中考数学旋转模型及例题#精选.
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
初中数学《几何旋转》重难点模型汇编(四大题型)含解析

专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
初中数学三角形相似之60°、90°旋转模型讲解、经典例题

60°、90°旋转模型【模型分析】遇60°,旋60°,造等边遇90°,旋90°,造垂遇中点,旋180°,造中心对称遇等腰,旋顶角遇中点,旋180°,造中心对称【经典例题】例1.(2020·武汉市卓刀泉中学八年级月考)如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=6,点D为直线AB上一动点,将线段CD绕点C逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.5.5B.6C.7.5D.8【分析】以BC为边作等边△BCF,连接DF,可证△BCE△△FCD,可得BE=DF,则DF△AB 时,DF的长最小,即BE的长最小,即可求解【解析】如图,以BC为边作等边△BCF,连接DF△∠ACB=90°,∠BAC=30°,AB=6△∠ABC=60°,BC=3△将线段CD绕点C逆时针旋转60°得到线段CE△CD=CE,∠DCE=60°△△BCF是等边三角形△CF =BC =BF =3,∠BCF =∠DCE =60° △∠BCE =∠DCF ,且BC =CF ,DC =CE △△BCE △△FCD (SAS ) △ BE = DF△DF △AB 时,DF 的长最小,即BE 的长最小 如图,此时作FD AB '⊥△FBD '∠=180°-60°-60°=60°,D F AB '⊥△ 11.52BD BF '== △7.5AD AB BD '=+='故选:C【小结】本题考查了旋转的性质,全等三角形的判定与性质,直角三角形的性质,添加恰当的辅助线构造全等三角形是解题关键.例2.(2021·上海九年级模型练习)平面直角坐标系中,()0,4C,()2,0K ,A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90得到AB ,当点A 在x 轴上运动,BK 取最小值时,点B 的坐标为____.【分析】如图,作BH x ⊥轴于点H ,由旋转可知ACO △△BAH ,推出BH OA m ==,4AH OC ==,可得到()4,B m m +,令4x m =+,y m =,可知4y x =-,即可知点B在直线4y x =-的图象上运动,设直线4y x =-交x 轴于点E ,交y 轴于点F ,作KM EF ⊥于点M ,根据垂线段最短可知,当点B 与点M 重合时,BK 的值最小,构建方程组确定交点M 的坐标即可求解【解析】如图,作BH x ⊥轴于点H ,设点A 的坐标为(0,M )()0,4C ,()2,0K∴4OC =,2OK =AC AB =,90AOC CAB AHB ∠=∠=∠=∴90CAO OCA ∠+∠=,90BAH CAO ∠+∠= ∴ACO BAH ∠=∠在ACO △与BAH 中,ACO BAHAOC BHA CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ACO △△BAH ()AAS∴BH OA m ==,4AH OC == ∴()4,B m m +令4x m =+,y m =∴4y x =-∴点B 在直线4y x =-上运动设直线4y x =-交x 轴于点E ,交y 轴于点F作KM EF ⊥于点M ,则直线KM 的解析式为:2y x =-+由24y x y x =-+⎧⎨=-⎩,解得:31x y =⎧⎨=-⎩,∴()3,1M -根据垂线段最短可知,当点B 与点M 重合时,BK 的值最小,此时()3,1B -【小结】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识点,正确找到点B 的运动轨迹是解题的关键.例3.(2021·湖北武汉市·九年级月考)如图,在等腰直角三角形ABC 中,AB =AC , ∠BAC =90°,O 为BC 的中点,D 为AC 斜下方一点,30,6,ADC CD OD ︒∠===,则AD 的长为______.【分析】连结AO 由等腰直角三角形的性质得AO =CO =OB ,∠AOC =90º,利用旋转变换将三角形△DOC ,逆时针旋转90º得到△EOA ,由性质得AE =CD =6,∠EOD =90º,EO =DO =EA △DC ,,过A 作AF ∥CD ,交ED 于F ,利用平行线的性质∠FED =∠ADC =30º,推出∠EAD =∠EAF +∠F AD =120º,过E 作EG △DA 交延长线于G ,∠EAG =60º利用余角性质∠GEA =30º,在Rt △AGE 中,解直接三角形,AE =6,AG =3,EG =Rt △EOD 中由勾股定理求ED ,在Rt △EGD 中用勾股定理222ED =EG +GD ,构造AD方程(()22214=+3+AD ,解方程即可.