北京交通大学《信号与系统》专题研究性学习实验报告
北京交通大学《信号与系统》专题研究性学习实验报告

《信号与系统》课程研究性学习手册专题一信号时域分析1.基本信号的产生,语音的读取与播放【研讨内容】1) 生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化; 2) 生成一个幅度为1、基频为2Hz 、占空比为50%的周期方波,3) 观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号, 4) 录制一段音频信号,进行音频信号的读取与播放 【题目分析】(1) 正弦信号的形式为Acos (ω0t +ψ)或Asin (ω0t+ψ),分别用MATLAB 的内部函数cos 和sin 表示,其调用形式为)*0cos(*phi t w A y +=、)*0sin(*phi t w A y += 。
生成正弦信号为y=5sin(t),再依次改变其角频率和初相,用matlab 进行仿真。
(2) 幅度为1,则方波振幅为0.5,基频w0=2Hz ,则周期T=pi ,占空比为50%,因此正负脉冲宽度比为1。
(3) 将波形相似的某一段构造成一个指数函数,在一连续时间内构造不同的2~3个不同指数函数即可大致模拟出其变化。
(4) 录制后将文件格式转化为wav ,再用wavread 函数读取并播放,用plot 函数绘制其时域波形。
【仿真】(1) 正弦信号 正弦信号1:A=1;w0=1/4*pi;phi=pi/16; t=-8:0.001:8;xt1=A*sin(w0*t+phi); plot(t,xt1)title('xt1=sin(0.25*pi*t+pi/16)')-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81xt1=sin(0.25*pi*t+pi/16)正弦信号2(改变1中频率)A=1;w1=1/4*pi;w2=1*pi;phi=pi/16; t=-8:0.001:8;xt1=A*sin(w1*t+phi); xt2=A*sin(w2*t+phi); plot(t,xt1,t,xt2)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81正弦信号3(改变1中相位)A=1;w=1/4*pi;phi1=pi/16;phi2=pi/4; t=-8:0.001:8;xt1=A*sin(w*t+phi1); xt3=A*sin(w*t+phi2) plot(t,xt1,t,xt3)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81(2) 方波信号 t=-100:0.01:100; T=0.5; f=1/T;y=square(2*pi*f*t,50); plot(t,y);axis([-2 2 -3 3]);-2-1.5-1-0.500.51 1.52-3-2-1123(3) 模拟股票上证指数变化的指数信号 x1=0:0.001:5;y1=2500+1.8*exp(x1); x2=5:0.001:10;y2=2847-1.5*exp(0.8*x2); x3=10:0.001:15;y3=2734+150*exp(-0.08*x3); x4=15:0.001:20;y4=2560-156*exp(-0.08*x4); x=[x1,x2,x3,x4]; y=[y1,y2,y3,y4]; plot(x,y);2468101214161820-2000-1500-1000-500050010001500200025003000(4) 音频信号的读取与播放[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nansheng.wav') sound(x,Fs,Bits) plot(x)00.51 1.52 2.53 3.54 4.55x 105-0.8-0.6-0.4-0.200.20.40.60.8[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nvsheng.wav') sound(x,Fs,Bits) plot(x)123456x 105-1-0.8-0.6-0.4-0.200.20.40.60.812.信号的基本运算(语音信号的翻转、展缩)【研讨内容】1) 将原始音频信号在时域上进行延展、压缩, 2) 将原始音频信号在频域上进行幅度放大与缩小, 3) 将原始音频信号在时域上进行翻转, 【题目分析】用matlab 的wavread 函数读取录制的音频,用length 函数计算出音频文件的长度,最后计算出时间t ,然后用plot 函数输出录制的音频信号 (1) 延展与压缩分析把时间t 变为原来的一半,信号就被延展为原来的2倍,把时间他变为原来的2倍,信号就被压缩为原来的一半。
