五年级长方体和正方体的经典例题讲解
人教版五年级数学下册长方体和正方体重点易错题解析40例

人教版五年级数学下册长方体和正方体重点易错题解析(精选40例)【1】长方体的位置任意改变,体积不变。
(√)易错题解析:一个物体不论横着放、竖着放或还其他位置摆放,物体所占空间大小不变,即物体的体积和位置无关。
【2】有6个面,12条棱、8个顶点的物体就是长方体。
(×)错题解析:一个物体是长方体,必须中间的四条棱要垂直于上下底面,而有6个面,12条棱、8个顶点的物体有可能是6个面的斜棱柱,中间的四条棱与底面不垂直。
【3】长方体的三条棱分别叫做长方体的长、宽、高。
(×)错因解析:长方体相交于一个顶点处的三条棱分别叫做长方体的长、宽、高,而长方体中任意的三条棱有可能为三条相等的长(或宽,或高),也有可能有两条相等的长(或宽,或高)。
订正:长方体相交于一个顶点处的三条棱分别叫做长方体的长、宽、高。
【4】长方体的棱可以分成4组,每组3条棱,分别是长、宽、高。
(×)错因解析:长方体有12条棱,除相对的两个面都为正方形外,其中4条长,4条宽,4条高长度分别相等,因此长方体的棱可以分成3组,每组3条棱长度相等。
订正:长方体的棱可以分成3组,每组4条棱,分别是4条长、4条宽、4条高。
【5】在长方体中,只有相对的棱长度相等。
(×)错题解析:长方体中,长和宽、宽和高、长和高并不相对,但是当长方体相对两个面完全相同,如上、下面完全相同,此时长、宽、高三个数值中,有两个数值可能相等。
订正:在长方体中,不是相对的棱长度可能相等。
【6】一个长方体,不可能有8条棱的长度都相等。
(×)错题解析:在长方体中,周围的四个面是完全相同的长方形,此时如另一组相对的面是两个完全相同的正方形,此时这两个正方形的8条边长长度相等。
订正:一个长方体,可能有8条棱的长度都相等。
【7】长方体中最多有4个面完全相同。
(√)易错题解析:长方体相对的面如果是正方形,此时周围的四个面是形状和大小完全相同的长方形,如某些牙膏盒,某些装日光灯的包装盒,都是这样的长方体。
五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解有关五年级奥数几何长方体和正方体经典例题详解五年级奥数几何长方体和正方体经典例题详解1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。
10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。
因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。
五年级数学长方体和正方体试题答案及解析

五年级数学长方体和正方体试题答案及解析1.一个长方体长12厘米,宽8厘米,高5厘米,这个长方体六个面中最大的面面积是平方厘米,最小的面面积是平方厘米,它的表面积是平方厘米。
【答案】96,40,392【解析】分析:由题意可知:最大的面,即上面(或下面),用12×8进行解答即可;最小的面,即侧面:用5×8计算即可;再据长方体的表面积公式即可求出其表面积。
解答:解:最大:12×8=96(平方厘米);最小:5×8=40(平方厘米);表面积:(12×8+12×5+8×5)×2,=(96+60+40)×2,=196×2,=392(平方厘米);【考点】长方体和正方体的表面积。
2.用4个相同的正方体可以摆出一个稍大一些的正方体..(判断对错)【答案】×.【解析】将若干个小正方体,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,由此即可计算得出小正方体的总个数.解答:解:根据小正方体拼组大正方体的特点可知:将若干个小正方形,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,所以组成的这个大正方体中,小正方体的个数至少有2×2×2=8(个).至少要用8个小正方体才能摆一个稍大一些的正方体.所以原题的说法错误.故答案为:×.点评:此题考查了小正方体拼组大正方体的方法的灵活应用:大正方体的每个棱长上小正方体的个数的三次方,就是组成这个大正方体的小正方体的个数总和.3.画一画.