【解析】连结AO△在等腰直角三角形ABC 中,AB =AC , ∠BAC =90°,O 为BC 的中点 △AO =CO =OB ,∠AOC =90º将三角形△DOC ,逆时针旋转90º得到△EOA ,△AE =CD =6,∠EOD =90º,EO =DO =EA △DC , 过A 作AF ∥CD ,交ED 于F , △∠EAF =90º,∠FED =∠ADC =30º, △∠EAD =∠EAF +∠F AD =90º+30º=120º, 过E 作EG △DA 交延长线于G , △∠EAG =180º-∠EAD =180º-120º=60º △∠GEA =90º-∠EAG =90º-60º=30º, 在Rt △AGE 中,AE =6,AG =11622AE =⨯=3,EG ==在Rt △EOD 中,ED , 在Rt △EGD 中,GD =GA +AD =3+AD ,△222ED =EG +GD ,△(()22214=+3+AD ,△3+AD=13±, △AD =10或-16(舍去), 故答案为:10.【小结】本题考查等腰直角三角形的性质,三角形旋转,解直角三角形,勾股定理的应用,掌握等腰直角三角形的性质创造旋转的条件,利用三角形旋转转移线段与角的相等关系,利用解直角三角形求出勾股定理应用的线段的长度,利用勾股定理构造方程是解题关键.【巩固提升】1.(2020·宜兴市实验中学八年级期中)如图,在ABC中,∠ACB=90°,∠A=30°,AB=8,点P是AC上的动点,连接BP,以BP为边作等边BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是()A.2B.4C D2【分析】如图,取AB的中点E,连接CE,PE.由△QBC△△PBE(SAS),推出QC=PE,推出当EP△AC时,QC的值最小;【解析】如图,取AB的中点E,连接CE,PE,则AE=BE=4.△∠ACB=90°,∠A=30°,△∠CBE=60°,△BE=AE,△CE=BE=AE,△△BCE是等边三角形,△BC=BE,△∠PBQ=∠CBE=60°,△∠QBC=∠PBE,△QB=PB,CB=EB,△△QBC△△PBE(SAS),△QC=PE,△当EP△AC时,QC的值最小,在Rt△AEP中,△AE=4,∠A=30°,△PE=12AE=2,△CQ的最小值为2,故选:A .【小结】本题旋转的性质,考查全等三角形的判定和性质,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.2.(2020·湖南长沙市·长郡中学八年级期中)如图,ABC ADE DFG ∆∆∆、、均为等边三角形,C E F 、、三点共线,且E 是CF 的中点,下列结论:①ADG EDF ∆≅∆;②AEC ∆为等腰三角形;③=+DF AD GE ;④BAG BCE ∠=∠⑤60GEB ︒∠=,其中正确的个数为( )A .2B .3C .4D .5【分析】根据等边三角形的性质和判定以及全等三角形的判定和性质证明△ADG △△EDF ,△ABG △△BCE ,然后一一判断即可.【解析】△△ADE 、△DFG ,△ABC 为等边三角形,△DA =DE ,DF =DG ,∠ADE =∠FDG =∠AED =∠ACB =∠DAE =∠BAC =60°, △∠ADG =∠EDF ,∠DAB =∠CAE , △△ADG △△EDF ,故①正确, △AG =EF ,△AG = EC ,如下图,当D、G、E共线时,显然AG≠AE,AG≠AB△EC≠AE,EC≠AC,∆不是等腰三角形, 故②错误,△AEC△AD+EG=DE+GE>DG,DG=DF△AD+EG>DF,故③错误.△△ADG△△EDF,△∠DEF=∠DAG,△∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ACB-∠BCE,△∠EAC-∠DEF=∠BCE,△∠BAG=∠DAB-∠DAG=∠EAC-∠DEF,△∠BAG=∠BCE,故④正确,△△ADG△△EDF,△AG=EF=EC,△∠BAG=∠BCE,AB=BC△△ABG△△BCE,△∠ABG=∠EBC,BG=BE,△∠EBG=∠ABC=60︒,△ΔBEG为等边三角形,△∠BEG =60︒,故⑤正确,故选:B.【小结】本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3.