不对称合成

合集下载

不对称合成名词解释

不对称合成名词解释

不对称合成名词解释
不对称合成是最常用的化学反应之一。

它的反应机理比其他反应更加复杂,可以利用这种反应将两种不同的反应物合成一种新的化合物。

其中一种反应物可能是一种有机物,而另一种可能是一种无机物。

不对称合成的反应比一般的化学反应更复杂,可用于制备一种新的、未曾存在的化合物,这种反应特别适合制备一些非常有用的有机化合物。

它不仅可以用于在实验室制备有机分子,而且还可以用于实际的工业应用,从而提高产品的品质。

不对称合成中最重要的因素是反应介质和反应条件。

反应介质是指合成反应用以完成化学反应所需要的溶剂。

一般来说,反应介质包括水、乙醇、甲醇等,而温度、pH值和溶液浓度也是非常重要的反应条件。

此外,不对称合成还可以利用光照或电催化来完成反应。

这种类型的光照或电催化可以加速合成反应的进行,从而可以提高反应的效率,并且对反应物的改变能够更加明显。

不对称合成也可以利用催化剂来加速反应。

催化剂是指在特定形式或活性位置上加作用,以使反应按预期发生,而不会影响反应物。

常用的催化剂有金属离子、有机催化剂、酶和活性氧等。

最后,不对称合成的反应机理可以用于大规模的生产。

一般来说,不对称合成的反应机制可以在工业生产中应用,可以利用这种反应机理生产出许多有用的有机化合物,从而为工业提供更多的资源。

总之,不对称合成是一种常见的化学反应,能够用来合成新的化
合物,其反应机理比其他反应更加复杂,可以利用不对称合成反应来合成许多非常有用的有机化合物。

它可以利用反应介质、反应条件、光照或电催化和催化剂等技术来完成化学反应,也可以在大规模的工业生产中应用。

有机合成-不对称合成

有机合成-不对称合成

三、不对称反应的原理和基本方法 一个不对称合成反应中必须至少有一种的不对称因素 存在,这种不对称因素可来自于底物、试剂、催化剂 (化学的或生物的)、溶剂或物理))(光、电磁场)等。根 据不对称因素的来源, 可将不对称反应分为: (1)手性底物控制; (2)手性辅助基团控制; (3)手性试剂控制 (4)手性催化剂控制的四个主要反应类型。
Ph 2P PPh 2
F F O N Me
N COOBu' BiI 3 ( 碘化铋)
F F O NH S Me
Me N
O F N O Me COOH
N
(1) (2) (3) 环状烯胺(1)以(2S,4S)-BPPM与碘化铋(III)催化氢 化以96%产率得到(2)。 从(2)很容易经六步反应制 备到(3)左氟砂星。
其中S为含潜手性基团的底物,A*为光学纯的手性辅助试剂, S—A*为连上辅助基团的底物,P*—A*为连着辅助基团的产物, 而P*则为去除辅助基团后的最终产物。其中手性辅助试剂A* 一般可回收再使用。
以(S)—1—氨基—2—甲氧甲基吡咯烷(SAMP,8)为手性辅助基团合 成高光学纯度的食叶蚁警戒 信息素9就是这类不对称反应的一个典型例子
由光学纯1,1‘-联萘-2,2’-二酚
是手性氢负离子还原剂。
(2) 过渡金属络合物催化的 羰基化合物的氢化
Noyori等发现手性联二萘膦(BINAP)与过渡金属 形成配合物还可以还原羰基得到醇。
酮的不对称氢化是制备手性醇的一个有 效方法,BINAP-Ru (II)催化剂对于官能 化酮的不对称氢化是极为有效的:
一个好的不对称合成反应首先应具有好的立体选择性, 即高的对映或非对映过量。此外,温和的反应条件、高 的收率、两种立体异构体合成的通用性、原料经济性等 亦是衡量其优劣的指标。

