高一数学必修一函数经典题型复习
表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

3.1.2 表示函数的方法课程标准学习目标(1)在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数, 理解函数图象的作用。
(1)会求函数的解析式; (难点)(2)列表法表示函数(3)图象法表示函数。
知识点01 解析法把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式(也叫作函数表达式或函数关系式),解析法就是用解析式来表示函数的方法。
比如正方形周长C 与边长a 间的解析式为C =4a ,圆的面积S 与半径r 的解析式S =πr 2等.求函数解析式的方法① 配凑法 ② 待定系数法③ 换元法④ 构造方程组法 ⑤ 代入法【即学即练1】已知函数f (x )=1x ,则f (x +1)=( )A .f (x +1)=1x+1B .f (x +1)=1x―1C .f (x +1)=2x―1D .f (x +1)=2x+1知识点02 列表法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数时,想了解其图像是一直线,第一步就是列表,其实就是用表格法表示一次函数.【即学即练2】函数f(x)与g(x)的对应关系如下表.x―101x123f(x)132g(x)0―11则g(f(―1))的值为()A.0B.3C.1D.―1知识点03 图象法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.【即学即练3】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数.【题型一:解析法表示函数】例1.若函数y=f(x)对任意x∈R,均有f(x+y)=f(x)+f(y),则下列函数可以为y=f(x)解析式的是()A.f(x)=x+1B.f(x)=2x―1C.f(x)=2x D.f(x)=x2+x变式1-1.一个等腰三角形的周长为20,底边长y是一腰长x的函数,则()A.y=10―x(0<x≤10)B.y=10―x(0<x<10)C.y=20―2x(5≤x≤10)D.y=20―2x(5<x<10)变式1-2.下列函数中,对任意x,不满足2f(x)=f(2x)的是()A.f(x)=|x|B.f(x)=―2xC.f(x)=x―|x|D.f(x)=x―1变式1-3.定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(4)=8,则f()A B.2C.4D.6变式1-4.若函数f(x)满足f(a+b)=f(a)+f(b)1―f(a)f(b),且f(2)=12,f(3)=13,则f(7)=A.1B.3C.43D.83【方法技巧与总结】理解函数解析式y=f(x),仅是用一系列运算符号连接起来得到的式子,它对定义域内任何一个值都是成立的;比如①函数f(x)=x2(x>0),可取任何大于0的值进行赋值;②若函数f(x)满足f(xy)=f(x)+f(y),则x ,y 取任何实数均可使得等式成立.【题型二:求函数的解析式】方法1 待定系数法例2.若二次函数f(x)满足f(x +1)―f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=―x 2―x ―1B .f(x)=―x 2+x ―1C .f(x)=x 2―x ―1D .f(x)=x 2―x +1变式2-1.已知f(x)是一次函数,且2f(2)―3f(1)=5,2f(0)―f(―1)=3,则f(x)=( )A .3x ―2B .3x +2C .92x ―12D .4x ―1变式2-2.已知函数f(x)是一次函数,且f[f(x)―2x]=3,则f(5)=( )A .11B .9C .7D .5变式2-3.已知二次函数f (x )满足f(2)=―1,f(1―x)=f(x),且f (x )的最大值是8,则此二次函数的解析式为f(x)=( )A .―4x 2+4x +7B .4x 2+4x +7C .―4x 2―4x +7D .―4x 2+4x ―7方法2 换元法例3.已知函数f 2)=x ―,则f(x)的解析式为( )A .f(x)=x 2+1(x ≥0)B .f(x)=x 2+1(x ≥―2)C .f(x)=x 2(x ≥0)D .f(x)=x 2(x ≥―2)变式3-1.已知函数f(1―x)=1―x2x2(x≠0),则f(x)=()A.1(x―1)2―1(x≠0)B.1(x―1)2―1(x≠1)C.4(x―1)2―1(x≠0)D.4(x―1)2―1(x≠1)变式3-2.设函数f1+=2x+1,则f(x)的表达式为()A.1+x1―x (x≠1)B.1+xx―1(x≠1)C.1―x1+x (x≠―1)D.2xx+1(x≠―1)变式3-3.已知f1)=x+3,则f(x)=()A.x2―2x+2(x≥0)B.x2―2x+4(x≥1)C.x2―2x+4(x≥0)D.x2―2x+2(x≥1)方法3 方程组法例4.已知定义在(0,+∞)上的函数f(x)满足f(x)=―15x,则f(2)的值为()A.152B.154C.174D.172变式4-1.若函数f(x),g(x)满足f(x)―=3x―4x,且f(x)+g(x)=2x+6,则f(2)+g(―1)=()A.6B.7C.8D.9变式4-2.已知函数f(x)满足f(x)+2f(2―x)=1x―1,则f(3)的值为()A.―73B.―109C.―415D.―16变式4-3.已知定义在R上的函数f(x),满足f(x)+2f(―x)=2x+12.(1)求f(x)的解析式;(2)若点P(a,b)在y=f(x)图像上自由运动,求4a+2b的最小值.【方法技巧与总结】求函数解析式,可视情况而定,1 若已知函数类型,可用待定系数法;2 若求f(g(x))型函数解析式,可用换元法,此时要注意新自变量的取值范围;3 若求满足某函数方程的函数解析式,则用方程组的方法.【题型三:列表法表示函数】例5.设已知函数f(x),g(x)如下表所示:x12345f(x)54321g(x)43215则不等式f(g(x))>g(f(x))的解集为()A.{1,3}B.{5,3}C.{2,3,4}D.{5}变式5-1.已知函数f(x),g(x)分别由下表给出:则f[g(2)]的值是()x123f(x)131g(x)321A.1B.2C.3D.1和2变式5-2.观察下表:x―3―2―1123f(x)51―1―335g(x)1423―2―4则f[f(―1)―g(3)]=()A.―4B.―3C.3D.5变式5-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格或是其它形式.已知函数f(x)由下表给出,则f10f)x x≤11<x<2x≥2y123A.0B.1C.2D.3【方法技巧与总结】表格法表示函数,要注意看清楚变量数值之间的对应关系.【题型四:图象法表示函数】例6.如图所示的4个图象中,与所给3个事件最吻合的顺序为()①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③变式6-1.小明骑车上学,开始时匀速行驶,中途因车流量大而减速行驶,后为了赶时间加速行驶,与以上事件吻合得最好的图象是()A.B.C.D.变式6-2.俗话说,“一分耕耘,一分收获”.那么,在实际生活中,如果把收获看成付出的函数,它们之间的关系可以怎样描述呢?情境甲:当以匀速的方式驾驶汽车时,行驶的里程与所用的时间之间的关系;情境乙:家长过分宠爱孩子,有时还有可能付出增加会导致收获减少;情境丙:在我们学习新的知识时,可能一开始效率会比较高,单位时间的付出得到的收获会比较大,但随着付出的时间越来越多,单位时间的付出得到的收获会变少.请问依次与下面三个图象所表示的收获与付出的关系相对应的情境正确的一项是()A.甲、乙、丙B.丙、甲、乙C.甲、丙、乙D.乙、丙、甲变式6-3.已知完成某项任务的时间t与参加完成此项任务的人数x之间满足关系式t=ax+bx(a∈R,b∈R),当x=2时,t=100;当x=4时,t=53,且参加此项任务的人数不能超过8.(1)写出t关于x的解析式;(2)用列表法表示此函数;(3)画出此函数的图象.【方法技巧与总结】图象法表示函数,达到“一目了然”的效果,对于函数图象还注意函数的定义域,函数图象的上升下降趋势,增减趋势的缓急等等!一、单选题1.已知定义在[―2,2]上的函数y=f(x)表示为:x[―2,0)0(0,2]y10―2设f(1)=m,f(x)的值域为M,则()A.m=1,M={―2,0,1}B.m=―2,M={―2,0,1}C.m=1,M={y|―2≤y≤1}D.m=1,M={y|―2≤y≤1}2.函数y=g(x)的对应关系如下表所示,函数y=f(x)的图象是如图所示的曲线ABC,则g(f(3)―1)的值为()x123g(x)20230―2023A.2023B.0C.―1D.―20233.设f(x)=xx2+1,则( )A.f(x)B.―f(x)C.1f(x)D.―1f(x)4.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(A→B→O→A),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()A.B.C.D.5.已知函数f(x)=x3+ax2+bx+c,且0<f(―1)=f(―2)=f(―3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>96.已知f+1)=x+3,则f(x)的解析式为f(x)=()A.x2―2x+4B.x2+3C.x2―2x+4(x≥1)D.x2+3(x≥1)7.函数f(x)满足2f(x)―f(1―x)=x,则函数f(x)=()A.x―2B.x+13C.x―13D.―x+28.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表一市场供给量单价(元/kg)2 2.4 2.8 3.2 3.64供给量(1000kg)506070758090表一市场需求量单价(元/kg)4 3.