(2020·北京海淀区·人大附中九年级月考)如图,ABC 是等边三角形,3AB =,点E 在AC 上,2AE CE =,点D 在BC 的延长线上,将线段DE 绕点E 逆时针旋转90°,得到线段EF ,连接AF ,若//AF BD ,则AF 的长为______.【分析】如图过点E 作EM AF ⊥于M ,交BD 于N ,解直角三角形求出AM ,EN ,利用全等三角形的性质证明MF =EN ,即可解决问题; 【解析】过点E 作EM AF ⊥于M ,交BD 于N△△ABC 是等边三角形△3AB AC BC ===,60ACB ∠=︒ △2AE CE = △2AE =,1EC = △//AF BE△60EAM ACB ∠=∠=︒ △EM AF ⊥ △90AME ∠=︒ △30AEM ∠=︒ △112AM AE == △//AF BD ,EM AF ⊥ △EN BC ⊥△sin 602EN EC =︒=△90EMF END FED ∠=∠=∠=︒△90MFE MEF ∠+∠=︒,90MEF DEN ∠+∠=︒ △ED =EF△()△△EMF DENAAS ≅△MF EN ==△1AF AM MF =+=+【小结】本题主要考查了旋转的性质,等边三角形的性质,特殊角的三角函数值,三角形全等,准确分析计算是解题的关键.4.(2021·四川成都市·八年级期末)已知:等边三角形ABC ,直线l 过点C 且与AB 平行,点D 是直线l 上不与点C 重合的一点,作射线DB ,并将射线DB 绕点D 顺时针转动60︒,与直线AC 交于点E (即60BDE ∠=︒).(1)如图1,点E 在AC 的延长线上时,过点D 作AC 的平行线与CB 的延长线交于点F ,求证:DE DB =;(2)如图2,2AB =,4CD =,依题意补全图2,试求出DE 的长; (3)当点D 在点C 右侧时,直接写出线段CE 、BC 和CD 之间的数量关系. 【分析】(1)过点D 作AC 的平行线与CB 的延长线交于点F .根据平行线的性质结合等边三角形的判定和性质可得出∠DFB =∠ACB =60°,∠ECD =60°,∠EDC =∠FDB ,CD =DF .由此即可证出△CDE△△BDF,从而得出DE=DB;(2)分两种情况:①当D在点C右侧时,过点D作AC的平行线与CB的延长线交于点F;②当D在点C左侧时,过点D作BC的平行线与CA于点F,作BH△CD于H.画出图形利用等边三角形的判定和性质、全等三角形的判定和性质分别求解即可;(3)分两种情况考虑:①当点E在AC的延长线上时,过点D作AC的平行线与CB 的延长线交于点F;②当点E在线段AC上时,过点D作AC的平行线与CB交于点F.画出图形利用等边三角形的判定和性质、全等三角形的判定和性质分别求解即可.【解析】(1)如图1,过点D作AC的平行线与CB的延长线交于点F.△△ABC为等边三角形,△∠ACB=∠ABC=60°,△DF∥AC,CD∥AB,△∠DFB=∠ACB=60°,∠DCF=∠ABC=60°,△△CDF是等边三角形,∠ECD=60°,△∠CDF=60°,CD=DF,△∠BDE=60°,△∠EDC+∠CDB=60°,∠FDB+∠CDB=60°,△∠EDC=∠FDB.在△CDE和△BDF中,60ECD BFDCD DFEDC BDF⎧∠=∠=⎪=⎨⎪∠=∠⎩,△△CDE△△BDF(ASA),△DE=DB.(2)分两种情况:①当D在点C右侧时,过点D作AC的平行线与CB的延长线交于点F.如图2所示.由(1)可知,CF=CD=4,CB=AB=2,△BF=2,△BD是等边三角形△CDF的高,=△BD=2△DE=BD=②当D在点C左侧时,过点D作BC的平行线与CA于点F,作BH△CD于H.如图3所示.△△ABC为等边三角形,△∠ACB=∠CAB=60°,△DF∥BC,CD∥AB,△∠DFC=∠ACB=60°,∠DCF=∠CAB=60°,△△CDF是等边三角形,∠DCB=120°,∠DFE=120°,△∠CDF=60°,CD=DF,△∠BDE=60°,△∠EDF+∠FDB=60°,∠FDB+∠CDB=60°,△∠EDF=∠CDB.在△CDB和△EDF中,120BCD EFDCD DFBDC EDF⎧∠=∠=⎪=⎨⎪∠=∠⎩,△△CDB△△EDF(ASA),△DE=DB.在R t△BCH中,∠BCH=60°,∠CBH=30°,CB=AB=2,△CH=1,BH=在R t△BDH中,DH=DC+CH=5,BH=△DB===△DE=,综上,DE的长为(3)分两种情况:①当点E在AC的延长线上时,过点D作AC的平行线与CB的延长线交于点F.如图1所示.由(2)可知,CD=CF,CE=BF,△CD=BC+BF=BC+CE,②当点E在线段AC上时,过点D作AC的平行线与CB交于点F.如图4所示.