在方格纸里分别画出从正面、左面和上面看到的图形.【答案】【解析】从正面看到的有三层,最下面一层是3个正方形,第二层和第三层靠左侧分别是1个正方形:从左面看到有三层,最下面一层有2个正方形,第二层和第三层靠左侧分别是1个正方形:从上面看到的有两层,上面一层有4个正方形,下面靠左侧一个正方形:,由此即可解答.解答:解:答案如图,点评:此题考查了从不同的方向观察到的几何体的形状,做此类题时,应认真审题,根据看到的形状画出即可.4.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.5.一个长方体长5dm、宽4dm、高2dm,它的表面积是,体积是.【答案】76平方分米、40立方分米.【解析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式V=abh,代入数据解答即可.解:表面积:(5×4+5×2+4×2)×2=(20+10+8)×2=38×2=76(平方分米)体积:5×4×2=40(立方分米)答:这个长方体的表面积是76平方分米,体积是40立方分米.故答案为:76平方分米、40立方分米.【点评】此题主要考查长方体的表面积和体积的计算方法.6.1dm3的正方体可以分成个1cm3的小正方体.如果把这些小正方体排成一行,一共长.【答案】1000,1000厘米.【解析】(1)1立方分米=1000立方厘米,由此可以得出能够分成1000个1立方厘米的小正方体;(2)1立方厘米的小正方体的棱长是1厘米,把这些小正方体排成一排,总长度是1×1000=1000厘米.解:1立方分米=1000立方厘米,所以:1000÷1=1000(个),1立方厘米的小正方体的棱长是1厘米;则总长度是1×1000=1000(厘米),答:1立方分米的1个正方体可以分成1000个1立方厘米的小正方体,把这些小正方体排成一排,一共长1000厘米;故答案为:1000,1000厘米.【点评】(1)利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数;(2)先求出小正方体的棱长,再乘以小正方体的总个数即可解决问题.7.焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用 cm的铁丝.【答案】40【解析】需要铁丝的长度等于这个长方体的棱长总和,长方体的棱长总和=(长+宽+高)×4,把数据代入公式解答.解:(7+2+1)×4,=10×4,=40(厘米),答:至少要用40厘米铁丝.故答案为:40.【点评】此题主要考查长方体的棱长总和公式的灵活运用.8.一个正方体木箱的表面积是72dm2,这个木箱占地面积是 dm2.【答案】12.【解析】根据正方体的特征:6个面是完全相同的正方形,正方体的表面积是指6个面的总面积.已知正方体的表面积是72平方分米,这个正方体木箱的占地面积就是它的底面积,用表面积除以6问题即可得到解决.解:72÷6=12(平方分米),答:这个木箱的占地面积是12平方分米.故答案为:12.【点评】此题考查的目的是使学生掌握正方体的特征,理解表面积的意义,根据正方体的表面积的计算方法解答问题.9.如图是由两个棱长都是2cm的正方体拼成的一个长方体,这个长方体的表面积是;体积是.【答案】40平方厘米,16立方厘米.【解析】根据题意“两个棱长都是2厘米的正方体拼成的一个长方体”,有两个面重合,这个长方体的表面积可以用两个正方体的表面积的和,减去重合的两个面的面积,这个长方体的体积等于两个正方体的体积之和.由此解答即可.解:长方体的表面积:2×2×6×2﹣2×2×2,=48﹣8,=40(平方厘米);也可以这样求:2×2×10=40(平方厘米);长方体的体积:23×2=8×2=16(立方厘米);故答案为:40平方厘米,16立方厘米.【点评】此题的解答关键是:弄清两个棱长都是2厘米的正方体拼成的一个长方体,这个长方体的表面积不等于两个正方体的表面积之和,因为有两个重合在一起,再根据公式解答即可.10.一个正方体的棱长总和是60厘米,它的表面积是()A.21600平方厘米B.150平方厘米C.125立方厘米【答案】B【解析】根据一个正方体的棱长总和是60厘米,可求出棱长的长度,进一步用棱长乘棱长乘6求得表面积.