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、多选题9.某工厂8年来某产品产量y与时间t的函数关系如图,则以下说法中正确的是()A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变10.下列说法正确的是()A.函数f(x+1)的定义域为[―2,2),则函数f(x)的定义域为[―1,3)B.f(x)=x2x和g(x)=x表示同一个函数C.函数y=1x2+3的值域为0D.定义在R上的函数f(x)满足2f(x)―f(―x)=x+1,则f(x)=x3+111.已知f(0)=12,f(x+y)=f(x)f(1―y)+f(y)f(1―x),则()A.f(1)=12B.f(x)=12恒成立C.f(x+y)=2f(x)f(y)D.满足条件的f(x)不止一个三、填空题12.下列表示函数y=f(x),则f(11)=.x0<x<55≤x<1010≤x<1515≤x≤20y234513.已知y=f(x)是二次函数,且f(0)=1,f(x+1)―f(x)=2x,则y=f(x)=.14.若正整数m,n只有1为公约数,则称m,n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,函数φ(n)以其首位研究者欧拉命名,称为欧拉函数,例如:φ(3)=2,φ(7)=6,φ(9)=6,则下列说法正确的序号是.①φ(5)=φ(10);②φ(2n―1)=1;③φ(32)=16;④φ(2n+2)>φ(2n),n是正整数.四、解答题15.下图所示为某市一天24小时内的气温变化图,根据图象回答下列问题.(1)全天的最高气温、最低气温分别是多少?(2)大约在什么时刻,气温为0°C?(3)大约在什么时刻内,气温在0°C以上?(4)变量Q是关于变量t的函数吗?16.已知f(x)=1(x∈R,且x≠―1),g(x)=x2+2(x∈R).1+x(1)求f(2),g(2)的值;(2)求f(g(2)),g(f(2))的值;(3)求f(x)和g(x―1)的值域.17.已知二次函数f(x)满足f(x)=f(2―x),且f(0)=―3,f(1)=―4.(1)求函数f(x)的解析式;(2)若g(x)=x+1,比较f(x)与g(x)的大小.18.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①a=2;②不等式f(x)>0的解集为{x|―1<x<3 };③函数f(x)的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f(x)的解析式;(2)求关于x的不等式f(x)≥(m―1)x2+2(m∈R)的解集.19.已知函数y=f(x)与y=g(x)的定义域均为D,若对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<|f(x1)―f(x2)|成立,则称函数y=g(x)是函数y=f(x)在D上的“L函数”.(1)若f(x)=3x+1,g(x)=x,D=R,判断函数y=g(x)是否是函数y=f(x)在D上的“L函数”,并说明理由;(2)若f(x)=x2+2,g(x)==[0,+∞),函数y=g(x)是函数y=f(x)在D上的“L函数”,求实数a的取值范围;(3)若f(x)=x,D=[0,2],函数y=g(x)是函数y=f(x)在D上的“L函数”,且g(0)=g(2),求证:对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<1.。
高一数学必修一函数练习题

高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高一经典函数练习题及完美解析

高一经典函数练习题及完美解析函数练习1 函数(一)1.下列各组函数中,表示相同函数的是 ( )A f(x)=x 与 g(x)=xx 2B f(x)=|x| 与 g(x)=2xC f(x)=12-x 与g(x)=1-x • 1+xD f(x)=x 0与g(x)=1 1. 函数y=x--113的定义域为 ( )A (-∞,1]B (-∞,0) (0,1]C (-∞,0) (0,1)D [1,+ ∞)2. 下列函数中值域是R +的是 ( )A y=2x+1 (x>0)B y=x 2C y=112-x D y=x2 3. 函数y=22++-x x 的定义域为__________,值域为_____________.4. 已知f(x)=x 2+1,则f[f(-1)]=______________________ 5. 求下列函数的定义域;(1)y=x111+; (2)y=xx x -+||)1(07.用可围成32m 墙的砖头,沿一面旧墙围猪舍四间(其平面图为連成一排大小相同的四个长方形,如图),应怎样围,才能使猪舍的总面积最大?最大面积是多少?函数练习2 函数(二)1. 下面四个函数:(1)y=1-x (2) y=2x-1 (3) y=x 2-1 (4) y=x5,其中定义域与值域相同的函数有 ( )A 1个B 2个C 3个D 4个2. 下列图象能作为函数图象的是 ( )A B C D 3. (1)数集{x|4≤x<16}用区间表示为_________;(2)数集{x||x|≤3}用区间表示为_______;(3)数集{x|x ∈R ,且x ≠0}用区间表示为_______;4. 已知f(x)=⎪⎩⎪⎨⎧--3210x )0()0()0(<=>x x x ,求f{f[f(5)]}的值。
5. 已知f(x)的定义域为(0,1)求f(x 2)的定义域 6.若2f(x)+f(-x)=3x+1,求f(x)的解析式。
第三章:函数的概念与性质重点题型复习-【题型分类归纳】高一数学上学期同步讲与练(解析版)

第三章:函数的概念与性质重点题型复习题型一函数的概念辨析【例1】下列关于函数与区间的说法正确的是()A.函数定义域必不是空集,但值域可以是空集B.函数定义域和值域确定后,其对应法则也就确定了C.数集都能用区间表示D.函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A,函数的定义域和值域均为非空数集,A错误;对于B,若函数的定义域和值域均为R,对应法则可以是y x=,也可以是2y x=,B错误;对于C,自然数集无法用区间表示,C错误;对于D,由函数定义可知,一个函数值可以有多个自变量值与之对应,D正确.【变式1-1】下列对应关系或关系式中是从A 到B 的函数的是( ) A .A ⊆R ,B ⊆R ,221x y +=B .{}1,0,1A =-,{}1,2B =,:1f x y x →=+C .A =R ,B =R ,1:2→=-f x y xD .A =Z ,B =Z ,:→=f x y 【答案】B【解析】对于A ,221x y +=可化为y =显然对任意x A ∈(1x =±除外),y 值不唯一,故不符合函数的定义; 对于B ,符合函数的定义;对于C ,当2x =时,对应关系无意义,故不符合函数的定义; 对于D ,当x 为非正整数时,对应关系无意义,故不符合函数的定义. 故选:B【变式1-2】已知集合{0,1,2}A =,{1,1,3}B =-,下列对应关系中,从A 到B 的函数为( ) A .f :x y x →= B .f :2x y x →= C .f :2x y x →= D .f :21x y x →=- 【答案】D【解析】对A :当0,1,2x =时,对应的y x =为0,1,2,所以选项A 不能构成函数;对B :当0,1,2x =时,对应的2y x =为0,1,4,所以选项B 不能构成函数; 对C :当0,1,2x =时,对应的2y x =为0,2,4,所以选项C 不能构成函数;对D :当0,1,2x =时,对应的21y x =-为1-,1,3,所以选项D 能构成函数;故选:D.【变式1-3】如图所示,下列对应法则,其中是函数的个数为( )A .3B .4C .5D .6【答案】A【解析】①②③这三个图所示的对应法则都符合函数的定义,即A 中每一个元素在对应法则下,在B 中都有唯一的元素与之对应,对于④⑤,A 的每一个元素在B 中有2个元素与之对应,∴不是A 到B 的函数, 对于⑥,A 中的元素3a 、4a 在B 中没有元素与之对应,∴不是A 到B 的函数, 综上可知, 是函数的个数为3.故选:A.【变式1-4】下列关系中是函数关系的是( )A .等边三角形的边长和周长关系B .电脑的销售额和利润的关系C .玉米的产量和施肥量的关系D .日光灯的产量和单位生产成本关系 【答案】A【解析】根据函数关系的定义可得,选项A 中,当等边三角形的边长取一定的值时,周长有唯一且确定的值与其对应, 所以等边三角形的边长和周长符合函数关系;其他选项中,两个量之间没有明确的对应关系,所以不是函数关系故选:A【变式1-5】若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是( ) A . B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.题型二 判断是否为同一个函数【例2】下列各组函数中,表示同一函数的是( )A .()()21,11x f x g x x x -==+- B .()())22,f x x g x x ==C .()()2,f x x g x x = D .()()211,1f x x x g x x =+-=-【答案】C【解析】A. 函数()211x f x x -=-的定义域为{}|1x x ≠,()1g x x =+的定义域为R ,故不是同一函数;B. ()2f x x =R ,()2g x x =的定义域为[0,)+∞,故不是同一函数;C. ()()2,f x x g x x x==的定义域都是R ,且解析式相同,故是同一函数;D. ()11f x x x =+-{}|1x x ≥,()21g x x =-{|1x x ≥或1}x ≤-, 故不是同一函数,故选:C【变式2-1】下列各组函数中,表示同一函数的是( )A .