△△ABC为等边三角形,△∠ACB=∠ABC=60°,△DF∥AC,CD∥AB,△∠DFC=∠ACB=60°,∠DCF=∠ABC=60°,△△CDF是等边三角形,∠CFD=60°,△∠CDF=60°,CD=DF=CF,∠BFD=120°,∠DCE=120°,△∠BDE=60°,△∠EDC+∠EDF=60°,∠FDB+∠EDF=60°,△∠EDC=∠FDB.在△CDE和△BDF中,120 ECD BFDCD DFEDC BDF⎧∠=∠=⎪=⎨⎪∠=∠⎩△△CDE△△BDF(ASA)△CE=BF.△BC=CF+BF=CD+CE.综上所述,当点D在点C右侧时,线段CE、BC和CD之间的数量关系是CD= BC+CE或BC=CD+CE.【小结】本题是三角形综合题,考查了等边三角形的判定及性质,全等三角形的判定与性质,作辅助线构造等边三角形和全等三角形是解题的关键.5.(2019·渠县第三中学八年级月考)如图1,在平面直角坐标系中,直线y=−2x+6交坐标轴于A,B两点,过点C(-6,0)作CD交AB于D,交y轴于点E,且△COE△△BOA.(1)求点B的坐标,线段OA的长;(2)确定直线CD的解析式,求点D的坐标;(3)如图2,点M 是线段CE 上一动点(不与点C ,E 重合),ON △OM 交AB 于点N ,连接MN ,当△OMN 的面积最小时,请求点M 的坐标和△OMN 的面积.(4)如图3,点M 是直线CD 上一动点,过点M 作x 轴的垂线,交轴于点Q ,连接EQ ,若∠EQM =∠ACD ,求点M 的坐标.【分析】(1)利用x 轴与y 轴的特征求直线y =-2x +6与两轴的交点即可;(2)利用△COE △△BOA .求出E (0,3)设CD 的解析式为y =kx +b ,将C 、E 代入求出CD解析式,由CD 交AB 于D ,联立解方程组13226y x y x ⎧=+⎪⎨⎪=-+⎩即可; (3)由△COE △△BOA .推出CO =BO ,∠OCE =∠OBA ,利用同角的余角相等推出∠COM =∠EON ,进而可证△COM △△BON (ASA ),得△MON 为等腰直角三角形,要使△OMN 的面积最小,需OM 最小,此时OM △CE 由△COE 面积桥OC OE 65OM==CE 5即可求出面积最小值,利用△MFO △△COE ,得MF FO 2==635可求MF ,FO 即可; (4)可证△EQO △△CEO 由性质QO OE =OE OC 求出OQ ,当点Q 在x 轴的负半轴上时,Q (32-,0)由点M 在CD 上,当32x =-时求函数值得M 1(32-,94);当点Q 在x 轴的正半轴上时,Q (32,0)由点M 在CD 上,当32x =时求函数值M 2(32,154),综合得M 的坐标为(32-,94),(32,154).【解析】(1)当x =0时,y =6,则B (0,6),当y =0时,-2x +6=0,x =3,A (3,0), OA =3;(2)△△COE △△BOA , △OE =OA =3,OC =OB =6, △E (0,3),C (-6,0),设CD 的解析式为y =kx +b ,过C (-6,0)和E (0,3),则360b k b =⎧⎨-+=⎩,解得312b k =⎧⎪⎨=⎪⎩,CD 的解析式为:132y x =+, ∵CD 交AB 于D ,∴13226y x y x ⎧=+⎪⎨⎪=-+⎩,解得65185x y ⎧=⎪⎪⎨⎪=⎪⎩,点D 坐标为D (61855,); (3)∵△COE ≌△BOA , △CO =BO ,∠OCE =∠OBA , △ON △OM ,∠COB =90º,△∠COM +∠MOE =90º,∠MOE +∠EON =90º, △∠COM =∠EON , △△COM △△BON (ASA ), △OM =ON ,△△MON 为等腰直角三角形, S △MON =211OM ON=OM 22, 要使△OMN 的面积最小, 需OM 最小,此时OM △CE ,CE由△COE 面积得,11CE OM=OC OE 22,OC OE OM==CE 35,S △MON 最小=221118OM =?=225⎝⎭, 过M 作MF △OC 于F ,△∠FMO +∠FOM =90º,∠MCO +∠MOC =90º, △∠FMO =∠MCO , △∠MFO =∠COE =90º, △△MFO △△COE ,△MF FO OM==OC OE CE即MF FO 2=635, △212MF=6=55⨯,6FO=5, △点M 在第二象限, △M (65-,125);(4)△MQ △x 轴, △MQ ∥OE , △∠MQE =∠QEO , △∠EQM =∠ACD , △∠QEO =∠OCE , △∠QOE =∠EOC , △△EQO △△CEO ,△QO OE= OE OC△OQ=2OE93== OC62当点Q在x轴的负半轴上时,Q(32-,0)由点M在CD上,CD的解析式为:132y x=+当32x=-时1393224y⎛⎫=⨯-+=⎪⎝⎭M1(32-,94)当点Q在x轴的正半轴上时,Q(32,0)由点M在CD上,CD的解析式为:132y x=+当32x=时13153224y⎛⎫=⨯+=⎪⎝⎭M2(32,154),综合得M的坐标为(32-,94),(32,154).