常用一维搜索算法

合集下载

3.1搜索算法结构

3.1搜索算法结构

23 0.618034 0.618034
-1.1922e-005 2.9804e-006 1.219e-005 2.7093e-005
24 0.618035 0.618035
-1.1922e-005 -2.7117e-006 2.9804e-006 1.219e-005
25 0.618032 0.618032
f(x)
a x0 x1 x* x2 b x
(二)算法
1、选定初始点a 和步长h; 2、计算并比较f(a)和f(a+h);有前进(1)和后退(2)两种情况:
(1) 前进运算:若f(a) ≥f(a+h), 则步长加倍,计算f(a+3h)。若f(a+h) ≤f(a+3h),
令 a1=a, a2=a+3h, 停止运算;否则将步长加倍,并重复上述运算。 (2) 后退运算:若f(a) < f(a+h), 则将步长改为-h。计算f(a-h), 若f(a-h) ≥ f(a),
方法分类:
1、直接法:迭代过程中只需要计算函数值; 2、微分法:迭代过程中还需要计算目标函数的导数;
§3.2 搜索区间的确定
常用的一维直接法有消去法和近似法两类。它们都是从 某个初始搜索区间出发,利用单峰函数的消去性质,逐步缩 小搜索区间,直到满足精度要求为止。
§3.2.1 单峰函数
定义:如果函数f(x)在区间[a,b]上只有一个极值点, 则称f(x)为
(3)对称: x1 – a = b-x2 ;(4)保持缩减比:λ=(保留的区间长度/原
区间长度) 不变。(使每次保留下来的节点, x1或 x2 ,在下一次的比 较中成为一个相应比例位置的节点 )。
(一)黄金分割

第三章 一维搜索法

第三章 一维搜索法
x
0
x1 x2
x3
3-1 确定初始区间的进退法
探测初始空间的进退法步骤: 探测初始空间的进退法步骤 (1)给定初始点 x0 ,初始步长 h ,令 x1 = x0 ,记: f1 = f ( x1 ) 给定初始点 初始步长 令 记 (2)产生新的探测点 x2 = x1 + h ,记 f 2 = f ( x2 ) 产生新的探测点 (3)比较函数值 f1 和 f 2 的大小 确定向前或向后探测的策略 比较函数值 的大小,确定向前或向后探测的策略 则加大步长,令 若: f1 > f 2 则加大步长 令 h = 2h ,转(4)向前探测 转 向前探测 (4)产生新的探测点 x3 = x0 + h ,令 f 3 = f ( x3 ) 产生新的探测点 令 (5)比较函数值 f 2 和 f 3 的大小 比较函数值 则调转方向,令 若: f1 < f 2 则调转方向 令 h = − h ,转(4)向后探测 转 向后探测
3-1 确定初始区间的进退法
f (x ) f ( x1 )
f ( x2 )
f ( x1 ) > f ( x2 ) > f ( x3 )
极小点在右端点的
f (x3 ) (x
x
x3 右侧
0
x1
x2 x3
3-1 确定初始区间的进退法
f (x ) f ( x1 ) f ( x2 )
f ( x3 )
f ( x1 ) < f ( x2 ) < f ( x3 )
h=-h;x2=x0+h;f2=f(x2); ; ; ; End
3-2 黄金分割法
一维搜索试探方法的基本思想: 一维搜索试探方法的基本思想:在确定了搜索区间的 前提下,不断缩小搜索区间, 前提下,不断缩小搜索区间,同时保持搜索区间内函数值 “大-小-大”的走势,直到区间的宽度小于预定的精度。 小 大 的走势,直到区间的宽度小于预定的精度。 黄金分割法基本思想: 黄金分割法基本思想 : 在搜索区间内插入两个黄金分 割点,将区间分成三段。利用函数的单谷性质,通过函数值 割点,将区间分成三段。利用函数的单谷性质, 大小的比较,删去其中一段。 大小的比较,删去其中一段。在保留下来的区间上作同样的 处置,如此往复送代,使搜索区间缩小到精度范围内, 处置,如此往复送代,使搜索区间缩小到精度范围内,得到 极小点的近似解。 极小点的近似解。

3.3 一维搜索方法 (一维优化)