()0f x x =,()xg x x = B .()211x f x x -=-,()1g x x =+C .()11f x x x -+()21g x x =-D .()f x x =,()2g x x =【答案】A【解析】A 中,()0f x x =,()xg x x= 定义域都为{|0}x x ≠ ,对应关系以及值域相同,故为同一函数;B 中,()211x f x x -=-,定义域为{|1}x x ≠,()1g x x =+定义域为R ,故不是同一函数;C 中,()11f x x x -+{|1}x x ≥,()21g x x =-{|1x x ≥或1}x ≤- ,故不是同一函数;D 中,()f x x =,定义域为R ,()(2g x x =定义域为{|0}x x ≥,故不是同一函数;故选:A【变式2-2】下列各组函数是同一函数的是( )A .2()f x x =与2()(1)g x x =+B .3()f x x =-()g x x x =-C .()xf x x =与01()g x x=D .()33f x x x =+⋅-与2()9g x x =- 【答案】C【解析】对于A ,()2f x x =,()()21g x x =+,对应关系不同,即不是同一函数,故A 不正确; 对于B ,3()f x x x x =-=--定义域为(,0]-∞,()g x x x =-定义域为(,0]-∞, 定义域相同,对应关系不同,函数不是同一函数,故B 不正确;对于C ,()1xf x x==,定义域为()(),00,∞-+∞U ,1()1g x x ==,定义域为()(),00,∞-+∞U , 定义域、对应关系相同,故为同一函数,故C 正确;对于D ,()33f x x x =+⋅-定义域为[)3,+∞,2()9g x x =-定义域为(][),33,∞∞--⋃+, 定义域不同,函数不是同一函数,故D 不正确;故选:C【变式2-3】下列各组函数是同一函数的是( )A .321x x y x +=+与y x = B .2x y x =与y x =C .||x y x=与1y = D .()21y x =-与1y x =-【答案】A【解析】对于A ,321x xy x x +==+的定义域为R ,y x =的定义域为R ,则两个函数的定义域和对应关系都相同,是同一函数;对于B ,2x y x x==的定义域为{}0x x ≠,y x =的定义域为R ,则两个函数的定义域不同,不是同一函数; 对于C ,||x y x=的定义域为{}0x x ≠,1y =的定义域为R ,则两个函数的定义域不同,不是同一函数;对于D ,()211y x x =-=-和1y x =-的对应关系不同,故不是同一函数.故选:A.题型三 求函数的定义域【例3】函数()1321f x x x =--的定义域为( )A .2{|3x x >且1}x ≠ B .2{|3x x <或1}x > C .2{|1}3x x ≤≤ D .2{|3x x ≥且1}x ≠ 【答案】D【解析】由题得3202,103x x x -≥⎧∴≥⎨-≠⎩且1x ≠.所以函数的定义域为2{|3x x ≥且1}x ≠故选:D【变式3-1】函数()2021y x -的定义域为( ) A .1,2∞⎛⎫- ⎪⎝⎭ B .1,2⎛⎫+∞ ⎪⎝⎭ C .11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭ D .11,,322⎛⎫⎛⎤-∞⋃ ⎪ ⎥⎝⎭⎝⎦【答案】C【解析】要使函数()2021y x =+-有意义, 则有30210x x ->⎧⎨-≠⎩,解得3x <且12x ≠,所以其定义域为11,,322⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式3-2】已知函数(+1)f x 的定义域为[1,2],则(23)f x -+的定义域为( ) A .[1,2] B .1[0,]2 C .[1,1]- D .1[,1]2【答案】B【解析】因为函数(+1)f x 的定义域为[1,2],所以12x ≤≤,则2+13x ≤≤,所以22+33x ≤-≤,解得102x ≤≤,所以(23)f x -+的定义域为1[0,]2,故选:B【变式3-3】已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为( )A .3[,1]2-B .3[,1)(1,1]2--⋃- C .[3,7]- D .[3,1)(1,7]--⋃- 【答案】B【解析】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .【变式3-4】函数f (x )221mx x =--+的定义域为R ,则实数m 的取值范围是( ) A .(0,1) B .(﹣∞,﹣1] C .[1,+∞) D .(﹣∞,﹣1) 【答案】B【解析】f (x )的定义域是R ,则2210mx x --+≥恒成立,即2+210mx x -≤恒成立,则0Δ0m ⎧⎨≤⎩<,解得1m ≤-,所以实数m 的取值范围为(],1-∞-.故选:B.【变式3-5】若函数223()1x f x ax ax -=++的定义域为R ,则实数a 的取值范围是__________.【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立, 0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<, 综上,04a ≤<. 故答案为:[0,4).题型四 求函数的解析式【例4】已知函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,则()2f =( ) A .1 B .3 C .7 D .9【答案】D【解析】因为函数()f x 是一次函数,且()45f f x x -=⎡⎤⎣⎦恒成立,令()4f x x t -=,则()4f x x t =+, 所以()45f t t t =+=,解得1t =,所以()41f x x =+,(2)2419f =⨯+=,故选:D【变式4-1】已知二次函数()f x 满足()221465f x x x +=-+,求()f x 的解析式; 【答案】()259f x x x =-+【解析】设二次函数()()20f x ax bx c a =++≠,则()()()2212121f x a x b x c +=++++()()22442465ax a b x a b c x x =+++++=-+,故44,426,5a a b a b c =+=-++=,解得1,5,9a b c ==-=,故()259f x x x =-+.【变式4-2】若函数()63f g x x ⎡⎤=+⎣⎦,且()21g x x =+,则()f x 等于( ) A .129x + B .61x + C .3 D .3x 【答案】D【解析】令()21g x x t =+=,则12t x -=()63132f t t t -∴=⨯+=,即()3f x x =故选:D.【变式4-3】设函数1121f x x⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为( )A .()111x x x +-≠ B .()111x x x +-≠ C .()111x x x +≠-- D .()211xx x ≠-+ 【答案】B【解析】令()111t t x=+≠,则可得11x t =-()1t ¹ 所以()()211111t f t t t t +=+=-≠-,所以()()111x f x x x +-≠=,故选:B【变式4-4】若对任意实数x ,均有()2()92f x f x x --=+,求()f x . 【答案】32x -.【解析】利用方程组法求解即可;∵()2()92f x f x x --=+(1) ∴()()()292f x f x x --=-+(2) 由(1)2(2)+⨯得3()96f x x -=-+, ∴()32()f x x x R =-∈. 故答案为:32x - .【变式4-5】设函数()f x 是R →R 的函数,满足对一切x ∈R ,都有()()22f x x f x +-=,则()f x 的解析式为()f x =______.【答案】2,111,1x xx ⎧≠⎪-⎨⎪=⎩ 【解析】由()()22f x x f x +-=,得()()()222f x x f x -+-=,将()f x 和()2f x -看成两个未知数,可解得()()211f x x x=≠-, 当1x =时,()()()212112f f -+-=,解得()11f =,综上,()2,1,11, 1.x f x xx ⎧≠⎪=-⎨⎪=⎩ 故答案为:2,111,1x x x ⎧≠⎪-⎨⎪=⎩.题型五 定义法证明函数的单调性【例5】已知函数()218x f x x -=+,判断并证明()f x 在区间[]22-,上的单调性. 【答案】单调递增,证明见解析【解析】()f x 在区间[]22-,上单调递增,理由如下: 任取1x ,[]22,2x ∈-,且12x x <,()()()()()()()()()()()()22122112121212122222221212121818811888888x x x x x x x x x x x x f x f x x x x x x x -+--+-++----=-==++++++. 因为1222x x -≤<≤,所以120x x -<,1244x x -<+<,1244x x -<<, 所以12128x x x x +->- 所以121280x x x x ++->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间[]22-,上单调递增.【变式5-1】已知函数()f x =()f x 在区间[)1,+∞上的单调性,并证明你的结论. 【答案】增函数,证明见解析【解析】()f x 在区间[)1,+∞上是增函数.