【小结】本题考查直线与两轴的交点,直线解析式,两直线的交点,最小面积,三角形全等的性质,勾股定理,三角形相似,掌握直线与两轴的交点求法,会用待定系数法求直线解析式,会利用解方程组求两直线的交点,会利用点到直线的距离最小求最小面积,利用三角形全等的性质进行线段、角的转化,利用勾股定理求边长,会利用三角形相似的性质解决问题是关键.6.(2020·辽宁沈阳市·九年级其他模拟)在ABC 中,AB AC =,点P 在平面内,连接AP ,并将线段AP 绕A 顺时针方向旋转与BAC ∠相等的角度,得到线段AQ ,连接BQ . (1)如图,如果点P 是BC 边上任意一点.则线段BQ 和线段PC 的数量关系是__________.(2)如图,如果点P 为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图所示的位置关系加以证明(或说明);(3)如图,在DEF 中,8DE =,60EDF ∠=︒,75DEF ∠=︒,P 是线段EF 上的任意一点,连接DP ,将线段DP 绕点D 顺时针方向旋转60°,得到线段DQ ,连接EQ .请直接写出线段EQ 长度的最小值.【分析】(1)先判断出∠BAQ =∠CAP ,进而用SAS 判断出△BAQ △△CAP ,即可得出结论;(2)结论BQ =PC 仍然成立,理由同(1)的方法;(3)先构造出△DEQ △△DHP ,得出EQ =HP ,进而判断出要使EQ 最小,当HP △EF (点P 和点M 重合)时,EQ 最小,最后用解直角三角形即可得出结论. 【解析】(1)由旋转知:AQ =AP △PAQ BAC ∠=∠△PAQ BAP BAC BAP ∠-∠=∠-∠ △BAQ CAP ∠=∠ △AB AC =△()BAQ CAP SAS ∆≅∆ △BQ CP = 故答案为:相等(2)BQ PC =仍成立,理由如下 证明:由旋转知:AQ =AP △PAQ BAC ∠=∠△PAQ BAP BAC BAP ∠-∠=∠-∠ △BAQ CAP ∠=∠ △AB AC =△()BAQ CAP SAS ∆≅∆ △BQ C =P (3)如图:在DF 上取一点H ,使8DH DE ==,连接PH,过点H作HM EF ⊥于M,由旋转知,DQ DP =,60PDQ ∠=︒,△60EDF ∠=︒,△PDQ EDF ∠=∠,△EDQ HDP ∠=∠,△()DEQ DHP SAS ∆≅∆,△EQ HP =,要使EQ 最小,则有HP 最小,而点H 是定点,点P 是EF 上的动点△当HM EF ⊥(点P 和点M 重合)时,HP 最小即:点P 与点M 重合,EQ 最小,最小值为HM过点E 作EG DF ⊥于G ,在Rt DEG ∆中,8DE =,60EDF ∠=︒△30DEG ∠=︒ △142DG DE ==△EG ==在Rt EGF ∆中,753045FEG DEF DEG ∠=∠-∠=︒-︒=︒△9045F FEG FEG ∠=︒-∠=︒=∠,FG EG ==△4DF DG FG =+=+△484FH DF DH =-=+=在Rt HMF ∆中,45F ∠=︒△)4HM ===即:EQ 的最小值为.【小结】本题考查旋转的性质、最值问题,属于几何变换综合题,掌握全等三角形的证明方法,点到直线的距离等知识为解题关键.。
中考数学常见的几种旋转模型

旋转常见模型一、遇60°旋转60°, 构造等边三角形1.点P是等边△ABC内一点, 且PC=3, PB=4, PA=5。
求∠BPC的度数。
2.如图6-2, 是等边外一点, 若, 求的度数。
图6-23.(2018年广州市节选)如图, 在四边形ABCD 中,∠B ( 60( ,∠D ( 30( ,AB ( BC.(1)∠A ∠C= °(2)连接BD , 探究AD , BD , CD 三者之间的数量关系, 并说明理由.二、遇90°旋转90°, 构造等腰直角三角形1.如图, 在正方形ABCD内部有一点P, PA= , PB= , PC=1, 求∠BPC的度数。
2.在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,PA=2,PB=1,PC=3,求∠APB的度数.三、遇等腰旋转顶角, 构造旋转全等FED CBA GABCDEABCDEF1.在 中, , ( ), 将线段 绕点 逆时针旋转60°得到线段 . (1)如图1, 直接写出 的大小(用含 的式子表示); (2)如图2, , 判断 的形状并加以证明; (3)在(2)的条件下, 连结 , 若 , 求 的值.四、半角模型说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角, 通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。