3.3 一维搜索方法 (一维优化)
2 3
并令: h 2h
x3 x 2 h ,求 y3 f ( x3 )
重复上述步骤,直到函数值出现“高-低-高”为止。
4. 若在步骤2中,出现 y1 y 2 (图a虚线),则应作后退运算: 令:h h0 置换:x3 x1 y 3 y1 ; x1 x2 y1 y2 ;x2 x3 y2 y3 再令:h 2h
2 2 2 2 ( x2 x3 ) f1 ( x3 x12 ) f 2 ( x12 x2 ) f 3 b ( x1 x2 )( x2 x3 )( x3 x1 )
教材中,c的表达式缺-号
c
( x3 x2 ) x2 x3 f1 ( x1 x3 ) x1 x3 f 2 ( x2 x1 ) x1 x2 f 3 ( x1 x2 )( x2 x3 )( x3 x1 )
入口
x
(0),ε
X
(1)=x(0)-f/x(0)/f//x(0)
∣f/x(1)∣≤ε 或∣x(1)-x(0)∣≤ε ?
x
(*):=x (1)
x
(0):=x (1)
出口
4 3 2 例: 试用牛顿法求 f ( x) 1 x 2 x 2 x 7 x 8 4 3 值,已知探索区间为[a,b]=[3,4],ε=0.05。
4、牛顿法的特点 优点:收敛速度较快 缺点: 1)计算f’ 、f’’,计算工作量大。 2)用数值微分计算f’ 、f’’时,舍入误差会影响收敛速度。 3)x0与 x不能离太远,否则会发散或收敛于非极小点。 与0.618法比较: 0.618 法:1)收敛慢 2)对函数要求不严格 牛顿法正好相反。
5、牛顿法的框图
x3 x 2 h
3. 若 y 2 y1 ,应作前进运算(图a实线):

第三节一维搜索方法

第三节一维搜索方法

a3 a2 , y3 y2 a2 ap , y2 yp
特点:程序结构简单容易理解可靠性好。但计算 效率偏低,使用于低维优化的一维搜索。
三、二次插值法(抛物线法)
(1)基本思想:在寻求目标函数 f (x ) 极小点的区间 内取三个点的函数值来构造一个二次插值多项式 p(x )用它的极小点近似地作为原目标函数的极小 点。若近似程度不满足精度要求时,可反复使用 此法随着区间的缩短,二次插值多项式的极小点 就逼近原目标函数的极小点一维函数 f (x ) 在搜索 区间[a b] 内为单峰函数,在区间内取三点 x1 x2 x3 且 x1 x2 x3 三点的函数值为 f1 f (x1) f2 f (x2 ) f3 (x3 ) 且 f1 f2 f3 即满足函数值是大—小—大变化。原目
1、基本原理: 通过不断缩短搜索区间的长度来寻求一维函数
f (x ) 的极小点原理。
a
x1 x2
b
a
x1 x2
b
它是一种等比例缩短区间的直接搜索方法。
设目标函数 f (x) 在搜索区间 [a,b] 内 为单峰函数,区间长设为 l
在区间内按如下规则对 称地取两点 x1和 x2
x1 a 0.382(b a) x2 a 0.618(b a)
x b 2a
x*p

1 2
(x22 x32 ) f1 (x32 x12 ) f2 (x12 x22 ) f3 (x2 x3 ) f1 (x3 x1 ) f2 (x1 x2 ) f3
c1

f3 x3
f1 x1
c2

(
f2

f1 ) (x2
x2 x3

《现代机械优化设计》第3章 一维搜索

《现代机械优化设计》第3章 一维搜索

a xp, f (a) f (xp ), f (a) f (xp )
b xp, f (b) f (xp ), f (b) f (xp )
计算 f (x*p ), f (x*p )

f (x*p ) 0 是

f (x*p )
x xp , f f (xp )

结束


K>0

xp-xp0 ≤ε

x*=x2, f*=f2

x*=xp,f*=fp
xp
1 2
f1(x22 x32 ) f2 (x32 x12 ) f3(x12 x22 ) f1(x2 x3) f2 (x3 x1) f3(x1 x2 )
结束
由于区 间缩到很 小时因计 算机舍入 误差引起, 可取中间 点输出。
x3
ⅱ) (xP x1)(x3 xP ) 0
f1
x1
f2
f3
x2 x3
补充 §3-5 格点法
一)基本思路
先将搜索区间分成若干等分,计算出当中的n个等分 点的目标函数值. 再通过比较,找出其中的最小点,则该 点的两个邻近点围成缩短了的新区间。
f
a
xmx1 m xm1 b
x
二)每轮迭代区间的缩短率
ⅰ)A=0
f1(x2 x3 ) f2 (x3 x1) f3 (x1 x2 ) 0
f1[( x2 x1) (x3 x1)] f2 (x3 x1) f3(x1 x2 ) 0
f2 f1 f3 f1 这表明此时三个插值点共线。 x2 x1 x3 x1
f2
f3
f1
x1
x2
a=x3、b=x1
x3=x2+h、y3=f(x3)