证明如下:设[)12,1,x x ∀∈+∞,且12x x <, 则()()12f x f x -= 因为[)12,1,x x ∈+∞0,又12x x <,所以120x x -<0,0,故()()120f x f x -<, 故()f x 在区间[)1,+∞上是增函数.【变式5-2】证明:函数31()2f x x x=-在区间(0,)+∞上是增函数.【答案】证明见解析.【解析】设12,(0,)x x ∈+∞,且12x x <,而3312121211()()22f x f x x x x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭()3312211122x x x x ⎛⎫=-+- ⎪⎝⎭()()2212121122122x x x x x x x x x x -=-+++()()221211221212x x x x x x x x ⎡⎤=-+++⎢⎥⎣⎦因为221211221210,0,0x x x x x x x x -<++>>,则()()2212112212120x x x x x x x x ⎡⎤-+++<⎢⎥⎣⎦, 所以12())0(f x f x -<,即12()()f x f x <,所以函数31()2f x x x=-在区间(0,)+∞上是增函数.【变式5-3】已知函数()f x 对任意的a ,∈b R ,都有()()()1f a b f a f b +=+-,且当0>x 时,()1f x >,判断并证明()f x 的单调性;【答案】函数()f x 在R 上为增函数;(2)4(1,)3m ∈-.【解析】设12,x x 是R 上任意两个不等的实数,且12x x <,则210x x x ∆=->,()()()()()()()()212111211111y f x f x f x x x f x f x x f x f x f x ⎡⎤∆=-=-+-=-+--=∆-⎣⎦,由已知条件当0x >时,()1f x >, 所以()1f x ∆>,即0y ∆>, 所以函数()f x 在R 上为增函数;题型六 利用函数的单调性求参数【例6】若函数()1f x ax =+[]1,1-内单调递减,则实数a 的取值范围是______. 【答案】[)1,0-【解析】由题意知,第一步函数单调递减,由复合函数同增异减可知0a <,第二步考虑函数定义域,10ax +≥ 在[]1,1-恒成立,(1)0a f <⎧⎨≥⎩ 得到10a -≤< 故答案为:10a -≤<.【变式6-1】若1()1ax f x x +=-在区间(1,)+∞上是增函数,则实数a 的取值范围是______. 【答案】1a <- 【解析】函数()111+1()=111a x a ax a f x a x x x -+++==+---,由复合函数的增减性可知,若1()1a g x x +=-在(1,)+∞为增函数,10a ∴+<,1a <-,【变式6-2】(多选)函数2()(21)3f x x a x =+-+在(2,2)-上为单调函数,则实数a 的取值范围可以是( )A .3,2⎛⎤-∞- ⎥⎝⎦ B .35,42⎛⎫- ⎪⎝⎭ C .35,42⎡⎤-⎢⎥⎣⎦ D .5,2⎡⎫+∞⎪⎢⎣⎭【答案】AD【解析】二次函数2()(21)3f x x a x =+-+图象对称轴为:212a x -=-, 因函数()f x 在(2,2)-上为单调函数,于是有: 当函数()f x 在(2,2)-上递减时,2122a --≥,解得32a ≤-, 当函数()f x 在(2,2)-上递增时,2122a --≤-,解得52a ≥, 所以实数a 的取值范围是:32a ≤-或52a ≥.故选:AD【变式6-3】已知函数21,22(),12x mx x f x m x x⎧-≥⎪⎪=⎨⎪-≤<⎪⎩对于12,[1,)x x ∀∈+∞且12x x ≠,都有1212()[()()]0x x f x f x -->,则m 的取值范围为 ______. 【答案】40,3⎛⎤⎥⎝⎦【解析】由题意可知,()f x 在[1,)+∞上为单调增函数,要使my x=-在[1,2)上单调递增,则0m -<,即0m >, 要使21()2f x x mx =-在[2,)+∞上单调递增,则2m ≤, 同时2112222m m ⨯-≥-,解得:43m ≤,综上可知:403m <≤.题型七 求函数的最值或值域【例7】求函数4y x x =+,142x ⎛⎫≤≤ ⎪⎝⎭的最大值与最小值.【答案】最大值172,最小值4 【解析】函数4y x x=+,根据对勾函数的性质可得: 4y x x =+在122⎡⎤⎢⎥⎣⎦,上单调递减,[]2,4上单调递增. 当2x =时取到最小值4. 又当12x =时,117822y =+=,当4x =时,415y =+= 所以当12x =时取到最大值172, 所以函数4y x x=+的最大值172,最小值4【变式7-1】312y x x =+- )A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞ ⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为312y x x =+-所以1120,2x x -≥∴≤,又312y x x =+-12x ≤时单调递增, 所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:A.【变式7-2】函数23()31x f x x -=+的值域( ) A .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .33,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,,33⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭ D .22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】依题意,2112112(31)2321113333()3131313331x x x f x x x x x +-+--====-⋅++++,其中111331y x =-⋅+的值域为()(),00,∞-+∞U , 故函数()f x 的值域为22,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故选D .【变式7-3】若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( ) A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦, C .51023⎡⎤⎢⎥⎣⎦, D .556⎡⎤⎢⎥⎣⎦, 【答案】B【解析】令()f x t =,1y t t=+,则132t ⎡⎤∈⎢⎥⎣⎦,. 当112t ⎡⎫∈⎪⎢⎣⎭,时,1y t t=+单调递减, 当[]13t ∈,时,1y t t=+单调递增, 又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =, 所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .【变式7-4】已知{},min ,,,a a ba b b a b ≤⎧=⎨>⎩设()f x {}2min 2,42x x x =--+-,则函数()f x 的最大值是( ) A .2- B .1 C .2 D .3 【答案】B【解析】当2242x x x -≤-+-,即[]0,3x ∈时,()2f x x =-在[]0,3x ∈上单调递增,所以()max ()3321f x f ==-=,当2242x x x ->-+-,即()(),03,x ∈-∞+∞时,()()224222f x x x x =-+-=--+在(),0x ∈-∞上单调递增,在()3,+∞上单调递减,因为()02f =-,()31f =,所以()()31f x f <=; 综上:函数()f x 的最大值为1,故选:B题型八 函数奇偶性的判断【例8】判断下列函数的奇偶性.(1)()31f x x x=-; (2)()(1f x x =-(3)()f x (4)()2,12,112,1x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩.【答案】(1)奇函数;(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数;(4)偶函数【解析】(1)()f x 的定义域是()(),00,∞-+∞U ,关于原点对称,又()()()3311f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,所以()f x 是奇函数. (2)因为()f x 的定义域为[)1,1-,不关于原点对称,所以()f x 既不是奇函数也不是偶函数. (3)因为()f x的定义域为{,所以()0f x =,则()f x 既是奇函数又是偶函数.(4)方法一(定义法)因为函数()f x 的定义域为R ,所以函数()f x 的定义域关于原点对称.①当x >1时,1x -<-,所以()()()()22f x x x f x -=-⨯-==; ②当11x -≤≤时,()2f x =;③当1x <-时,1x ->,所以()()()22f x x x f x -=⨯-=-=. 综上,可知函数()f x 为偶函数.方法二(图象法) 作出函数()f x 的图象,如图所示,易知函数()f x 为偶函数.【变式8-1】函数()f x =_________对称.【答案】原点【解析】要使函数有意义,则240330x x ⎧-≥⎪⎨+-≠⎪⎩,得2206x x x -≤≤⎧⎨≠≠-⎩且,解得20x -≤<或02x <≤,则定义域关于原点对称.此时33x x +=+,则函数()f x ==,()()f x f x -==-,∴函数()f x 是奇函数,图象关于原点对称故答案为:原点【变式8-2】判断()||||()f x x a x a a R =+--∈的奇偶性.