频域分析研究性学习报告

《信号与系统》课程研究性学习报告指导教师薛健时间2013.12信号与系统的频域分析专题研讨【目的】(1) 加深对信号与系统频域分析基本原理和方法的理解。
(2) 学会利用信号抽样的基本原理对信号抽样过程中出现的一些现象的进行分析。
(3) 通过实验初步了解频谱近似计算过程中产生误差的原因。
(4)学会用调制解调的基本原理对系统进行频域分析。
【研讨题目】 1.信号的抽样频率为f 0 Hz 的正弦信号可表示为)π2sin()(0t f t x =按抽样频率=f sam =1/T 对x (t )抽样可得离散正弦序列x [k ])π2sin()(][sam0k f f t x k x kT t ===在下面的实验中,取抽样频率f sam =8kHz 。
(1)对频率为2kHz, 2.2 kHz, 2.4 kHz 和 2.6 kHz 正弦信号抽样1 秒钟,利用MATLAB 函数 sound(x, fsam)播放这四个不同频率的正弦信号。
(2)对频率为5.4 kHz, 5.6kHz, 5.8 kHz 和 6.0kHz 正弦信号抽样1 秒钟,利用MATLAB 函数 sound(x, fsam)播放这四个不同频率的正弦信号。
(3)比较(1)和(2)的实验结果,解释所出现的现象。
【题目分析】改变函数频率,通过计算机读出声音来判别对音频的改变。
【信号抽样过程中频谱变化的规律】图1为对频率为2kHz, 2.2 kHz, 2.4 kHz 和 2.6 kHz 正弦信号抽样1 秒钟频谱。
图2为对频率为5.4 kHz, 5.6kHz, 5.8 kHz 和 6.0kHz 正弦信号抽样1 秒钟频谱。
3【比较研究】利用系统的Help ,阅读函数sound 和wavplay 的使用方法。
连续播放两段音频信号,比较函数sound 和wavplay 的异同。
(1) 调用的播放器不同,sound 是用声卡模仿声音,wavplay 是调用windows 自带播放器。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
北京交通大学《信号与系统》研究性学习实验报告

《信号与系统》课程研究性学习手册姓名学号同组成员指导教师时间14******14* *****1•信号的时域分析专题研讨【目的】(1) 掌握基本信号及其特性,了解实际信号的建模。
(2) 掌握基本信号的运算,加深对信号时域分析基本原理和方法的理解,并建立时频之间的感性认识。
(3) 学会仿真软件MATLAB的初步使用方法,掌握利用MATLAB进行信号表示和信号运算。
【研讨内容】题目1:基本信号的产生,语音的读取与播放1) 生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化,并听其声音的变化。
2) 生成一个幅度为1、基频为2Hz、占空比为50%的周期方波。
3) 观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号。
4) 分别录制一段男声、女声信号,进行音频信号的读取与播放,画出其时域波形。
【温馨提示】(1) 利用MATLAB 函数wavread(file)读取.wav格式文件。
(2) 利用MATLAB 函数sound(x, fs)播放正弦信号和声音信号。
【题目分析】【仿真程序】1) 生成一个正弦信号t=[0:0.001:8];y=si n(2*pi*t+pi/6);plot(t,y)改变其角频率和初始相位t=[0:0.001:8];y=si n(pi*t+pi/2);plot(t,y)2) 生成一个幅度为1、基频为2Hz、占空比为50%的周期方波t=[0:0.001:10];y=square(2*t,50);plot(t,y);axis([0,10,-1.2,1.2])3) 观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号。
x仁[0:0.0015];y1=2630+1.75*exp(x1);x2=[5:0.001:10];y2=2895-1.54*exp(0.8*x2);x3=[10:0.001:15];y3=2811+152*exp(-0.08*x3);x4=[15:0.001:20];y4=2600-151*exp(-0.08*x4);x=[x1,x2,x3,x4];y=[y1,y2,y3,y4];plot(x,y);4) 分别录制一段男声、女声信号,进行音频信号的读取与播放,画出其时域波形。
信号与系统实验报告(00002)

信号与系统实验报告(00002)信号与系统是电子信息专业的一门重要课程,是研究信号与系统特性及其处理方法的学科。