《一维搜索方法》课件

《一维搜索方法》课件

02
线性搜索
线性搜索的定义
线性搜索是一种基本的搜索算法,它 从列表的第一个元素开始,逐个检查 每个元素,直到找到目标元素或遍历 完整个列表。
在线性搜索过程中,我们假设列表中 的元素是按顺序排列的,并且我们不 知道目标元素的确切位置,只知道它 存在于列表中。
线性搜索的步骤
初始化
选择一个起始位置,通常为列表的第一个元素。
抛物线搜索的步骤
3. 比较中间元素与目标值
2. 计算当前区间的中间元 素。
1. 初始化当前搜索区间为 整个数组。
01
03 02
抛物线搜索的步骤
01 如果中间元素等于目标值,返回该位置。
02
如果目标值小于中间元素,将左半部分区 间作为新的当前区间。
03
如果目标值大于中间元素,将右半部分区 间作为新的当前区间。
04
4. 重复步骤2和3,直到找到目标值或当前 区间为空。
抛物线搜索的时间复杂度
最坏情况下,抛物线搜索的时间复杂度为O(n),其中n为数 组长度。
平均情况下,由于每次比较都可以将搜索区间缩小一半,因 此时间复杂度为O(log n)。
THANKS
THANK YOU FOR YOUR WATCHING
的单峰函数。
一维搜索方法的重要性
解决实际问题
一维搜索方法广泛应用于各种实 际问题中,如参数优化、函数逼 近、插值等。
算法基础
一维搜索方法是许多算法的基础 ,如梯度下降法、牛顿法等都需 要用到一维搜索方法来寻找迭代 步长。
理论分析
一维搜索方法在数学分析中也有 重要应用,如中值定理、单调函 数性质等都需要用到一维搜索方 法。
常用的一维搜索方法
线性搜索

常用的一维搜索方法

常用的一维搜索方法

称为搜索方向;
k 称为步长或步长因子。
图1
线搜索迭代法的步骤
0 x (1) 选定某一初始点 ,并令 k : 0;
(2) 确定搜索方向 d
k
k
;
k
(3) 从 x 出发,沿方向 d x k 1; (4) 检查得到的新点
求步长 λ
k
,以产生下一个迭代点
x
k 1
是否为极小点或近似极小点。
若是,则停止迭代。 否则,令 k :k1,转回(2)继续进行迭代。 在以上步骤中,选取搜索方向是最关键的一步。 各种算法的区分,主要在于搜索方向 d
最优解
从当前点出发,按照某 种规则找下一个迭代点 注:迭代格式 不同,对应着 不同的算法
找下一个迭代点
迭代法的分类
可 行 算 法 : 所 有 迭 代 点 都 是 可 行 点 据 迭 代 点 初始点不好找 的 可 行 性 不 可 行 算 法 : 至 少 有 一 个 迭 代 点 不 是 可 行 点 初始点任意选取
k k k Tk kk
T k T k g d g k 1 k d,
其中
(, 1 ) ,0 1 .
常用的一维搜索方法
我们主要介绍下面几种方法





“成功—失败”法 0.618法(黄金分割法) 二分法 牛顿法(Newton)和插值法 Armiji-Goldstein 准则 Wolfe-Powell 准则
注意: 1. h 选择要适当.(太大含多个单峰区间,太小迭代次数多); 2. f (x)单调时无结果, (加迭代次数限制);
“成功—失败”法----算例
3 例 :利用“成功-失败”法求函数 f( x )x 2 x 1 的搜索区间, 1 取初始点 x 1 ,步长 h . 2 21 1 h , 解:取初始点 x ,步长 2 2 1 1 5 11 f (x ) f ( ) , f ( x h ) f ( ) f ( 0 ) 1 , 2 8 22 搜 索 成 功 , 步 长 加 倍 ; 因 为 f () x f ( x h ) , 1 1 计 算 f ( x h + 2 h ) f ( x 3 h ) f ( 3 ) f ( 1 ) 0 , 2 2 搜 索 成 功 , 步 长 加 倍 ; 因 为 fxh ( ) fx ( 3 h ) , 1 1 计 算 f ( x 3 h + 4 h ) f ( x 7 h ) f ( 7 ) f ( 3 ) 2 2 , 2 2 搜 索 失 败 , 停 止 迭 代 ; 因 为 fx ( 3 h ) fx ( 7 h ) ,