【答案】当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数 【解析】因为x ∈R ,所以定义域关于原点对称,当0a =时,则()||||0f x x x =-=,所以()f x 既是奇函数,又是偶函数; 当0a ≠时,因为()||||||||()f x x a x a x a x a f x -=-+---=--+=-, 所以()f x 是奇函数.综上所述,当0a =时,()f x 既是奇函数,又是偶函数;当0a ≠时,()f x 是奇函数.【变式8-3】设函数2()1f x x =+,则下列函数中为奇函数的是( ) A .()1f x + B .(1)f x + C .()1f x - D .(1)f x - 【答案】D 【解析】因为()21f x x =+ . 选项A :()2111f x x +=++,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故A 错. 选项B :()221112f x x x +==+++,定义域为()()22-∞--+∞U ,,,定义域不对称,故B 错. 选项C :()2111f x x -=-+,定义域为()()11-∞-⋃-+∞,,,定义域不对称,故C 错. 选项D :()22111f x x x-==-+,定义域为()()00-∞∞,,+,定义域对称,为奇函数.故D 正确.故选:D.【变式8-4】设()f x 是R 上的任意函数,则下列叙述正确的是( )A .()()f x f x -是奇函数B .()()f x f x -是奇函数 C .()()f x f x --是奇函数 D .()()f x f x +-是奇函数 【答案】C【解析】A 选项:设()()()F x f x f x =-,()()()()F x f x f x F x -=-=,则()()f x f x -为偶函数,A 错误;B 选项:设()()()G x f x f x =-,则()()()G x f x f x -=-,()G x 与()G x -关系不定, 即不确定()()f x f x -的奇偶性,B 错误;C 选项:设()()()M x f x f x =--,则()()()()M x f x f x M x -=--=-, 则()()f x f x --为奇函数,C 正确;D 选项:设()()()N x f x f x =+-,则()()()()N x f x f x N x -=-+=, 则()()f x f x +-为偶函数,D 错误.故选:C.题型九 利用函数的奇偶性求值或求参【例9】若函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,则a b +=___________. 【答案】12-【解析】因为函数32()=-+f x x bx ax 在[3,2]+a a 上为奇函数,所以320a a ++=,得12a =-,又()()f x f x -=-,即323211()()()22x b x x x bx x -----=-++,即220bx =恒成立,所以0b =,所以12a b +=-. 故答案为:12-.【变式9-1】若函数()()()325x x a f xx +-=为奇函数,则=a ( )A .12 B .23 C .34D .1 【答案】B【解析】根据题意得()()()()()323255x x a x x a f x xx-+---++==--,因为函数()()()325x x a f xx +-=为奇函数,所以()()f x f x -=-,即()()()()323255x x a x x a x x-+++-=-,整理得:()640a x -=,所以640a -=,解得23a =.故选:B【变式9-2】已知函数()()32121f x a x x =-+-是偶函数,则a =______.【答案】1【解析】函数()()32121f x a x x =-+-是偶函数,则()()11f f -=,即()121121a a -+-=-+--,解之得1a = 经检验符合题意. 故答案为:1【变式9-3】已知函数()f x 是定义在R 上的奇函数,当0x >时,()(1)f x x x =+,那么()1f -等于( )A .﹣2B .﹣1C .0D .2 【答案】A【解析】因为0x >时,()(1)f x x x =+,可得()1122f =⨯=,又因为函数()f x 是定义在R 上的奇函数,可得()()112f f -=-=-.故选:A.【变式9-4】设()f x 是定义域为()2,2-的奇函数,当02x ≤<时,()122f x x m x =++-(m 为常数),则()1f -=( )A .53- B .53C .32-D .32【答案】C【解析】因为()f x 是定义域为()2,2-的奇函数,所以()00f =,因为当02x ≤<时,()122f x x m x =++-,所以()1002f m =-+=,解得12m =, 所以当02x ≤<时,()11222f x x x =++-,所以()()13111222f f ⎛⎫-=-=--++=- ⎪⎝⎭.故选:C.【变式9-5】设函数()()23211x x f x x ++=+在区间[]22-,上的最大值为M ,最小值为N ,则()20221M N +-的值为______. 【答案】1【解析】由题意知,()32211x xf x x +=++([]2,2x ∈-), 设()3221x xg x x ++=,则()()1f x g x =+,因为()()3221x xg x g x x ---==-+,所以()g x 为奇函数, ()g x 在区间[]22-,上的最大值与最小值的和为0, 故2M N +=,所以()()202220221211M N +-=-=.题型十 利用函数的奇偶性求解析式【例10】设()f x 为奇函数,且当0x ≥时,2()f x x x =+,则当0x <时,()f x =( ) A .2x x + B .2x x -+ C .2x x - D .2x x -- 【答案】B【解析】设0x <,则0x ->,所以()2f x x x -=-,又()f x 为奇函数,所以()()()22f x f x x x x x =--=--=-+, 所以当0x <时,()2f x x x =-+.故选:B.【变式10-1】函数()f x 为偶函数,当()0,x ∈+∞时,()227f x x x =-,则当(),0x ∈-∞时,()f x =()A .()227f x x x =-+B .()227f x x x =--C .()227f x x x =-D .()227f x x x =+ 【答案】D【解析】设(),0x ∈-∞,则()0,x -∈+∞,则()()()222727f x x x x x -=---=+,因为函数()f x 为偶函数,则当(),0x ∈-∞时,()()227f x f x x x =-=+.故选:D.【变式10-2】已知()f x 是定义在R 上的奇函数,且当0x ≥时,()21x a x a f x =+++,则当0x <时,()f x =( )A .2x x -B .2x x +C .2x x -+D .2x x -- 【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以()00f =,即()010f a =+=,解得1a =-,当0x ≥时,()2f x x x =-,当0x <时,0x ->,则()()22f x x x x x -=-+=+,因为()f x 是奇函数,所以()()2f x f x x x =--=--.故选:D .【变式10-3】若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=(e 为无理数,2.71828e =⋅⋅⋅),则()g x =( )A .e e x x --B .()1e e 2x x -+C .()1e e 2x x --D .()1e e 2x x -- 【答案】D【解析】由()()e xf xg x +=可得()()e x f x g x --+-=,根据()f x 与()g x 的奇偶性可得()()()()e xf xg x f x g x --+-=-=,故()()()()e e x xf xg x f x g x ---+=-⎡⎤⎣⎦.整理得()2e e x xg x --=-,即()()1e e 2x xg x -=-.故选:D.题型十一 利用单调性奇偶性解不等式【例11】定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是( )A .12m <- B .12m > C .112m -≤< D .122m <≤ 【答案】C【解析】∵()f x 是偶函数,()()()f x f x f x ∴=-=,故(1)()f m f m -<可变形为(1)()f m f m -<, ∵()f x 在区间[]0,2上单调递减,故212131222212112m m m m m m m m ⎧⎧⎪⎪-≤-≤-≤≤⎪⎪-≤≤⇒-≤≤⇒-≤<⎨⎨⎪⎪->⎪⎪<⎩⎩.故选:C.【变式11-1】若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是__________. 【答案】[]1,2【解析】因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增,又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥,则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤,所以原不等式的解集为[]1,2. 故答案为:[]1,2【变式11-2】函数()f x 是定义在()1,1-上的奇函数且单调递减,若2(2)(4)0,f a f a -+-<则a 的取值范围是( ) A .)5,3 B .(3)(2,)-∞⋃+∞ C .)3,2 D .