小学数学解题方法总结
小学数学解决问题的方法和技巧

小学数学解决问题的方法和技巧一、认真审题,弄清题意数学题目,有的简明易懂,有的叙述复杂,内容抽象。
因此,在做题时,首先要认真读题,弄清题意。
对一时难以弄清的题目,要耐心仔细地多读几遍,有时还应把题意画图表示出来以便于理解。
只有搞清题意,才能根据题意分析解法。
二、抓住关键,找到解题的突破口有些应用题,牵涉到一些数量关系,在题目中没有直接出现。
为了方便学生理解,老师会画好线段图并标好数字关系。
学生只要分析数量关系就能解答。
可有的学生不知从何入手,原因是他们没有找到解题的突破口。
因此,在教学中要引导学生认真思考、分析,还能从题目的叙述中找出问题的突破口,明确解题思路。
三、活用公式,解决问题在解答应用题时,既要联系相关的基础知识,又要注意解题时的灵活性。
基础知识是解决数学问题的关键。
小学数学中,乘除加减等运算基础的是等式和不等式以及数的四则运算公式。
所以要求学生一定要熟练地掌握这些公式。
但是对于公式的运用不能死记硬套,要注意灵活使用公式。
由于每个学生的理解能力和运用能力有限,因而在解答应用题时出现不同的解题方法。
在教学中应该注重培养学生从多个角度去分析和解题的能力,而不只是注重计算的准确性。
这样不仅能提高学生解决问题的能力而且能够发展学生的思维能力。
四、从问题出发,寻求不同的解题方法数学问题可以有不同的解法。
教师在教学时不仅要教会学生用常规的方法解决问题,更重要的是培养和启发学生通过分析数量关系、寻求数量间的相互联系来用不同的方法解决问题。
小学数学中有些题目可以有多种解法,对于这类问题要引导学生从不同的角度、用不同的思维方式进行多种解法的练习,增强学生思维的灵活性。
这样不仅能使学生掌握解决类似问题的技能、技巧;而且还能促进学生的创造性思维的发展。
同时有利于培养学生的探索精神。
五、加强应用题的训练在小学阶段应用题教学非常重要,加强应用题训练既是小学数学教学的重要任务之一,又是提高学生解应用题能力的有效手段与途径。
中小学——数学解题技巧——数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学一年级数学的解题思路和策略

小学一年级数学的解题思路和策略小学低年级阶段是认识数学、储备基础知识的阶段,主要学习简单的计算,并初步接触应用题。
这个阶段要求学生掌握基础的计算方法,并能够理解及解决简单的应用题。
这里给大家分享一些数学题的阶梯方法,希望对大家有所帮助。
小学一年级数学常见的解题方法1、实物演示法实物演示法是利用身边的实物来演示数学题目的条件与条件及条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以是数学内容形象化,使数量关系具体化,从而为学生指明思考方向。
2、画图法画图法是借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
画图法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔。
3、观察法观察法是通过大量具体事例,归纳发现事物的一般规律的方法。
小学一、二年级“观察”的内容一般有:①数的变化规律及位置特点;②图形的特点及大小、位置关系。
4、对照法对照法是根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法。
5、分类法分类法是根据事物的共同点和差异点将事物区分为不同种类的方法。
分类是以比较为基础的,依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
小学一年级数学应用题解题方法一、数量关系分析法数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。
数量关系分析法分为三步:(一)寻找题中的数量。
(二)明确各数量间的关系。
(三)解决各个产生的问题。
下面以一道例题的教学从以下几方面来谈数量关系分析法的运用。
家长在家辅导孩子作业可以参考老师的引导方法教导孩子思考的角度和方法,养成孩子独立思考、快速解答的好习惯:如题:“学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?”解题思路师:题中有几个数量呢?生:三个。
总结小学数学常见解题步骤及要点