解:棱长:60÷12=5(厘米),表面积是:5×5×6=150(平方厘米);答:它的表面积是150平方厘米.故选:B.【点评】此题考查正方体表面积的计算方法.11.两个长方体的体积相等,它们的长、宽、高也一定相等..(判断对错)×【答案】×【解析】长方体的体积V=abh,可以假设出长方体的体积,进而就能确定出长、宽、高的值,是就可以进行判断.解:假设长方体的体积为24立方厘米,因为4×2×3=24,2×2×6=24,所以长方体的长、宽、高可以为4厘米、2厘米和3厘米,也可以为2厘米、2厘米、6厘米,所以两个长方体的体积相等,它们的长、宽、高不一定相等.故答案为:×.【点评】此题主要考查长方体的体积的计算方法,举实例证明,即可推翻题干的结论.12.用铁丝焊接成一个长14厘米,宽8厘米,高6厘米的长方体的框架,至少需要铁丝()厘米。
五年级长方体和正方体巧算表面积含参考答案

五年级长⽅体和正⽅体巧算表⾯积含参考答案长⽅体和正⽅体(巧算表⾯积)例题讲学例1 两个棱长是2厘⽶的⼩正⽅体可以拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?【40】【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正⽅体原先各有当把它们拼起来时就少了2个正⽅形的⾯。
这时,求长⽅体的表⾯积只相当于求(12-2=)10个正⽅形的⾯积;还可以这样想:当两个正⽅体拼成⼀个长⽅体时,求长⽅体的表⾯积,我们可以先分别求出这个长⽅体的长、宽、⾼,再求出它的表⾯积。
当物体拼合时表⾯积之和少了,可以根据⽤原来的⾯从⽽求出拼合后物体的⾯积数量,然后求出表⾯积。
2.还可以求出拼成后⼤物体的长、宽、⾼,再根据物体形状直接求表⾯积。
同步精练1. 把两个棱长是3厘⽶的⼩正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?2.把底⾯积是36平⽅厘⽶的两个正⽅体⽊块拼成⼀个长⽅体,长⽅体的表⾯积是多少?3.把三个完全相同的正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是350平⽅厘⽶。
每个正⽅体的表⾯积是多少平⽅厘⽶?例2 把⼀个长、宽、⾼分别是7厘⽶、6厘⽶、5厘⽶的长⽅体截成两个长⽅体,使这两个长⽅体表⾯积之和最⼤,这时表⾯积之和是多少平⽅厘⽶?【(7x6+7x5+6x5)x2+7x6x2=298】【思路点拨】把长⽅体截成两个长⽅体后,两个长⽅体表⾯积之和等于原长⽅体表⾯积再加上两个截⾯的⾯积。
这个长⽅体⼏个⾯中,上、下⾯的⾯积最⼤,所以要看哪个⾯的⾯积最⼤,于是本题就按平⾏于上、下⾯的⽅式去截,才使表⾯积之和最⼤。
每⼀种截法都会产⽣不同的⾯,所以判断怎么样截是解决问题的关键。
同步精练1. 把⼀个长10厘⽶、宽8厘⽶、⾼6厘⽶的长⽅体⽊料截成两个完全⼀样的长⽅体,怎样截才能使截成之后,得到两个长⽅体的表⾯积之和最⼤?最⼤是多少?【536】2.把两个长3厘⽶、宽2厘⽶、⾼1厘⽶的长⽅体拼成⼀个表⾯积最⼤的长⽅体,这个长⽅体的表⾯积是多少平⽅厘⽶?【40】3.把两个长6厘⽶、宽4厘⽶、⾼3厘⽶的长⽅体拼成⼀个⼤长⽅体,这个⼤长⽅体的表⾯积的最⼤值与最⼩值相差多少?【192】-【168】=【24】例3 求出下⾯⽴体图形的表⾯积。
人教版五年级下长方体和正方体复习_课堂讲解+随堂练习

五年级下长方体和正方体——课堂讲解姓名:_____________一、知识导航(熟记!!!)长方体和正方体是我们较为熟悉的立体图形。
长方体共有六个面,八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等。
1、长方体的表面积= 2×(长×宽+长×高+宽×高)2、长方体的体积= 长×宽×高= 横截面×高正方体是棱长相等的长方体,它是一种特殊的长方体,它的六个面都是正方形。
1、正方体的表面积= 棱长×棱长×62、正方体的体积= 棱长×棱长×棱长二、经典例题例1.求出如图所示立体图形的表面积和体积。
(单位:厘米)同步演练1:在一个棱长是12分米的正方体上放一个棱长是5分米的小正方体(如图)。
求这个立体图形的表面积和体积。