()3,2-【答案】C【解析】函数()f x 是定义在()1,1-上的奇函数且单调递减,2(2)(4)0f a f a -+-<可化为2(2)(4)f a f a -<-则2212114124a a a a -<-<⎧⎪-<-<⎨⎪->-⎩2a <故选:C【变式11-3】奇函数()2f x +是定义在()3,1--上的减函数,若()()1320f m f m -+-<,则实数m 的取值范围为______. 【答案】()1,2【解析】由题意知,函数()2f x +的定义域为()3,1--,所以函数()f x 的定义域为()1,1-, 所以1111321m m -<-<⎧⎨-<-<⎩,解得12m <<.又奇函数()2f x +是()3,1--上的减函数,所以()f x 是()1,1-上的奇函数,且在()1,1-上单调递减. 由()()1320f m f m -+-<,得()()132f m f m -<--, 所以()()123f m f m -<-,所以123m m ->-,解得2m <.综上,12m <<. 故答案为:()1,2.【变式11-4】已知函数()f x 是定义在R 上的偶函数,若1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()21210mf m m f m --->的解集为( )A .(),1-∞-B .(),1-∞C .()1,+∞D .()1,-+∞ 【答案】C【解析】令()()g x xf x =,因为函数()f x 是定义在R 上的偶函数,所以()()()()g x xf x xf x g x -=--=-=-,即()g x 是定义在R 上奇函数. 又1x ∀,[)20,x ∈+∞,且12x x ≠,都有()()()()11221212120x f x x f x g x g x x x x x --=<--成立,所以()g x 在[)0,∞+上单调递减,又()g x 是定义在R 上奇函数,所以()g x 在R 上单调递减,所以()()()()()2121210mf m m f m g m g m ---=-->,即()()21g m g m >-, 所以21m m <-,解得1m >.故A ,B ,D 错误.故选:C .题型十二 利用单调性奇偶性比较大小【例12】定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则下列判断正确的是( )A .311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113422f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .311242f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131224f f f ⎛⎫⎛⎫⎛⎫-<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A【解析】因为()f x 为偶函数,所以11()()22f f -=,33()()22f f -=, 又113422<<,且()f x 在(0,)+∞上是减函数,所以311224f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A【变式12-1】已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件:①()(),x f x f x ∀∈-=R ;②()12,0,x x ∀∈+∞,当12x x ≠时,()()2112120x f x x f x x x ->-.记()1a f =,()33f b -=,()55f c =,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a << 【答案】B【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,()()2112120x f x x f x x x ->-,即()()1212120f x f x x x x x ->-,所以函数()f x x 在(0,)+∞上单调递增. 又x ∀∈R ,()()f x f x -=,所以函数()f x 是R 上的偶函数,所以()()3333f f -=,则有()()()135135f f f <<,所以a b c <<,故选:B .【变式12-2】已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 【答案】B【解析】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >, ∴函数()f x 在(1,)+∞上为单调增函数, ∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B .【变式12-3】已知()f x 对于任意R x ∈都有(2)()f x f x +=,且()f x 在区间[)0,2上是单调递增的,则( 6.5),(1),(0)f f f --的大小关系是( )A .(1)(0)( 6.5)f f f -<<-B .( 6.5)(0)(1)f f f -<<-C .(1)( 6.5)(0)f f f -<-<D .(0)(1)( 6.5)f f f <-<- 【答案】D 【解析】()f x 对于任意R x ∈都有(2)()f x f x +=,∴()f x 周期为2,偶函数()f x 在区间[)0,2上是单调递增,( 6.5)(1.5)f f ∴-=,(1)(1)f f -=,(0)(1)(1.5)f f f ∴<<,即(0)(1)( 6.5)f f f <-<-故选:D题型十三 利用函数的周期性求值【例13】已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255- 【答案】B【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B【变式13-1】已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022 【答案】A 【解析】(2)()(2)()x f x f f f x x -=∴+=-,又()()f x f x -=-,(2)()()f x f x f x ∴+=-=-,∴函数的周期4T =.又函数()f x 是定义域为R 的奇函数,(0)0f ∴=,(2)(0)0f f ∴==,(3)(1)(1)2f f f =-=-=-,(4)(0)0f f == (1)(2)(3)(4)20200f f f f +++=+-+=∴,又202250542=⨯+(1)(2)(3)(2022)5050(1)(2)2f f f f f f ∴++++=⨯++=.故选:A.【变式13-2】已知函数()1y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=当(]0,2x ∈时,()2f x x =+.则()2022f =( )A .1-B .1C .2D .2- 【答案】D【解析】函数()1y f x =+的图象关于直线3x =-对称,∴函数()y f x =的图象关于直线2x =-对称,()()22f x f x ∴-+=--,取2x x =+可得()()2222f x f x -++=--+⎡⎤⎣⎦,∴()()4f x f x =--又对x ∀∈R 有()()2f x f x +-=, 取4x x =--可得()()442f x f x --++=,所以()()()42f x f x f x =--=--.,()()424f x f x --=-+,()()4f x f x ∴+=-,()()()444f x f x f x ⎡⎤∴++=--=⎣⎦,即()()8f x f x +=,()f x ∴的周期8T =()()()()()()()2022252866242222222f f f f f f ∴=⨯+==+=-=-=-+=-.故选:D.【变式13-3】设函数()f x 的定义域为R ,()12f x +-为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()011f f -+=,则20232⎛⎫=⎪⎝⎭f ________. 【答案】34【解析】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,函数()f x 关于点()1,2对称,又定义域为R ,则有()12f =;又()2f x +为偶函数,可得()()22f x f x +=-+,函数()f x 关于直线2x =对称,()()()4242f x f x f x =--=-+,又()()24f x f x +=--,则()()f x f x =-,则()()()222f x f x f x +=-+=-,函数()f x 周期为4,则202311131012422222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-==-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 由上可得()()()()1,041424f f a b f f a b ==+=-=---,则2441a b a b a b +=⎧⎨++--=⎩,解得11a b =⎧⎨=⎩, 则39131244f ⎛⎫=+= ⎪⎝⎭,则2023334224f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:34.题型十四 抽象函数综合问题【例4】函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立.(1)证明函数f (x )的奇偶性;(2)若f (1)= -2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->-- 【答案】(1)证明见解析;(2)4;(3){|2x x <-或1}x >- 【解析】(1)令x =y =0得f (0)=0,再令y =—x 即得f (-x )=-f (x ), ∴()f x 是奇函数.