秘籍: 角含半角要旋转: 构造两次全等FED CBAG FED CBA1.如图, 在正方形ABCD 中, E 、F 分别在BC.CD 上, 且∠EAF=45°连接EF. 求证:EF=BE+DF.如图, 在正方形ABCD中, E、F分别在BC.CD上, 且∠EAF=45°连接AD, 与AE、AF分别交于M、N,求证: MN2=BM2+DM23.如图, 在正方形ABCD 的边长为2, 点E, 点F分别在边AD,CD上, 若∠EBF=45°,则△EDF的周长等于。
(完整版)中考数学旋转模型及例题

旋转的模型及例题 (一)夹半角模型已知:正方形ABCD 中,∠EAF=45°,求证:(1)BE+DF=EF ;(2)△EFC 周长等于2倍边长;方法:将△ADF 绕A 点顺时针旋转90°,使得AD 与AB 重合,然后证△AEF ≌△AEG ;证得BE+DF=EF 例题:已知∠BAC=45°BD=4,CD=6,求△ABC 的面积?解析:将△ABD 和△ADC 分别关于AB 、AC 对称,构造夹半角模型例题:如图1 ,正方形ABCD 中,M N ,分别是BC CD ,边上的两点,且45MAN ∠=˚, 连结MN ,请写出BM MN DN ,,之间的熟练关系并证明; 如图2,ABC △中,90AB AC BAC =∠=,˚,M N ,为BC 上两点,且45MAN ∠=˚,请写出线段BM MN CN ,,之间的数量关系,并证明; (3) 如图3,在(1)中,若点M 在CB 延长线上,N 在DC 延长线上,其他条件不变,(1)中的结论变化吗? (4) 如图4,在(2)中若点M 在CB 的延长线上,其它条件不变,(2)中的结论还成立吗?请证明你的结论;解析:都是通过旋转得来!推广:一般的夹半角模型例题:边长为2m 的等边ABC △的两边AB AC 、上分别有两点M N 、,点D 为平面内 一点,60MDN ∠=︒,120BDC BD CD ∠=︒=,.当点M 在线段AB 上运动时,探索AMN △的周长与ABC △边长的关系.⑴ 如图1,当点D 在ABC △外时,AMN △的周长是否发生变化?请证明你的结论. ⑵ 如图2,当点D 在ABC △内时,⑴中的结论是否成立?若成立,请求出此时AMN △的周长;若不成立,请说明理由.⑶ 如图3,ABC △是满足60BAC ∠=︒的任意三角形,其中BC a AC b AB c ===,,.D 是ABC ∠ 与ACB ∠平分线的交点,M N 、分别在AB AC 、上,且60MDN ∠=︒.当点M 在线段AB 上运动时,猜想AMN △的周长是否发生变化?若不变,请直接写出AMN △的周长(用a b c ,,表示,不需要化简);若变化,请说明理由.(二)手拉手模型等边三角形B图3图2图1ABCDMNNMDCBANM BAB条件:AB=AD ,∠B+∠D=180°,2∠MAN=∠BAD结论:BM+DN=MN条件:△ABC 是等边三角形,BD=CD ,∠BDC=120°∠MDN=60°结论:BM+CN=MN △AMN 的周长=2倍边长结论:(1) △BCE ≌△ACD ,△BCM ≌△CAN , △MCE ≌△NCD (2)AD=BE,∠AFB=60°(3)△MCN 为等边三角形 (4)MN ∥BD(5)CF 为∠BFD 的角平分线 (6)FC+FE=FD结论:(1) △BCE ≌△ACD (2) AD=BE,∠AFB=60°(3) CF 为∠BFD 的角平分线正方形中的旋转例题:如图,已知四边形ABCD 中,AD=CD ,∠ABC=75°,∠ADC=60°,AB=2,BC= 2(1) 以线段BD 、AB 、BC 作为三角形的三边,○1则这个三角形为___________三角形,(锐角、直角、钝角) ○2求BD 边所对的角的度数。
初三——旋转模型(含答案解析)

将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF= ∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,
∴∠ADE'=∠ADC,即E',D,F三点共线,
∵∠EAF= ∠BAD,
∴∠E'AF=∠BAD−(∠BAF+∠DAE')=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF= ∠BAD,
∴∠EAF=∠E'AF,
在△AEF和△AE'F中, ,
(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.