例2.在一个长20分米、宽10分米的长方体玻璃缸中,有10分米深的水,放入一块棱长是4分米的正方体铁块,铁块全部浸没在水中,并且没有水溢出,这时水面升高了几厘米?同步演练2:在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3.有一个空的长方体容器(如图1)和另一个水深为24厘米的长方体容器(如图2)。
若把容器2中的水倒一部分到容器1中,使两个容器中的水的深度相同,求这时水的深度。
同步演练3:在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
问水位上升了多少分米?例4.一个正方体被切成24个小长方体(如图)。
这些小长方体的表面积总和为162平方厘米,求这个正方体的表面积。
同步演练4:一个正方体形状的木块,棱长为1米。
沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60个(如图)。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
五年级长方体与正方体经典易错例题

五年级长方体与正方体经典易错例题一、填空题。
1. 一个正方体的棱长总和是72分米,它的表面积是()平方分米,体积是()立方分米。
- 解析:正方体有12条棱且每条棱长度相等,已知棱长总和是72分米,那么每条棱的长度为72÷12 = 6分米。
正方体的表面积公式为6a^2(a为棱长),所以表面积为6×6^2=6×36 = 216平方分米;体积公式为a^3,体积为6^3=216立方分米。
2. 一个长方体的长是8厘米,宽是6厘米,高是5厘米,它的棱长总和是()厘米。
- 解析:长方体的棱长总和=(长 + 宽+高)×4,所以(8 + 6+5)×4=(14 + 5)×4 = 19×4=76厘米。
3. 一个长方体的长、宽、高分别扩大到原来的3倍,它的表面积扩大到原来的()倍,体积扩大到原来的()倍。
- 解析:设原长方体的长、宽、高分别为a、b、c,则原表面积S_1 = 2(ab+bc + ac),原体积V_1=abc。
长、宽、高扩大后的长、宽、高分别为3a、3b、3c,新表面积S_2=2(3a×3b + 3b×3c+3a×3c)=2×9(ab + bc+ac)=9×2(ab + bc + ac)=9S_1,所以表面积扩大到原来的9倍;新体积V_2 = 3a×3b×3c=27abc = 27V_1,所以体积扩大到原来的27倍。
4. 一个正方体的棱长是5厘米,把它切成两个完全一样的长方体,这两个长方体的表面积之和比原来正方体的表面积增加了()平方厘米。
- 解析:把正方体切成两个完全一样的长方体,增加的表面积是正方体两个面的面积。
正方体一个面的面积为5×5 = 25平方厘米,增加了25×2=50平方厘米。
二、判断题。
5. 长方体的6个面一定都是长方形。
()- 解析:错误。
长方体正方体典型例题讲解

分析:求占地面积,要注意是那个面和地面有接触。长0.5米,宽2厘米(单位不统一)。方木说明:横截面是正方形。
5x0.02x0.02=体积
棱长总和、表面积、体积综合应用
例2:
巩固练习
长方体和正方体的表面积和体积多互相结合来进行考察,在做这类题目的时候要注意实际情况相结合,具体问题具体分析。
注意单位的统一
05
注意底面积求体积的应用
06
正方体的高h=V正÷底面积
07
长方体的高h=V长÷底面积
08
注意实际情况的考虑
09
注意单位的统一
体积类型题目
例题1
有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。现在把一块石头浸没到水里,水面上升2厘米。这块石头的体积是多少立方厘米? 分析:这块石头的体积=水面上升的水的体积。只要求出这部分水的体积就是石头的体积。水面上升的高度也就是长方体高度。剩下的问题只需要按照长方体的体积公式来进行计算就可以了 列式:300x2=600立方厘米 注意:1、题目当中的条件告诉了底面积,注意用底面积求体积的公式的应用。 2、注意一些关键词:上升了、上升到的区别。增加了、增加到;减少了,减少到等词语的意思理解。
例1:天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?