(2)设任意12,R x x ∈,且12x x <,则210x x ->,由已知得21()0f x x -<①,又212121()()()()()f x x f x f x f x f x -=+-=-②, 由①②可知12()()f x f x >,由函数的单调性定义知f (x )在(-∞,+∞)上是减函数,∴x ∈[-2,2]时,[]max ()(2)(2)(11)2(1)4f x f f f f =-=-=-+=-=, ∴f (x )当x ∈[-2,2]时的最大值为4.(3)由已知得:[]2(2)(4)2()(2)f x f x f x f -->--,由(1)知f (x )是奇函数,∴上式又可化为:[]2(24)2(2)(2)(2)(24)f x x f x f x f x f x -->+=+++=+,由(2)知f (x )是R 上的减函数, ∴上式即:22424x x x --<+, 化简得(2)(1)0x x ++>,∴ 原不等式的解集为{|2x x <-或1}x >-.【变式14-1】已知函数()f x 的定义域是()0,∞+,对定义域内的任意12x x , 都有()()()1212f x x f x f x =+,且当01x <<时,()0f x >.(1)证明:当1x >时,()0f x <;(2)判断()f x 的单调性并加以证明;(3)如果对任意的()12,0,x x ∈+∞ ,()()()221212f x x f a f x x +≤+恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)函数()f x 单调递减,证明见解析;(3)(]0,2a ∈ 【解析】(1)(1)(1)(1)(1)0f f f f =+⇒=;1(1)()()0f f x f x=+=;当()0,1x ∈时,()11,x ∈+∞;()10()0f x f x>⇒<;∴当1x >时,()0f x <.(2)单调递减.证明:()1212,0,x x x x ∀∈+∞<,且()()2211x f x f x f x ⎛⎫-= ⎪⎝⎭12x x <,211x x ∴>,210x f x ⎛⎫∴< ⎪⎝⎭,即()()12f x f x > ∴()f x 单调递减(3)函数()f x 的定义域是()0,∞+0a ∴>;()()()()()222212121212f x x f a f x x f x x f ax x +≤+⇒+≤恒成立;由(2),()f x 单调递减,221212x x ax x +≥恒成立,221212x x a x x +≤恒成立,因为22121212212x x x x x x x x +=+≥,当且仅当12x x =时等号成立,所以2a ≤; 又()f a 有意义,所以0a > 综上:(]0,2a ∈.【变式14-2】已知函数()f x 对任意,R x y ∈,都有()()()1f x y f x f y +=+-,且当0x >时,()1f x >. (1)求证:()f x 在R 上是增函数;(2)若关于a 的方程2(75)2f a a +-=的一个实根是1,求(6)f 的值; (3)在(2)的条件下,已知R m ∈,解关于x 的不等式()(2)3f mx f x ->+. 【答案】(1)证明见解析;(2)3;(3)详见解析【解析】(1)依题意()()()1f x y f x f y +=+-,且0x >时,()1f x >,令0x y ==,则()()()()0001,01f f f f =+-=,()()()()()1,2f x x f x f x f x f x -+=-+--+=,任取12x x <,()()()()121211f x f x f x f x x x -=--+()()()()12112111f x f x x f x f x x =--+-=--+⎡⎤⎣⎦,由于210x x ->,所以()211f x x ->,所以()()()()12120,f x f x f x f x -<<,所以()f x 在R 上递增. (2)由(1)知,()f x 在R 上递增,()()217532f f +-==,()()()()6333313f f f f =+=+-=.(3)依题意()()()1f x y f x f y +=+-,()f x 在R 上递增,()(2)3f mx f x ->+.()(2)12f mx f x -->+,()()()22,23f mx x f mx x f +->+->,()23,15mx x m x +->+>,当1m =-时,不等式的解集为空集. 当1m <-时,不等式的解集为5|1x x m ⎧⎫<⎨⎬+⎩⎭. 当1m >-时,不等式的解集为5|1x x m ⎧⎫>⎨⎬+⎩⎭.【变式14-3】设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且1()12f =-当0x >时,()0.f x <(1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明; (3)如果()(2)2f x f x >-,求x 的取值范围;【答案】(1)0;(2)函数()f x 是定义在R 上的减函数,详见解析;(3)1x >-. 【解析】(1)令0x y ==,则()()()0000f f f -=-,∴()00f =;(2)函数()f x 是定义在R 上的减函数,设12,R x x ∀∈,且12x x >,则120x x ->, ∴()()()1212f x x f x f x -=-,∵当0x >时,()0.f x <∴()120f x x -<,即()()120f x f x -< ∴()()12f x f x <,∴函数()f x 是定义在R 上的减函数; (3)∵()()()f x y f x f y -=-∴()()()00f x f f x -=-,又()00f =, ∴()()f x f x =--, ∴函数()f x 是奇函数,∵()()()f x y f x f y -=-,1()12f =- ∴111112222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫--=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()()(2)2(2)1(21)f x f x f x f f x >-=--=+, 又函数()f x 是定义在R 上的减函数, ∴21x x <+,即1x >-, ∴x 的取值范围为1x >-.题型十五 幂函数的图象性质【例15】现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( ) A .1 B .2 C .3 D .4 【答案】B【解析】幂函数满足a y x =形式,故3y x =,y x =满足条件,共2个故选:B【变式15-1】(多选)已知幂函数232()(21)m m f x a x -+=-,其中,a m R ∈,则下列说法正确的是( )A .1a =B .()f x 恒过定点(1,1)C .若3m =时,()y f x =关于y 轴对称D .若112m <<时,(2)(1)f f <【答案】ABC【解析】因为232()(21)m m f x a x -+=-为幂函数,所以211a -=,解得1a =,故A 正确; 则232()m m f x x -+=,故恒过定点(1,1),故B 正确;当3m =时,2()f x x =,22()()()f x x x f x -=-==,所以()y f x =为偶函数,则()y f x =关于y 轴对称,故C 正确; 当112m <<时,2320m m -+>,则()f x 在(0,)+∞上为增函数, 所以(2)(1)f f >,故D 错误.故选:ABC【变式15-2】图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是( )A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,3 【答案】D【解析】由题图知:10α<,201α<<,31α>,所以1α,2α,3α依次可以是1-,12,3.故选:D【变式15-3】当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数,则m =_________.【答案】2【解析】函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减, 可得2230m m --<,可得2m =, 故答案为:2【变式15-4】已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.【答案】4【解析】由题意可得23310m m m ⎧--=⎨>⎩,解得4m =故答案为:4.【变式15-5】已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围.【答案】(1)()3f x x =;(2)2,3⎛⎫-∞ ⎪⎝⎭【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.题型十六 简单函数模型的应用【例16】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0. (1)当020x <≤时,求函数()v x 的表达式;。
高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a -1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a 土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。