本次实验中,我们学习了离散信号的采样和重构,了解了离散信号的采样定理和重构方法。
一、实验目的1. 了解采样和重构的基本概念和原理;2. 掌握离散信号的采样和重构方法;3. 学习MATLAB软件的使用,实现离散信号的采样和重构。
二、实验原理采样:将连续时间信号x(t)在时间轴上等间隔取样,得到一系列的样本点x(nT),则x(nT)为离散时间信号。
采样定理是:在任意带限信号中,采样频率大于最大频率的两倍时(即fs>2fmax),能够完全重构原信号,其中fmax为信号的最高频率成分。
重构:对离散信号进行插值恢复,得到连续时间信号x(t)。
插值重构方法主要有零阶保持、插值多项式、样条插值等。
三、实验步骤1. 绘制示波器测试信号,包括正弦信号、方波信号、三角形信号;2. 利用MATLAB软件编写程序进行采样,设置采样周期T和采样频率fs,得到离散信号;3. 对离散信号进行插值恢复,通过更改插值方法:零阶保持、一次插值、样条插值等,观察重构信号的差异。
四、实验结果及分析1. 绘制示波器测试信号在实验室中,我们使用示波器测试仪器观察了三种不同的测试信号:方波信号、正弦信号和三角形信号,并对其进行了记录和分析。
对于离散信号采样来说,方波信号是最合适的信号。
2. 采样在完成信号采样时,我们使用MATLAB软件的系统函数进行采样,输入需要采样的数据和采样周期,可以准确地得到离散信号。
3. 插值和重构我们使用了三种不同的插值方法分别对离散信号进行插值重构,包括零阶保持、一次插值和样条插值。
在零阶保持方法中,重构的信号呈现出了一个高度离散化的状态。
而一次插值方法实现了信号的比较平滑的重构,同时样条插值方法可以实现更为平滑的结果。
因此,样条插值方法是一种更为实用和常用的方法。
五、结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》课程研究性学习手册专题一信号时域分析1. 基本信号的产生,语音的读取与播放【研讨内容】1) 生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化;2) 生成一个幅度为1、基频为2Hz 、占空比为50%的周期方波,3) 观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号,4) 录制一段音频信号,进行音频信号的读取与播放【题目分析】⑴正弦信号的形式为Acosg o t+书)或Asin (3 o t+,分别用MATLAB 的内部函数cos 和sin 表示,其调用形式为y A* cos(w0* t phi)、y A*sin(wo*t phi)。
生成正弦信号为y=5sin(t), 再依次改变其角频率和初相,用matlab 进行仿真。
⑵幅度为1 ,则方波振幅为0.5 ,基频wO=2Hz ,则周期T=pi ,占空比为50% , 因此正负脉冲宽度比为 1 。
(3) 将波形相似的某一段构造成一个指数函数, 在一连续时间内构造不同的2~3 个不同指数函数即可大致模拟出其变化。
(4) 录制后将文件格式转化为wav ,再用wavread 函数读取并播放,用plot 函数绘制其时域波形。
【仿真】( 1 ) 正弦信号正弦信号 1 :A=1;w0=1/4*pi;phi=pi/16;t=-8:0.001:8;xt 仁A*si n(w0*t+phi);plot(t,xt1)title('xt 仁si n( 0.25*pi*t+pi/16)')正弦信号2 (改变1中频率)A=1;w1=1/4*pi;w2=1*pi;phi=pi/16; t=-8:0.001:8; xt 1= A*si n(w1*t+phi);xt2=A*si n(w2*t+phi);plot(t,xt1,t,xt2)正弦信号3 (改变1中相位)A=1;w=1/4*pi;phi仁pi/16;phi2=pi/4; t=-8:0.001:8; xt 1=A*si n(w*t+phi1);xt3=A*si n(w*t+phi2) plot(t,xt1,t,xt3)0.4 -0.2 -0 --0.2 --0.4 --0.6 --0.8 〜(2) 方波信号t=-100:0.01:100;T=0.5;f=1/T;y=square(2*pi*f*t,50);Plot(t,y);axis([-2 2 -3 3]);-3 1—--------- [ ------------ ■ ----------- 1- ---------- 1 ----------- 1 ----------- 1 ----------- 1 -------------------------t-2 -1.5 -1 -0.5 0 0.5 1 1.520.80.6-1 ------------- [ ---------- L-8 -6 -4(3) 