微积分与数学建模
数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。
微分是求函数的导数,用于描述函数的变化率和曲线的切线。
而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。
在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。
例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。
在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。
二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。
在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。
例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。
在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。
三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。
在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。
例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。
在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。
四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。
在数学建模中,数学优化可以用来对问题进行建模和求解。
例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。
五、微分方程微分方程是研究未知函数及其导数之间关系的方程。
在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。
我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。
六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。
微积分方法建模1飞机的降落曲线--数学建模案例分析

第二章 微积分方法建模现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型。
当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型。
建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了。
§1 飞机的降落曲线根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图)。
在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度)。
已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值。
一、 确定飞机降落曲线的方程设飞机的降落曲线为d cx bx ax y +++=23由题设有 h x y y ==)(,0)0(0。
由于曲线是光滑的,所以y(x)还要满足0)(,0)0(0='='x y y 。
将上述的四个条件代入y 的 表达式⎪⎪⎩⎪⎪⎨⎧=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y hd cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x ha飞机的降落曲线为 )32(23020x x x x h y --= 二、 找出最佳着陆点飞机的垂直速度是y 关于时间t 的导数,故dt dx x x x x h dt dy )66(2020--= 其中dtdx 是飞机的水平速度,,u dt dx = 因此 )(60220x x x x hu dt dy --= 垂直加速度为)12(6)12(6020202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2026)(max x hu x a = []0,0x x ∈设计要求 106202g x hu ≤,所以gh u x 600⋅≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足:)(117378.9100060360010005400m x =⨯⨯≥ 即飞机所需的降落距离不得小于11737米。
数学建模思想融入微积分

目录
数学建模概述 微积分基础知识 数学建模在微积分中的应用 案例分析 数学建模思想在微积分教学中的实践与思考
01
数学建模概述
数学建模的定义
数学建模:运用数学语言、符号、公式和理论对现实问题进行抽象和简化,以解决实际问题的方法和过程。
数学建模是一种跨学科的综合性技术,涉及数学、计算机科学、工程学等多个领域。
详细描述
无穷小和极限在建模中有着广泛的应用。例如,在物理学中,瞬时速度可以看作是平均速度的极限,而瞬时加速度则可以看作是平均加速度的无穷小变化量。在经济学中,无穷小和极限的概念也常用于描述经济变量的变化趋势和规律。
总结词
无穷小与极限在建模中的应用案例
05
数学建模思想在微积分教学中的实践与思考
强调概念背景
对实际问题进行深入分析,明确问题的背景、条件和目标。
问题分析
根据问题分析的结果,选择适当的数学方法和工具,建立数学模型。
建立模型
运用数学方法和计算机技术,求解建立的数学模型。
求解模型
对求解结果进行评估,并根据实际情况对模型进行优化和改进。
模型评估与优化
数学建模的基本步骤
02
微积分基础知识
03
导数与微分的应用
定积分与不定积分
定积分是积分的一种特殊形式,用于计算具体几何量或物理量;不定积分则用于求函数的原函数或反导数。
积分的应用
积分在解决实际问题中有着广泛的应用,如计算旋转体的体积、曲线的长度等。
积分
级数概念
级数是无穷多个数的和,可以用来表示连续变化的过程或现象。
无穷小的概念
无穷小是数学中的一个重要概念,用于描述函数在某点附近的变化趋势。
数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。
它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。
在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。
一、概率与统计概率与统计是数学建模的基础。