a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2;x<a 时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m 的值(2)当x ∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。
高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一函数经典题型复习Prepared on 22 November 2020函数奇偶性 例题1:.已知函数 是奇函数,则常数=a (已知函数奇偶性求未知数的值)练习: (1) 若函数1()21x f x a =+-是奇函数,则实数a = (2)若函数191)(++=x a x f 为奇函数,则a =_____________. 例题2:.已知函数b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-, 则=)0(f ( ) (已知定义域求未知数的值) A. B. C. 1 D. -1 3.已知2)(35++-=bx ax x x f ,且17)5(=-f ,则)5(f 的值为( ) 例题(自己先判断函数奇偶性)A .-13B .13C .-19D .19练习.已知53()5(,,)f x ax bx cx a b c =+++是常数,且(5)9f =,则(5)f -的值为 . 例题4. 设()f x 在R 上是奇函数,当x >0时,()(1)f x x x =-, 试问:当x <0时,()f x 的表达式是什么(已知函数部分解析式求另外部分的解析式)练习:(1)设函数()f x 是R 上的偶函数,且当()0,x ∈+∞时,()(1,f x x = ()0x ∈-∞则当,时,()f x 等于( )(2)已知)(x f 为R 上的奇函数,且0>x 时2()241f x x x =-++,则(1)f -=____ __ 例题5:若定义在R 上的函数)(x f 满足:对任意R x x ∈21,,有1)()()(2121++=+x f x f x x f ,下列说法一定正确的是()A 、)(x f 是奇函数B 、)(x f 是偶函数C )(x f +1是奇函数D 、)(x f +1是偶函数141)(++=x a x f 3132练习:已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,求证:函数()y f x =是奇函数.函数单调性证明函数单调性的步骤:第一步:设x 1、x 2∈给定区间,且x 1<x 2;第二步:计算f (x 1)-f (x 2)至最简;第三步:判断差的符号;第四步:下结论.例题1:求32y x =-在区间[3,6]上的最大值和最小值. 变式:求3,[3,6]2x y x x +=∈-的最大值和最小值. 例题2. 函数2y x bx c =++((,1))x ∈-∞是单调函数时,b 的取值范围 ( ).A .2b ≥-B .2b ≤-C .2b >-D . 2b <-练习: (1)若函数1)12(2+-+=x a x y 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞) B .(-∞,-23] C .[25,+∞) D .(-∞,25] (2) 函数2()2f x x x =-的单调增区间是( )A. (,1]-∞B. [1,)+∞C. RD.不存在(3) 在区间(,0)-∞上为增函数的是( )A .2y x =-B .2y x=C .||y x =D .2y x =-例题: 已知()f x 是定义在(1,1)-上的减函数,且(2)(3)0f a f a ---<. 求实数a 的取值范围. 练习 (07福建)已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫ ⎝⎛的实数x 的取值范围是( )A.()1,1-B.()1,0C.()()1,00,1 -D.()()+∞-∞-,11,函数的奇偶性与单调性例题1.已知定义域为()(),00,-∞+∞的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()0x f x ⋅>的解集为 .练习:(1)已知定义在R 上的偶函数()f x 在(]0,∝-上是减函数,若0)21(=f ,则不等0)(log 4>x f 的解集是 .(2)设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A 、{}|303x x x -<<>或B 、{}|303x x x <-<<或C 、{}|33x x x <->或D 、{}|3003x x x -<<<<或 练习:已知函数22()3px f x q x +=-是奇函数,且5(2)3f =-. (1)求函数()f x 的解析式;(2)判断函数()f x 在(0,1)上的单调性,并加以证明.一、选择题:1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为||)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。
2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+x x 的根,则21x x +值为______________。
3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(x x f =则当2-<x 时=)(x f________________。
4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =5、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A 、0 B 、1 C 、2D 、36、从甲城市到乙城市m 分钟的电话费由函数)47][43(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。
7、函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞- B 、]0,(-∞ C 、)23,(--∞ D 、]0,2(- 9、若2)5(12-=-x f x ,则=)125(f __________10、已知映射B A f →:,其中A =B =R ,对应法则为32:2++=→x x y x f 若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________.12、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。
13、关于x 的方程ax lg 11)21(-=有正根,则实数a 的取值范围是______________14、已知函数f(x)=5log )(log 41241+-x x ,∈x []42,,则当x = , )(x f 有最大值 ;当x = 时,f(x)有最小值 .二、解答题:本大题共4小题,解答时应写出文字说明、演算步骤.15、已知集合=A {}m ,3,2,1,集合{}a a a B 3,,7,424+=,其中 .,,,**B y A x N a N m ∈∈∈∈13:+=→x y x f 是从集合A 到集合B 的函数,求B A a m ,,,16、已知函数3)(2++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值.17、已知函数12)(+=x x f ,将函数)(1x fy -=的图象向左平移2个单位,再向上平移1个单位,就得到)(x g y =的图象.(1)写出)(x g y =的解析式;(2)求)()()(12x f x g x F --=的最小值.18、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,则砍伐到面积的一半时,所用时间是T 年.为保护生态环境,森林面积至少要保留原面积的41.已知到今年为止,森林剩余面积为原来的22. (1)到今年为止,该森林已砍伐了多少年(2)今后最多还能砍伐多少年恒成立问题类型一、利用二次函数的图象例:函数3)(2++=ax x x f ,当R x ∈时,a x f ≥)(恒成立,求a 的范围解析:∵a x f ≥)(恒成立,∴032≥-++a ax x 恒成立,把左边看成二次函数,则0≤∆ ∴26≤≤-a类型二、能分离参量例:不等式522->-+ax x x 当0<x<2时恒成立,求a 的范围 解析:∵不等式522->-+ax x x 当0<x<2时恒成立 ∴xx x x x a 3132++=++<当0<x<2时恒成立 又∵0<x<2时,13213+≥++xx ∴132+<a类型三、需要改写不等式 例:不等式)1(122->-x m x 对满足22≤≤-m 的所有都成立,求m 的取值范围 解析:∵不等式)1(122->-x m x 对满足22≤≤-m 的所有都成立 ∴220)12()1(2≤≤<---m x m x 对-恒成立令)12()1()(2---=x m x m f ,则⎩⎨⎧<<-0)2(0)2(f f ,∴213217+<<-x 类型四、若[]2,2x ∈-时,03)(2≥-++=a ax x x f 恒成立,求a 的取值范围。
解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a 。
⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a > a ∴不存在。
⑵当222a -≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ ⑶当22a ->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <- 74a ∴-≤<-总上所述,72a -≤≤。