理利用能量上,主要方向是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等。
如今已提出以天然气为原料的节能型合成氨新流程多种,每吨液氨的设计能耗可降低到约29.3GJ。
③与其他产品联合生产。
合成氨生产中副产大量的二氧化碳,不仅可用于冷冻、饮料、灭火,也是生产尿素、纯碱、碳酸氢铵的原料。
如果在合成氨原料气脱除二氧化碳过程中能联合生产这些产品,则可以简化流程、减少能耗、降低成本。
中国开发的用氨水脱除二氧化碳直接制碳酸氢铵新工艺,以及中国、意大利等国开发的变换气气提法联合生产尿素工艺,都有明显的优点。
1.2.2我国合成氨工业发展概况中国合成氨产量位居世界第一位,现已掌握了以焦炭、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。
2013年,中国合成氨总生产能力为7,400万吨左右,氮肥工业已基本满足了国内需求;在与国际接轨后,具备与国际合成氨产品竞争的能力,今后发展重点是调整原料和产品结构,进一步改善经济性。