04工程优化 第3章-2常用一维搜索牛顿法

04工程优化 第3章-2常用一维搜索牛顿法

解: f '( x) 4 x3 12 x 2 12 x 16, f ''( x) 12 x 2 24 x 12,
f '( x0 ) f '(6) 89 x1 x0 6 6 4.75 f ''( x0 ) f ''(6) 69
f '( x1 ) f '(4.75) 84.94 102 , 继续迭代; f '( x1 ) x2 x1 f ''( x1 ) f '(4.75) 84.94 4.75 =4.75 =4.163 f ''(4.75) 144.75 f '( x2 ) f '(4.163) 14.666 102 , 继续迭代;
3.若 x2 x ,则迭代结束,取 x* x ,否则在点
x1 , x2 , x3 , x 中,选取使f (x) 最小的点作为新的x2,并使新的
x 1 , x3各是新的x2近旁的左右两点,继续进行迭代,直到满 足终止准则。

用二次插值法求函数f(x)=3x3-4x+2的极小点, 给定 x0=0, h=1, ε=0.2。
应继续迭代。
(2) 在新区间,相邻三点及其函数值: x1=0, x2=0.555, x3=1;
根据公式计算差值多项式的极小点 f1=2, f2=0.292, f3=1.
1 c1 x a1 / 2a2 ( x1 x3 ), f1 f 2 2 c2 c1 f1 f 3 x1 x2 c1 , c2 x1 x3 x2 x3
Newton法----算例
f '( x2 ) x3 x2 f ''( x2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。

这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。

(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。

间接法:又称解析法,是应用数学极值理论的解析方法。

首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。


在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。

根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。

一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。

一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。

由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。

在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k
设Φ(a)=f(x k+ad k)
这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。

其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。

一维搜索通常分为精确的和不精确的两类。

如果求得a k使目标函数沿方向d k达到
极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0)
则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子;
如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用
户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维
搜索。

由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的
一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量较少的不精确一维搜索方法受到了广泛的重视和欢迎。

精确一维搜索,作为一种理想的状态,虽然在实际计算中被采用的概率较之不精确一维搜索要小,但有关精确一维搜索技术的研究历史悠久成果相当丰富,方法众多,其理论体系也相对比较完备,对其进行进一步的研究仍有着重要的理论意义和现实意义。

通常我们根据算法中有无使用导数的情况,将精确一维搜索算法分为两大类:一类是不用函数导数的方法,这其中就包括二分法(又称作对分法或中点法)、0.618法(黄金分割脚、Fibonacci法(分数法)、割线法、成功一失败法等;另一类是使用函数导数的方法,包括经典的Newton法、抛物线法以及各种插值类方法等。

(1)在不用导数的方法中,二分法、0.618法(黄金分割法)以及Fibonacci法均是分割方法,其基本思想就是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短,当区间长度缩短到一定程度时,区间上各点的函数值均接近函数的极小值,从而各点均可看作极小点的近似。

分割类方法仅需计算函数值,因此使用的范围较广,尤其适用于非光滑及导数表达式复杂或写不出等情形。

二分法是一种最简单的分割方法,每次迭代都将搜索区间缩短一半,故二分法的收敛速度是线性的,收敛比为0.5,收敛速度较慢。

其优势就是每一步迭代的计算量都相对较小,程序简单,而且总能收敛到一个局部极小点。

黄金分割法是一种针对目标函数是单峰函数亦即目标函数为凸的情形的分割类方法,因其不要求函数可微,且每次迭代只需计算一个函数值,程序简单容易实现而被广泛采用。

由于黄金分割法是以等比例τ=0.618分割缩小区间的,因此它是一种近似最优方法。

针对在实际中遇到的目标函数往往不是单峰函数的情况,HPonfiger(1976)提出了.0618法的改进形式,即在缩小区间时,不只是比较两个内点处的函数值,而是对两内点及其两端点处的函数值进行综合比较,以避免搜索得到的函数值反而比初始区间端点处的函数值大的情况。