【详解】
解:(1)∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠AOC=∠BOD=90°﹣∠AOD,
在△AOC和△BOD中 ,
本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.
4.(1)见解析;(2)
【分析】
(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
∴∠ACD=∠BCE,
中考数学旋转专题中的常见模型

旋转专题1、图形的旋转(1)在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.(2)性质:①在图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;②注意每一对对应点与旋转中心的连线所成的角度都叫旋转角,旋转角都相等; ③对应点到旋转中心的距离相等.2、图形的中心对称(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心. (2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分; ③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.1、三垂直全等模型三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。
CBE D CAB2、手拉手全等模型CCCABDEABBA方法技巧提炼高频核心考点EDCBAEDCBAEDCBAABCDEEDCBA3、等线段、共端点 (1) 中点旋转(旋转180°)(2) 等腰直角三角形(旋转90°)A'DCBAF'D'FEDCA(3) 等边三角形旋转(旋转60°)(4) 正方形旋转(旋转90°)②①FEDCBAPFEDCBAGFEDCBA例1、如图,设P 是等边△ABC 内的一点,PA=3,PB=4,PC=5,则∠APB 的度数是________。
类型一旋60°,造等边精题精讲精练例2、(1)如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对(2)在等边△ABC中,P为BC边上一点,设以AP、BP、CP为边组成的新三角形的最大内角为θ,则() A. θ≥90° B.θ≤120° C.θ=120° D.θ=135°例3、如图所示.△ABD是等边三角形,在△ABC中,BC=a,CA=b,问:当∠ACB为何值时,C,D 两点的距离最大?最大值是多少?例4、(1)如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,证明:BC+DC=AC.(2)如图,四边形ABCD中,AB=BC,∠ABC=60°,P为四边形ABCD内一点,且∠APD=120°.证明:PA+PD+PC≥BD.如图,P 为等边△ABC 内一点,∠APB =113°,∠APC =123°求证:以AP ,BP ,CP 为边可以构成一个三角形,并确定所构成的三角形的各内角的度数.如图,在四边形ABCD 中,∠ABC=30°,∠ADC =60°,AD=DC.证明:BD 2=AB 2+BC 2.例5、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC 的长等于________。
人教版初三数学旋转模型(含详细解析)

知识结构gt i me an dAl l th i ng si nt he i rb ei n ga re go od fo rs o 【例题】 如图:(1-1):设是等边内的一点,PA=3, PB=4,PC=5,的度数是P ABC ∆APB ∠________.1509060.3,'''''''=+=+∠=∠∴≅==∠=∠PB P APP APB RT PBP APP CAP BAP B P AP AP CAP BAP ABC △为为正三角形,△。
易证△△则△,连结且的外侧,作简解:在△‘(二)正方形类型在正方形中,P 为正方形内一点,将绕点按顺时针方向旋转,使ABCD ABCD ABP ∆B 90得与重合。
经过旋转变化,将图(2-1-a )中的、、三条线段集中于图(2-1-b )BA BC PA PB PC 中的中,此时为等腰直角三角形。
'CPP ∆'CPP ∆【例题】 如图(2-1):是正方形内一点,点到正方形的三个顶点、、的距离分P ABCD P A B CAl l t h i ng si nt he i rb ei n ga re go od fo rs o 别为PA=1,PB=2,PC=3。
求此正方形ABCD 。
面. 8292132324422*********,23,21,,,=++=++=∴====+=++=∴∴=+=∠+∠+∠=∠∴=∠+∠∠=∠∠=∠==∴=≅≅=∠=∠S S S S PFC RT EPA RT EPF RT ABCD RT EPF FP EP EF EPF DF DF ED EF F D E ADC FDC EDA EDF PBC PBA PBC FDC PBA EDA PF PE AP EAP BPC DFC DFC ABP ADE EP AP AE BAP DAE AED △△△正方形△为可知△由勾股定理的逆定理,,,中,在△,在一条直线上、、点又同理,为等腰三角形,又易证△。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
word.