模拟股票上证指数变化的指数信号x1=0:0.001:5;y1=2500+1.8*exp(x1);x2=5:0.001:10;y2=2847-1.5*exp(0.8*x2);x3=10:0.001:15;y3=2734+150*exp(-0.08*x3);x4=15:0.001:20;y4=2560-156*exp(-0.08*x4);x=[x1,x2,x3,x4];y=[y1,y2,y3,y4];plot(x,y);30002500200015001000500-500-1000-1500(4) 音频信号的读取与播放 [x,Fs,Bits]=wavread( sou nd(x,Fs,Bits) plot(x)-2000 ---------- [-------- [---------- L0 2 4 6 8 10 1214 16 18 20 'C:\Users\Ghb\Desktop\na nsheng.wav'C\Users\Ghb\Desktop\nvshe ng.wav' [x,Fs,Bits]=wavread(sou nd(x,Fs,Bits)plot(x)2. 信号的基本运算(语音信号的翻转、展缩)【研讨内容】1)将原始音频信号在时域上进行延展、压缩,2)将原始音频信号在频域上进行幅度放大与缩小,3)将原始音频信号在时域上进行翻转,【题目分析】用matlab 的wavread 函数读取录制的音频,用length 函数计算出音频文件的长度,最后计算出时间t ,然后用plot 函数输出录制的音频信号(1)延展与压缩分析把时间t 变为原来的一半,信号就被延展为原来的 2 倍,把时间他变为原来的 2 倍,信号就被压缩为原来的一半。
(2)幅度放大与缩小把信号的幅度值变为原来的 2 倍,信号的幅度就被放大了 2 倍,把信号的幅度变为原来的一半,信号就被缩小为原来的一半。
(3)信号的翻转把信号的t 变为变为原来的相反数,就可以实现信号的翻转。
【仿真】(1)读取原始信号fs=44100;bits=32;[x,fs,nbits]=wavread('C:\Users\Ghb\Desktop\nansheng.wav');plot(x);title(' 原始信号') wavplay(x,fs);(2)信号的延展 [x,fs,nbits]=wavread('C:\Users\Ghb\Desktop\nan she ng.wav'); x1=x(1:2:e nd)subplot(2,1,1);plot(x);title(' 原始信号') 3.5 4 4.5 55X 10 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 2.5 0 0.5 1 1.5 -0.8(3)信号的压缩[x,fs, nbits]=wavread('C:\Users\Ghb\Desktop\nan she ng.wav');x2=x(1:0.5:e nd) subplot(2,1,1);plot(x);title(' 原始信号')(4)幅度的放大fs=44100;bits=32;[x,fs,bits]=wavread('C:\Users\Ghb\Desktop\na nshe ng.wav'); x3=2*x(1:1:e nd);wavplay(x3,fs);(5)幅度的缩小 fs=44100;bits=32;[x,fs,bits]=wavread('C:\Users\Ghb\Desktop\na nshe ng.wav'); x4=0.5*x(1:1:e nd);wavplay(x4,fs);2 1 0 -1 -210 5X 10(6)信号的翻转 fs=44100;bits=32;[x,fs,bits]=wavread('C:\Users\Ghb\Desktop\na nshe ng.wav'); x5=flipud(x);wavplay(x5,fs); subplot(2,1,1);plot(x);title('原始信号')0.4 0.2 0 -0.2 -0.45X 10105X 10信号翻转【结果分析】 程序1实现了语音信号的的读取,用于跟后面的变换程序进行对比; (1) 将原始音频信号在时域上进行延展、压缩;程序2实现了语音信号的延展,通过与程序 1对比可以看出,程序2在程 序1的基础上横坐标变为原来的2倍,纵坐标不变,延展了 2倍,程序3与程 序2相反,横坐标变为原来发的的一半,压缩了 2倍; (2) 将原始音频信号在时域上进行幅度放大和缩小;程序4实现了将原来的音频信号幅度变为了原来的 2倍,程序5实现了将 原来的音频信号的幅度变为原来的一半,程序 4和5的横坐标都不变;(3) 将原始信号在时域上进行翻转。
程序6实现了将原本来的音频信号沿x 轴翻转。