13第十三章-不对称合成

13第十三章-不对称合成

羰基不对称加成——非螯合加成:
在无手性因素时,普通亲核试剂进攻羰基碳的 Re和Si面的几率相同,产物是一对外消旋体:
与手性碳相邻的羰基碳,由于手性碳的影响使 得Re面与Si面进攻能量存在差别,因此存在非 对映过量(de)
7:4
羰基不对称加成:非螯合加成
Cram(克拉姆)规则:
亲核进攻试剂主要通过位阻最小的一侧进攻
当存在特定金属时,它可与羰基氧及α-C上的 氧结合,这种螯合结构的形成导致亲核进攻试 剂只能通过相反的位置进攻羰基碳:
de>98%
螯合结构导致反应的立体选择性大大提高
手性辅助基团参与的羰基加成
螯合结构使得手性底物与小位阻试剂也能 实现高de值的手性合成
将无手性中心或手性中心不合适的底物引入手 性辅助基团,就能实现高产率的单一手性合成
由于双烯体或亲双烯体上难以存在手性基团, 因此控制不对称环合反应主要有两种方法:
通过在双烯体、亲双烯体上引入手性辅助基团
使用手性催化剂催化环合反应
12.5 不对称氢化与氧化
概述:
氢化反应可以将π键还原为单键而得到新的手 性中心,氧化则通过氧化π键而得到新的手性 中心。他们得到单一手性产物的前提是在手性 因素(如催化剂或试剂)存在下进行反应
e键稳定 含量90%
反应具有立体选择性
a键能量高 含量10%
立体专一性:
不同的立体异构体反应得到不同的单一产物的 反应称为立体专一性反应,如还原反应:
还原产物均为单一纯品,具有立体专一性
还原产物为外消旋体,不具有立体专一性
对映过剩(ee)与非对映过剩(de):手性合成 效率的标准
对映选择的反应使用ee:
通过特定方式反应,也能生成单一手性产物