概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。
在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。
1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。
离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。
在选择概率模型时,需要根据实际问题的特点进行合理选择。
1.2 统计方法统计方法用于从观测数据中推断总体的特征。
在数学建模中,经常需要根据样本数据对总体参数进行估计。
常用的统计方法包括点估计和区间估计。
点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。
另外,假设检验和方差分析也是数学建模中常用的统计方法。
二、线性代数线性代数是数学建模的重要工具之一。
它研究线性方程组的解法、向量空间与线性变换等概念。
在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。
线性代数还广泛应用于图论、网络分析等领域。
2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。
求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。
2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。
建模赛和数学竞赛中与微积分相关题目

建模赛和数学竞赛中与微积分相关题目在建模赛和数学竞赛中,微积分是一个重要的题目类型。
微积分作为数学的一个重要分支,对于解决实际问题具有重要的作用。
在建模赛和数学竞赛中,与微积分相关的题目往往涉及到函数的极值、曲线的面积、体积以及微分方程等知识点。
本文将结合建模赛和数学竞赛中常见的题目类型,介绍与微积分相关的题目,并对如何高效地解决这些题目进行讨论。
一、函数的极值在建模赛和数学竞赛中,函数的极值是一个常见的题目类型。
通常会给出一个函数,要求求出其极大值或者极小值。
解决这类题目时,需要使用微积分的极值定理,即对函数求导并令导数等于零,解出导数为零的点,再通过二阶导数判断极值的类型。
对于函数f(x)=x^2-2x+1,求其极小值,首先对函数求导得到f'(x)=2x-2,令f'(x)=0,解出x=1,再求出f''(x)=2,由f''(1)>0可知x=1处是函数f(x)的极小值点,极小值为f(1)=0。
二、曲线的面积另一个与微积分相关的常见题目类型是曲线的面积。
这类题目通常要求计算曲线与坐标轴所围成的区域的面积。
解决这类题目时,需要使用定积分的概念,即将曲线分成无穷小的小矩形,然后对这些小矩形的面积进行累加。
对于函数f(x)=x^2,要求计算其在区间[0,1]上与x轴所围成的面积,可以使用定积分进行计算,即∫[0,1] x^2 dx = 1/3。
三、曲线的体积除了曲线的面积,曲线的体积也是一个常见的题目类型。
这类题目通常要求计算曲线绕坐标轴旋转一周所形成的立体的体积。
解决这类题目时,需要使用定积分的概念,即将旋转后的曲线分成无穷小的小圆柱体,然后对这些小圆柱体的体积进行累加。
对于函数f(x)=x^2,要求计算其在区间[0,1]上绕x轴旋转一周所形成的立体的体积,可以使用定积分进行计算,即π∫[0,1] (x^2)^2 dx = π/5。
四、微分方程微分方程也是建模赛和数学竞赛中与微积分相关的题目类型之一。
数学建模(微积分)三

2 L R ( x1 x2 ) 15 14 x1 32 x2 8x1 x2 2 x12 10 x2 ( x1 x2 ) 2 15 13x1 31x2 8 x1 x2 2 x12 10 x2
L 4 x1 8 x2 13 x1 L 8 x1 20 x2 31 x2
2 2 x12 10 x2 ( x1 x2 1.5)
dL dx 4 x1 8 x2 13 0 1 dL 8 x1 20x2 31 0 dx2 dL x x 1.5 0 1 2 d
L Lmax
数学建模讲座
(2)若提供的广告费用为1.5万元,则问题化为在条件
x1 x2 1.5 下求利润函数 L 的极大值.
2 L 15 13x1 31x2 8x1x2 2x12 10x2 构造拉格朗日函数
L( x1 , x2 , ) 15 13x1 31x2 8x1 x2
x1 0 x2 1.5
L Lmax
宁波职业技术学院数学教研室
数学建模讲座
可口可乐罐头为什么是这种样子?
竞赛题目 论文一 论文二
宁波职业技术学院数学教研室
数学建模讲座
药物在体内的分布与排除
• 药物进入机体形成血药浓度(单位体积血液的药物量) • 血药浓度需保持在一定范围内——给药方案设计 • 药物在体内吸收、分布和排除过程 ——药物动力学 • 建立房室模型——药物动力学的基本步骤 • 房室——机体的一部分,药物在一个房室内均匀 分布(血药浓度为常数),在房室间按一定规律转移 • 本节讨论二室模型——中心室(心、肺、肾等)和 周边室(四肢、肌肉等)
问题分析
数学建模(微积分)二

,不难求得 (4)
2c1 r c2
T
2c1 rc 2
再根据(1)有,
Q
(5)
宁波职业技术学院数学教研室
数学建模讲座
Q
2c1 r c2
(5)
这就是经济理论中著名的经济订货批量公式(EOQ公式) 货物本身的价格可不考虑,这是因为若记每吨货 的价格为k,则一周期的总费用 C 中应添加kQ,由于
Q rT
(1)
订货后贮存量由Q均匀地下降,记任意时刻t的贮 存量为q,则q(t)的变化规律可以用图1表示
宁波职业技术学院数学教研室
数学建模讲座 q
Q A r T 图1 t
0
考察一个订货周期的总费用:订货费为c1;贮存费是
c2 q(t )dt 其中积分恰等于图中三角形的面积为A,显然
0 T
1 A QT 2
实例十一、森林救火数学模型
宁波职业技术学院数学教研室
数学建模讲座
贮存模型 背景 不允许缺货的贮存数学模型 知识 工厂要定期地订购各种原料,在仓库里供生产
之用。商店要成批地购进各种商品,放在货柜中以 备零售。水库在雨季蓄水,用于旱季的灌溉和航运。 无论是原料、商品还是水的贮存,都有贮存多少的 问题。原料、商品贮存得太多,贮存费用高;贮存 得太少,则无法满足需求。水库雨季蓄水过量,更 可能危及安全。当影响贮存量的因素包含随机性时, 如顾客对商品的需求,天气对蓄水的影响,需要建 立贮存模型。
Q rT 所以公式(3)中增加一常数项kr,对求解结果
式(4)、(5)没有影响。 (5)式表明,订货费c1越高,需求量越大,订货批量 Q应越大;贮存费c2越高,订货批量Q应越小,这些关系 当然是符合常识的,不过公式在定量上表明的平方关系 却是凭常识方法得到的
高等数学模型—微积分模型(数学建模课件)

2、假设易拉罐是一个正圆柱体,什么是它的最优设计?其结果是
否可以合理地说明你们所测量地易拉罐地形状和尺寸。
二、数据测量
罐直径、罐高、罐壁厚、顶盖厚、圆台高、
顶盖直径、圆柱体高、罐底厚、罐内体积等。
该如何测量?