总结小学数学常见解题步骤及要点数学是小学阶段的一门重要学科,解题能力的培养对学生的数学学习至关重要。
在小学数学中,存在着一些常见的解题步骤和要点,本文将对这些内容进行总结。
一、理解题意解题的第一步是理解题意,即准确把握题目所要求解决的问题。
在理解题意时,要仔细阅读题目,提取关键信息,确定问题的要求和条件。
二、分析问题在理解题意的基础上,需要对所给问题进行分析。
这包括理清问题的结构,确定问题的求解方向以及制定解题思路。
在分析问题时,可以考虑使用图表、拆解问题、列出等式等方式。
三、选择解题方法在分析问题的基础上,需要选择合适的解题方法。
小学数学中常见的解题方法包括逻辑推理、归纳法、演算法、直接计算等。
选择解题方法需要考虑问题类型和条件,灵活运用各种方法。
四、展开计算在选择解题方法后,需要进行具体的计算。
这包括使用适当的数学公式、算式,进行加减乘除、比较大小等运算。
计算过程中,要保持准确性和规范性,避免出现计算错误。
五、检验答案解题过程中,应进行答案的检验。
检验答案是为了确保所得到的结果符合问题的要求和条件。
可以通过逆向思考、代入验证等方法进行答案的检验。
若答案符合要求,则解题过程正确。
六、思考拓展解题之后,可以对问题进行一些拓展思考。
这包括思考问题的变式、类比问题、推广问题等。
通过思考拓展,可以拓宽视野,提高问题解决能力。
小学数学解题的要点如下:1. 注意审题:认真读题,理解题目所要求的内容,正确把握问题的条件和要求。
2. 理清思路:在解题之前,要理清思路,明确解题的步骤和方向。
3. 灵活运用方法:根据题目的类型和条件,选择合适的解题方法,灵活运用数学知识。
4. 执行计算:在进行计算时,要保持准确性和规范性,仔细进行每一步的计算。
5. 检验答案:解答完问题后,要进行答案的检验,确保答案正确符合题目要求。
总结起来,小学数学解题的关键步骤包括理解题意、分析问题、选择解题方法、展开计算、检验答案以及思考拓展。
小学数学应用题解题方法六法

例2 。甲 乙 丙三人共有糖192块,第一次甲把自己的糖分给乙 丙二人,谁有多少就分 给谁多少块;第二次乙把自己的糖分给甲 丙二人,也是谁有多少就分给谁多少;第三次 丙用同样的方法把糖分给甲 乙二人,最后三人的糖数正好相等,问他们原来各有多少 糖块?
解:可从反面来进行思考,采用列表倒推的方法,由于最后每人的糖块都相等,故每 人的糖块数为:192÷3=64(块) 由此可列出下表:
四、逆向思维法
当某一思路出现障碍时,能够迅速地转移到另一思路上去,从而使问题得到解决的思维 过程。 例1 有一个4行6列共4*6=24个方格的木箱,每一个方格可放置一瓶牛奶,现在有18瓶 牛奶分放进去,但要求横数为偶数,竖数也为偶数,这件事能办到吗? 解:从反面来思考,将不放牛奶的空格打上“×”,这样只要保证横、竖都为偶数即 可.如下图即是一种放法.
例2:甲、乙、丙、丁与小强五位同学一起比赛象棋,到现在为止,甲已经赛了四 盘,乙赛了三盘,丙赛了两盘,丁赛了一盘,问小强赛了几盘?
甲
4
3
乙 丙 丁
小 强
2
1
解:以五个点分别表示甲、乙、丙、丁和小强五个人,若两人之间比 赛过,则连结该两点, 这样,根据题意可得到右边的关系图,由图易知,小强共赛了2盘。
例2 一只青蛙在一个30米深的井底,它沿井壁每跳一次能跳3米高,但当休息时, 又沿井壁下滑2米,如果它每跳一下,都休息一会儿,问跳几次能跳到井口?
解:从最简单的情况如手来考虑问题: 1.当井深不超过3米时,青蛙跳一次就能跳到井口。 2.当井深为4米时,跳一次,实际上升一米,这时青蛙距离井口3米,再跳一次就到 了井口,因此井深4米时,只跳2次就到了井口,而不是4次。 3.当井深5米时,跳一次,实际上升一米,这时青蛙距离井口4米,由(2)知,青蛙还要 跳2次,故一共跳3次就到了井口。 同样的道理,当井深是6米时,青蛙跳4次就到了井口.由此可得,青蛙从30米深的 井底,需跳28次,才能跳到井口.
小学数学常用的16种解题方法