由上面的图示可以看出,信号进行 0.5倍压缩和2.0倍延展后,信号的波形10.5 1 1.5 2 2.5 3 3.5 4 4.5-1 L 0分别变得疏散和密集,同时由存储的处理后的信号音频,可以感觉出0.5 倍压缩后的信号的音色变得粗了,而 2.0 倍延展后的信号音频的音色变得尖了。
对0.5 压缩而言,原本应该在X=2 处播放的部分,被放到了X=4 处播放,所以音频听起来变得音色粗了,波形变得疏散了;对 2.0 延展而言,原本在X=2 出播放的部分在X=1 处播放了,因此音频听起来音色变得尖了,波形变得密集了。
对于对信号幅度的 2 倍和0.5 倍的改变,音频上可以听出来音量大小发生了改变。
2 倍变化时,音量变大,0.5 倍时音量变小。
翻转信号时,图示上可以看出图形的翻转变化。
音频上,音乐的播放发生了倒置。
3. 系统响应时域求解【研讨内容】1) 求一个RLC 电路的零输入响应和零状态响应,2) 将原始音频信号中混入噪声,然后用M 点滑动平均系统对受噪声干扰的信号去噪,改变M 点数,比较不同点数下的去噪效果【题目分析】1) RLC 电路如图所示(2)题目要求采用M点滑动平均系统进行去噪。
M点滑动平均系统可以看成是N=0的差分方程。
调用filter函数时,调用参数a-仁1,b为有M个元素的向量, b中每个元素的值为1/M。
即M点的滑动平均系统输入输出关系为:1 M 1y[k] — x[k n],同时我们将噪声设为n,函数为n=rand(n,1);原始信号为s M n 0通过调整M值,观察和比较去噪效果,从而得出结论。
【仿真】(1) L=0.001;C=0.0001;R=100;%a=L*C=0.0000001;b=R*C=0.01;dsolve('0.0000001*D2y+0.01*Dy+y=0','y(0)=10,Dy(0)=0','t') ans =(2490A(1/2)*exp(-t*(1000*2490A(1/2) + 50000))*(2490^(1/2) - 50))/498t=ts:dt:te;Zi=exp(t*(1000*2490A(1/2) - 50000))*((25*2490八(1/2))/249 + 5) + (2490A(1/2)*exp(-t*(1000*2490A(1/2) + 50000))*(2490八(1/2) - 50))/498plot(t,Zi);title('Zi')Zi12100.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1ts=0;te=0.1;dt=0.0001;t=ts:dt:te;exp(t*(1000*2490A(1/2) 50000))*((25*2490^(1/2))/249 + 5)x=10*s in (100*pi*t);Zs=lsim(sys,x,t);plot(t,Zs)(2)R =200;d=ra nd(1,R)-0.5; k=0:R-1;s=k.*(0.9.A k); x=s+d;figure(1);plot(k,d, 'r-.', k,s, 'b--', k,x, 'g-'); xlabel('k'); legend('d[k]', 'x[k]');title('蓝色为原始信号,红色为噪音,绿色为叠加之后的信号')M=1;b=o nes(M,1)/M;a=1;'s[k]',Zs(蓝色为原始信号,红色为叠加之后的信号)')M=5;b=o nes(M,1)/M;a=1;y=filter(b,a,x);figure(3);plot(k,s, 'b--', k,y, 'r-'); xlabel('k');legend('s[k]', 'y[k]');title('M=5 (蓝色为原始信号,红色为叠加之后的信号)')M=10;b=o nes(M,1)/M;a=1;y=filter(b,a,x);figure⑷;plot(k,s, 'b--', k,y, 'r-'); xlabel('k');legend('s[k]', 'y[k]');title('M=10(蓝色为原始信号,红色为叠加之后的信号)')原始信号4 3.53 2.52 1.51 0.50 -0.5蓝色为原始信号,红色为噪音,绿色为叠加之后的信号.I d[k]s[k]x[k]\m AI |.iII 卩Nl ll、'I J I11" IJA fljI1!fl0 20 40 60 80 100 120 140 160 180 200kM=5 (蓝色为原始信号,红色为叠加之后的信号) 4 [c I [ [ [ [ 1 [M=53 5 2 5 1 5 2o o 」o 5 a -3.532.521.510.5-0.50 20 40 60 80 100 120 140 160 180 200k【结果分析】随着M值的增大,噪声干扰信号逐渐变得平滑,且和原信号图形比较接近,说明当M值增加到一定的值时,去噪的效果好。