二、数据测量
1、直接测量
①用软皮尺环绕易拉罐相关部位一圈
(罐桶直径、罐
测得周长。
高、圆台高、顶
速度、出手角度和出手高度)
作定性和定量研究并得到明
确结论。
森林救火问题
微积分模型
知识点
一、问题的提出
二、模型分析与假设
三、模型建立与求解
四、模型应用
一、问题的提出
一、问题的提出
森林失火了!消防站接到火警后,立即决定派消防队员前去救火。队
员多,火被扑灭的快,森林损失小,但救援费用大;队员少,救援费用小,
118.0 123.5 136.5 142.0 146.0 150.0 157.0 158.0];
y1=[44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68];
y2=[44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86
四、模型建立与求解
一、问题的提出
运动员单手托住铅球,在投掷圆内将铅球掷出并使铅
球落入有效区内,以铅球投掷的远度评定运动员的成绩。
问题:
建模分析如何使铅球投掷的最远?
二、问题分析
• 铅球投掷中,影响投掷距离的因素有哪些?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模实例
(五)模型优缺点分析及其改进
可以考虑对我们的模型进行进一步的改进。我们可以考
察到A类中C的含量普遍高于B类中C的含量,而B类中T的含
量又高于A类中T的含量。如果我们修改归类条件,把距离的 远近作一标准,将C,T的特别限制条件也作为一个标准,要 求A类中C高于一定标准且T应低于一定标准,B类中C低于一 定标准且T高于一定标准,这样对我们的模型进一步的改进,
下面我们通过几个简单的实例,展
示《微积分》在数学建模中的应用,以 此来启发同学们运用《微积分》知识分 析、解决实际问题,培养自己的创造性 思维和应用数学的能力 。
极值在数学建模中的应用 内容回顾
简单例题 建模实例
内容回顾
我们在学习导数应用时,知道求极值是一个很重要的应用。 设 y f ( x)在 x0 处导数存在,且 f ' ( x) 0,则 x x0 称为 y f ( x)
究DNA序列的规律性和结构。
建模实例
作为研究DNA序列的结构的尝试,提出以下对序列集合 进行分类的问题:有40个序列(见附件),请从中提取特 征,构造分类方法进行分类,把结果用序列标号(按从小 到大的顺序)标明它们的类别: A类: ; B类: ; 非A、B类: 。 请详细描述你的方法,给出计算程序。如果你部分地使 用了现成的分类方法也要将方法名称准确注明。
数知识来进行分类。
建模实例
建模实例
建模实例
(四)模型的求解
建模实例
建模实例
建模实例
建模实例
建模实例
பைடு நூலகம்
建模实例
(五)模型优缺点分析及其改进
用上述前20组已分好的数据对我们建立的模型结果进
行检验发现只有第4组出错,正确率达到95%,说明我们的模
型简单易行,能达到对数据进行分类的目的。但它仅仅利用
的驻点。 又若 f " ( x0 ) 存在,且 f ' ( x) 0, f "' ( x) 0 ,则有下列结论:
若 f ( x0 ) 0 ,则 f ( x0 ) 为极大值。 若 f ( x0 ) 0 ,则 f ( x0 )为极小值。
内容回顾
但在实际问题中,上述简单的极值问题很少能出现,而是 有某些条件的限制,这就需要利用求条件极值的方法--Lagrange算法来解决。
建模实例
(三)模型的建立
在数理统计中,将A类或B类这样的群体称为统计总体, 把描述总体的每一个体特征的所有变量均视为随机变量。
如果不同总体中诸变量所遵循的分布有明显的差异时,则
可将此差异作为分类依据,这就是多元统计分析处理问题 的一般想法。区分一个DNA序列属于A类还是B类的问题属
于两总体间的判别问题,这里我们利用微积分中的向量代
(2)所加洗涤剂足以将衣物洗净;
(3)每次脱水后,留在衣物中的溶液的量是一定的; (4)每次添加水量必须在一定的范围内; (5)不考虑水温以及水的水质对溶解度的影响; (6)当漂洗后溶液浓度小于等于一个小量时就已经达 到洗涤标准。
建模实例
(三)模型的建立和求解
建模实例
建模实例
建模实例