小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。
数学解题技巧小学生数学问题解决思路

数学解题技巧小学生数学问题解决思路数学解题技巧小学生数学问题解决思路在小学阶段,数学是学生们经常面对的一门学科,也是许多学生觉得难以掌握的学科之一。
解决数学问题需要一定的方法和技巧,下面将介绍一些小学生数学问题解决的思路和技巧。
1. 理清问题在解决数学问题之前,需要仔细阅读题目并理解题意。
要抓住问题的关键信息,并确认需要寻找的答案是什么。
如果可能,可以将问题进行细分,将复杂的问题分解成小问题,逐个解决。
2. 思维导图对于一些复杂的问题,可以使用思维导图进行思维整理。
将问题的关键信息写在中心节点上,然后根据问题的要求,从中心节点出发绘制分支,形成问题的思维导图。
思维导图可以帮助学生整理问题的逻辑关系,从而更好地解决问题。
3. 寻找模式和规律有些问题中存在明显的模式和规律,学生可以通过观察问题中的数据和情景,寻找其中的规律和模式。
例如,一组数字中每个数字都比前一个数字大2,学生可以根据这个规律快速地计算下一个数字。
寻找规律不仅可以帮助学生更轻松地解决问题,而且培养了学生对数学的感知能力。
4. 列表或表格对于一些需要整理数据的问题,可以使用列表或表格的形式进行解决。
将问题中涉及的数据按照一定的顺序排列,有序地填入列表或表格中,可以帮助学生更清晰地理解问题并找到解决的思路。
5. 反向思考对于一些逻辑性较强的问题,学生可以尝试采用反向思考的方式解决。
即从问题的答案出发,反向推导得出问题的解决步骤和方法。
这种思维方式可以锻炼学生的逻辑思维和推理能力。
6. 画图辅助解题对于一些几何问题,画图是解决问题的有效方式之一。
通过绘制几何图形,可以更直观地理解问题,并找到解决问题的关键步骤。
画图还有助于学生将抽象的数学问题转化为具体的图像,更容易理解和解决。
7. 实际应用将数学问题与日常生活相结合,进行实际应用是培养学生兴趣和提高解题能力的有效途径。
例如,在购物中计算打折后的价格、计算行走的距离和时间等,都可以让学生将抽象的数学问题与实际场景结合起来,更好地理解和解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学解题方法总结
画图法解决奥数难题
一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。
一次,他们忙碌了大半天,打了一堆鱼。
实在太累了,就坐在河边的柳树下休息,一会儿都睡
着了。
小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。
他把鱼分成三份,
自己拿一份走了。
不一会儿小刚也醒了,要回家。
他也把鱼分成三份,自己拿一份走了。
太
阳快落山了,小强才醒来。
他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。
于是,他又把鱼分成三份,自己拿走一份。
最后还剩下8条鱼。
第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。
小明立即把剩下的8条鱼给小刚3条,小强5条。
你能算出他们原来共打多少条鱼吗?
这个问题直接从文字上分析有一定难度,为了帮助我们理解题意,启发解题思路,可以根据题意,画出下面的线段图。
由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。
那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是[(8÷2×3)÷2×3]÷2条。
所以打的鱼一共是[(8÷2×3)÷2×3]÷2×3=27(条)。
当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。
小明、小刚和小强三个伙伴互相关心,他们每个人无论有什么好事都忘不了另外两个朋
友。
一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分
给你们一些,剩下的便是我的。
”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。
接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。
你来算算,小明这一筐山梨共有多少个呢?
可以按照上次的方法,先画出下面的图。
然后列出算式:
[( 5+l)×2+1]×2
=[6×2+1]×2
=26(个)
答:筐里一共有26个山梨。
你知道为什么可以用画图的方法来解题吗?原来,对于复杂的题目,可以根据题意画一个直观示意图来帮助我们弄清题中的数量关系,也就比较容易列出算式、求出结果。