经过这样的修改,算法比.0618法要更加可靠。

Fibonacci法是另一种与.0618法相类似的分割类方法,两者的主要区别在于Fibonacci法搜索区间的缩短比率不是采用黄金分割数τ,而是采用Fibonacci数列。

在使用Fibonacci法时,通常是由用户给定最终区间长度的上限,从而确定探索点的个数,逐步进行搜索。

通过对Fibonacci数列进行分析表明,在迭代次数n趋于无穷的情形。

Fibonacci法与.0618法的区间缩短率相同,因而Fibonacci法的收敛速度也是线性的,收敛比也是黄金分割数τ。

可以证明,Fibonacci法是分割方法求解一维极小化问题的最优策略,而0.618法只是近似最优的,但因0.618法不必预先知道探索点的个数,程序实现更加容易,因而应用也更加广泛。

抛物线法也可称作三点二次插值法,其基本思想与下面要叙述的牛顿法相同,也是用二次函数
近似目标函数,并以其极小点去近似目标函数的极小点,不同之处是牛顿法是利用目标函数fx()在x0处的二阶Tyalor展式来逼近f(x),而抛物线法则是利用目标函数fx()在三个点x0,xl,xZ处的函数值构造一个二次函数作为其近似。

一般地,抛物线法并不能保证算法一定收敛,在迭代过程中有可能会出现相邻迭代点x k,x k+1充分接近且x k+1并非函数近似极小点的退化情况。

但在己知迭代点列收敛到目标函数极小点的情况,可以证明:在一定的条件下,抛物线法是超线性收敛的,收敛的阶约为1.3。

割线法与分割法类似,也是通过取试探点和进行函数值比较,使包含所求点的搜索区间缩小,但试探点的取法与分割法不同,它是选取连接两个端点的线段与横轴的交点作为试探点。

割线法不能保证每次都使搜索区间缩小一定的比例,因而不具有全局线性收敛性,但是它却利用了函数的一些性质。

在函数接近线性时,它是非常快的。

如果函数本身是线性函数时,它可以一步找到解。

(ii)一般地,使用导数的方法通常包括牛顿法、插值法等,其中插值法又有一点二次插值法(牛顿法)、二点二次插值法)、三点二次插值法以及三次插值法、有理插植法等常用方法。

求一维无约束极小化问题的牛顿法是从计算方法中方程求根的牛顿法演化而来的,其基本思想是用目标函数f (x)在己知点x0处的二阶Tylor展式g (x)来近似代替目标函数,用g (x)的极小点作为f (x)的近似极小点,迭代公式是
x k+1=x k=f′(x k) f′′(x k)
牛顿法的优点是收敛速度快,具有局部二阶收敛速度;缺点是要在每个迭代点处计算函数的二阶导数值,增加了每次迭代的工作量,而且它要求迭代初始点要选的好,也就是说初始点不能离极小值太远,在极小点未知的情况下,做到这一点是很困难的,这就限制了算法的应用范围,导致算法不实用。

事实上,牛顿法也是插值类方法的一种。

插值法是一类重要的一维搜索方法,其基本思想是在搜索区间内不断用低次(通常不超过三次)多项式来逼近目标函数,并用插值多项式的极小点去近似目标函数的极小点。

实践表明,在目标函数具有较好的解析性质时,插值方法比直接方法(如.0618或Fibonacci法)效果更好。

所谓不精确一维搜索方法是指应用各种可接受的步长选择律的线性搜索方法。

常用的不精确一维搜索算法包括利用简单准则的后退方法、经典的Armijo-Goldstein方法、Wolfe-Powell方法和强Wolfe-Powell方法、以及其后发展起来的利用Curry-Altman步长律、改进的Curry-Altman步长律、Danilin-Pshenichuyi步长律、De Leone-Grippo步长律、Backtracking步长律等的各种方法
(P19-24)
坐标轮换法:可靠性较高,算法效率太低,操作方便,一般只用于低维问题,n<10 鲍威尔法:可靠性高,算法效率较高,操作较复杂,一般适用于n<10~20的问题
梯度法:可靠性较高,算法效率低,操作方便用于低维、低精度的问题。

牛顿法:可靠性低,算法效率高,操作不方便,很少用。

变尺度法:可靠性高(BFGS比DFP更高),算法效率高,使用较复杂,适用于高维问题。

相关文档
最新文档