建模实例
分析建模
建模实例
节水洗衣机模型
(一)问题的提出
我国淡水资源有限,节约用水颇为重要。洗衣
机在我国已相当普及,为节约洗衣机用水,要求设
计一洗衣机程序,在满足一定洗涤效果的前提下,
使得总用水量最少。 已知洗涤过程为:首先加入衣物和洗涤剂,然 后重复加水——漂洗——脱水过程。
建模实例
(二)模型假设
(1)洗涤剂一次加满,漂洗过程中不再添加;
内容回顾
b
简单例题
磁盘的最大存储量 微型计算机把数据存储在磁盘上。磁盘是带有磁性介质的 圆盘,并由操作系统将其格式化成磁道和扇区。磁道是指不同 半径所构成的同心圆轨道,扇区是指被圆心角分隔成的扇形区 域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否 记录数据0和1。这个基本单元通常称为比特(bit),为了保障 磁盘的分辨率,磁道宽度必须大于t,每比特所占用的磁道长度 不得小于 b ,为了数据检索的便利,磁盘格式化时要求所有 磁道有相同的比特数。现有一张半径为R的磁盘,它的存储区是 半径介于r与R之间的环形区域,试确定,使磁盘具有最大存储 量.
前 言
•
• • • •
1*1=1 11*11=121 111*111=12321 1111*1111=1234321 11111*11111=123454321 111111*111111=12345654321
前 言
• • • • • 1*8+1=9 12*8+2=98 123*8+3=987 1234*8+4=9876 12345*8+5=98765
微积分与数学建模
滕加俊
目 录 前言 极值在数学建模中的应用 向量代数在数学建模中的应用
前 言
《微积分》是一门经典的基础
理论课,也是大学理工科专业
必修的重要基础理论课。它不 仅内容多,结构严谨,而且应
用广泛。
前 言
• • • • • 1*9+2=11 12*9+3=111 123*9+4=1111 1234*9+5=11111 12345*9+6=111111
建模实例
(二)问题的分析
由问题的提出我们可以知道,这是一个聚类分析问题。 附件给出了10组属于A类的DNA序列,10组属于B类的
DNA序列,以及20组有待进行分类的DNA序列。解决这个
问题的关键在于准确描述A类和B类DNA序列的特征。利用 A类,B类DNA序列的特征,对20组未知序列进行判断就可 以得到结果。
建模实例
建模实例
建模实例
建模实例
(四)模型的结论
向量代数在数学建模中的应用
内容回顾
简单例题
简单例题
简单例题
简单例题
建模实例
(一)问题的提出
DNA序列的分类
2000年6月,人类基因组计划中将DNA全序列草图完成,预计2001年可 以完成精确的全序列图,此后人类将拥有一本记录自身生老病死及遗传进化 的全部信息的“天书”。这本大自然写成的“天书”是由4个字符A、T、C、 G按一定顺序排成的长约30亿的序列,其中没有“断句”也没有标点符号, 除了这4个字符表示4种碱基以外,人们对它包含的“内容”知之甚少,难以 读懂。破译这部世界上最巨量信息的“天书”是二十一世纪最重要的任务之 一。在这个目标中,研究DNA全序列具有什么结构,由这4种字符排成的看似 随机的序列中隐藏着什么规律,又是解读这部天书的基础,是生物信息学 (Bioinformatics)最重要的课题之一。
建模实例
虽然人类对这部“天书”知之甚少,但也发现了DNA序列中的一些规
律性和结构。例如,在全序列中有一些是用于编码蛋白质的序列片段,即 由4个字符组成的64种不同的3字符串,其中大多数用于编码构成蛋白质的
20种氨基酸。又例如,在不用于编码蛋白质的序列片段中,A和T的含量
特别多些,于是以某些碱基特别丰富作为特征去研究DNA序列的结构也 取得了一些成果。此外,利用统计的方法还发现序列的某些片段之间具有 相关性,等等。这些发现让人们相信,DNA序列中存在着局部的和全局 的结构,充分发掘序列的结构对理解DNA全序列是十分有意义的。目前 在这项研究中最普遍的思想是省略序列的某些细节,突出特征,然后将其 表示成适当的数学对象。这种被称为粗粒化和模型化的方法往往有助于研
分类结果也许会更好些。当然还可以利用其它的归类标准,
请读者自己考虑。
建模实例
(六)附件-DNA序列