01
分析:要求多少块需要知道这个用泳池多大的表面积,一块瓷砖的面积,然后计算总表面积中有几块瓷砖的面积就可以知道用多少块。
02
列式: [ 25x10+(1.6x10+25x1.6)x2 ]÷()
例题2
有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米? 分析:溶成不同的形状体积没变,所以只需要求出原来的体积,然后利用求体积的公式直接求出高就可以。 列式:80x80x80 ÷20= 注意:1、形状的改变体积不变。 2、注意底面积求体积公式的应用。 3、时刻注意单位的统一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体的经典例题讲解
知识点一考查:长方体和正方体的概念
题型一:1、右图是()体,它的上面是()形,长是(),宽是(),面积是(),它的后面是()形,长是(),宽是(),面积是()。
它的棱长和是( ),表面积是()。
2、长方体的表面积 = ;正方体的表面积= ;
长方体的体积= ;正方体的体积= ;
3、一瓶农夫矿泉水的容积是250( );一块橡皮擦的体积是8( )(填适合单位)知识点二考查:单位的换算
体积单位及容积单位有:、、、、
9立方分米=()升8600平方厘米=()平方分米980立方分米=()立方米
9.4立方米=()立方分米 0.5立方分米=()立方厘米=()毫升
知识点三考查:长方体和正方体的表面积的计算
长方体或正方体6个面的总面积,叫做它的表面积。
※举例:表面积即为长、正方体展开图总面积。
例题1、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的表面积是多少平方厘米?
例题2、一只无盖的长方体鱼缸,长0.4米,宽0.25米,深3分米,做这只鱼缸至少要用玻璃多少平方米?
基础练习:
1、一个长1米、宽8厘米、高5厘米的长方体木料,锯成长度都是50厘米的两段,表面积比原来增加多少平方厘米?
2、一个游泳池,长25米,宽10米,深2.4米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是2分米的正方形,那么至少需要这种瓷砖多少块?
能力提升:1、一个零件形状大小如下图:算一算,它的体积是多少立方厘
米,表面积是多少平方厘米?
2、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图),剩
下部分的表面积和体积各是多少?
知识点四考查:长方体和正方体的体积的计算
长方体体积= =
正方体体积= =
例题1、把一块不规则的石块放入一个棱长是30厘米的正方体容器,水面上升了5厘米,求这块石块的体积。
基础练习1、建筑工地要挖一个长50m,宽30m,深50cm的长方体土能挖出多少方的土?(1m3=1方)
例题2、一块正方体的石头,棱长是6分米,每立方米的石头大约重3.5千克,这块石头重有多少千克?
例题3、把60升水倒入一个长6分米,宽2.5分米的长方体水箱内,正好倒满,这个水箱深多少分米?
基础练习:把一个棱长为0.4米的正方体钢坯锻造成一个长为0.8米,宽为0.2米的长方体钢坯,锻成的钢坯有多高?
知识点五考查:棱长总和、表面积、体积综合应用
例题1、一个正方体的铁皮油箱,棱长5分米,这个油箱可以盛油多少升,这个油箱要用多少铁皮?
例题2、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?
能力提升:1、有一个长方体形状的零件。
中间挖去一个正方体的孔
(如图)。
你能算出它的体积和表面积吗?(单位:厘米)
2、有一个形状如图的零件,求它的体积和表面积。
(单位:厘米)。