旋转的模型及例题 (一)夹半角模型
已知:正方形ABCD 中,∠EAF=45°,求证:(1)BE+DF=EF ;(2)△EFC 周长等于2倍边长;
方法:将△ADF 绕A 点顺时针旋转90°,使得AD 与AB 重合,然后证△AEF ≌△AEG ;证得
BE+DF=EF 例题:已知∠BAC=45°BD=4,CD=6,求△ABC 的面积?
A
B
C
D
A
B
C
E
F
解析:将△ABD 和△ADC 分别关于AB 、AC 对称,构造夹半角模型
例题:如图1 ,正方形ABCD 中,M N ,分别是BC CD ,边上的两点,且45MAN ∠=˚, 连结MN ,请写出BM MN DN ,,之间的熟练关系并证明; 如图2,ABC △中,90AB AC BAC =∠=,˚,M N ,为BC 上两点,且45MAN ∠=˚,请写出线段BM MN CN ,,之间的数量关系,并证明; (3) 如图3,在(1)中,若点M 在CB 延长线上,N 在DC 延长线上,其他条件不变,
(1)中的结论变化吗? (4) 如图4,在(2)中若点M 在CB 的延长线上,其它条件不变,(2)中的结论还成立吗?请证明你的结论;
解析:都是通过旋转得来!
C
A
B
G D C
B
D
word. 推广:一般的夹半角模型
B
例题:边长为2m 的等边ABC △的两边AB AC 、上分别有两点M N 、,点D 为平面内 一点,60MDN ∠=︒,120BDC BD
CD ∠=︒=,.当点M 在线段AB 上运动时,探索AMN △的周长与ABC △边长的关系.
⑴ 如图1,当点D 在ABC △外时,AMN △的周长是否发生变化?请证明你的结论. ⑵ 如图2,当点D 在ABC △内时,⑴中的结论是否成立?若成立,请求出此时AMN △的周长;若不成立,请说明理由.
⑶ 如图3,ABC △是满足60BAC ∠=︒的任意三角形,其中BC a AC b AB c ===,,.D 是ABC ∠ 与ACB ∠平分线的交点,M N 、分别在AB AC 、上,且60MDN ∠=︒.当点M 在线段AB 上运动时,猜想AMN △的周长是否发生变化?若不变,请直接写出AMN △的周长(用
a b c ,,表示,不需要化简)
;若变化,请说明理由. 图3
图2图1A
B
C
D
M
N
N
M
D
B
A
N
M C
B
A
(二)手拉手模型
等边三角形
条件:AB=AD ,∠B+∠D=180°,
2∠MAN=∠BAD
结论:BM+DN=MN
条件:△ABC 是等边三角形,BD=CD ,∠BDC=120°
∠MDN=60°
结论:BM+CN=MN △AMN 的周长=2倍边长
结论:
(1) △BCE ≌△ACD ,△BCM ≌△CAN , △MCE ≌△NCD
(2)AD=BE,∠AFB=60°
(3)△MCN 为等边三角形 (4)MN ∥BD (5)CF 为∠BFD 的角平分线 (6)FC+FE=FD
结论:(1) △BCE ≌△ACD (2) AD=BE,∠AFB=60°
(3) CF 为∠BFD 的角平分线
word.
正方形中的旋转
C
E
D
F
G
例题:如图,已知四边形ABCD 中,AD=CD ,∠ABC=75°,∠ADC=60°,AB=2,BC= 2
(1) 以线段BD 、AB 、BC 作为三角形的三边,
○
1则这个三角形为___________三角形,(锐角、直角、钝角) ○
2求BD 边所对的角的度数。
(2) 求四边形ABCD 的面积
.已知:2PA =4PB =,以AB 为一边作正方形ABCD , 使P 、D 两点落在直线AB 的两侧.
(1)如图,当∠APB=45°时,求AB 及PD 的长; (2)当∠APB 变化,且其它条件不变时,求PD 的 最大值,及相应∠APB 的大小.
最新文件 仅供参考 已改成word 文本 。
方便更改
结论:(1) △BGC ≌△DEC (2) BG=DE,BG ⊥DE 结论:(1) △BGC ≌△DEC
(2) BG=DE,BG ⊥DE M
B
C
D
G
A B。