有机化学中的不对称合成

有机化学中的不对称合成

有机化学中的不对称合成在有机化学领域中,不对称合成是一项重要的研究领域,它可以有效地合成具有手性的有机分子。

手性分子在药物合成、天然产物合成以及材料科学等领域中具有重要的应用价值。

本文将探讨不对称合成的基本概念、方法和应用,并介绍一些常见的不对称合成反应。

一、不对称合成的基本概念不对称合成是指通过使用手性起始原料或手性催化剂,合成出具有手性的有机分子的化学合成方法。

在不对称合成中,合成的产物具有不对称的结构或旋光性。

与对称合成相比,不对称合成可以得到具有更高的立体选择性和手性纯度的产物。

不对称合成的基本原理是利用手性诱导或手性催化剂来选择性地激活反应物中的一个面或一个手性中心,从而控制反应的立体选择性。

手性诱导合成方法包括拆分法、不对称催化、酶催化和手性助剂等。

其中,不对称催化是最为常见的方法,它通过使用手性催化剂,使化学反应以特定的立体选择性进行。

二、不对称合成的方法1. 手性诱导合成手性诱导合成是通过使用手性起始原料或手性诱导剂来进行的合成方法。

手性诱导合成包括手性拆分法和手性诱导剂法。

手性拆分法是通过将手性分子与反应物进行化学或物理上的拆分,使得反应物在反应过程中保持立体选择性。

手性拆分法包括光学拆分法、金属配合物拆分法和手性分子的稳定性拆分法等。

手性诱导剂法是通过使用手性诱导剂来引发反应中的手性识别过程,从而控制反应的立体选择性。

手性诱导剂法包括非手性基团诱导和手性感受性诱导。

2. 不对称催化合成不对称催化合成是通过使用手性催化剂来实现的合成方法。

手性催化剂能够选择性地提供一个特定的反应路径,从而控制反应的立体选择性。

不对称催化合成通常包括氢化、氧化、醇缩合、酯化、醚化等反应。

不对称催化合成中最有代表性的方法是手性配体催化法。

手性配体催化法通过使用手性配体配位于金属催化剂上,使催化剂具有手性识别能力,从而实现对反应物的选择性激活。

3. 酶催化合成酶催化合成是通过使用天然酶或人工改造酶来进行的合成方法。

不对称合成方法

不对称合成方法

不对称合成方法
不对称合成方法是一种利用立体选择性反应,使两个对映体中的一个占优势的合成方法。

这种方法又被称为手性合成。

在不对称合成中,至少要有一个化合物是手性化合物,才能使反应中生成的两种过渡态互为非对映关系,它们的活化能差决定了产物产生不等量的对映体。

不对称合成可以通过使用手性试剂、催化剂或者物理方法(如圆偏振光)来进行。

成功的标准通常包括高的对映体过量百分数、手性试剂易得且可循环使用、可以分别制得R与S异构体,以及最好是催化性的合成。

此外,根据手性的来源,不对称合成可以分为普通不对称合成和绝对不对称合成。

普通不对称合成是指依靠直接或间接由天然获得的手性化合物衍生的基团诱导产生手性化合物的合成。

而绝对不对称合成是指绝对脱离天然产物来源,通过物理方法(如通过圆偏光的照射)诱导产生手性的合成。

不对称合成在合成某些药物、香料、氨基酸及具有生物活性的化合物等方面具有很重要的意义。

有机化学基础知识点有机合成中的不对称合成方法

有机化学基础知识点有机合成中的不对称合成方法

有机化学基础知识点有机合成中的不对称合成方法有机化学基础知识点:不对称合成方法不对称合成是有机化学中一种重要的合成策略,用于制备具有高立体选择性的有机分子。

本文将介绍不对称合成的基本原理和常用方法。

1. 不对称合成的原理不对称合成是在化学反应中控制立体选择性的方法。

通常情况下,有机分子具有手性,即它们可以存在两种依据空间构型的镜像异构体。

对于手性化合物的合成,通常需要选择性地生成一种手性异构体而不生成另一种。

不对称合成通过引入手性诱导剂或催化剂,以及具有手性中心的原料分子,来实现选择性合成手性分子的目的。

2. 常用的不对称合成方法2.1 催化不对称合成催化不对称合成是一种利用手性催化剂来控制反应立体选择性的方法,常用的手性催化剂包括金属配合物、有机小分子等。

例如,铑催化的酮还原反应、钯催化的Suzuki偶联反应等都是常见的不对称催化合成方法。

2.2 手性试剂参与的不对称合成手性试剂通常是指具有手性中心的化合物,它们可以作为手性源与底物反应,从而导致产物的手性选择性。

典型的手性试剂包括手性醇、手性酸等。

例如,进行不对称亲核取代反应时,可以使用手性的亲核试剂与底物反应来实现不对称合成。

2.3 手性配体参与的不对称合成手性配体在金属催化反应中起到了关键作用。

配体的选择可以导致反应的选择性以及对映选择性。

通常,配位基团与金属离子形成配合物,在反应过程中通过改变立体构型来控制手性产物的生成。

常用的手性配体包括膦配体、氨配体等。

2.4 手性溶剂参与的不对称合成手性溶剂是一种可以通过溶解性质改变反应体系手性选择性的方法。

在不对称合成过程中,手性溶剂可以与底物或催化剂形成氢键或其他作用力,从而促使产物的手性选择性。

手性溶剂的选择需要考虑溶解性、选择性和化学稳定性等因素。

3. 应用案例不对称合成方法在有机化学领域有着广泛的应用。

例如,药物合成中常使用不对称合成方法来合成药物的对映异构体,从而提高药物的效果和减少副作用。

有机合成中的不对称合成方法

有机合成中的不对称合成方法在有机合成领域中,不对称合成方法是一种应用广泛且具有重要意义的合成策略。

通过不对称合成,可以合成具有高立体选择性的有机分子,从而为药物研发、功能材料制备等领域提供了重要的工具和手段。

一、不对称合成方法的简介不对称合成方法是指在有机合成中,通过引入手性诱导剂或催化剂,使得反应产物中的手性中心具有高立体选择性。

常用的不对称合成方法主要包括催化不对称合成、反应不对称合成和拆分还原法等。

二、催化不对称合成催化不对称合成是一种常用的不对称合成方法,通过引入手性催化剂,控制反应过程中的立体选择性。

常见的手性催化剂包括金属有机催化剂、酶和有机小分子催化剂等。

例如,铑催化的不对称羟醛加成反应、铑催化的不对称氢化反应等都是催化不对称合成的典型例子。

三、反应不对称合成反应不对称合成是指通过对称的反应物进行反应,然后在反应后期引入手性诱导剂,实现对产物的手性控制。

常见的反应不对称合成方法包括不对称氢化反应、不对称环氧化反应和不对称亲核加成反应等。

通过合理选择反应物和手性诱导剂,可以有效地得到具有高立体选择性的产物。

四、拆分还原法拆分还原法是一种利用手性单体进行不对称合成的方法。

通过将手性单体进行反应得到手性中间体,然后通过还原、拆分等操作,最终得到目标产物。

拆分还原法具有操作简单、适用范围广的特点,常用于合成手性药物和天然产物等。

五、不对称合成的应用不对称合成方法在药物研发、功能材料制备以及天然产物合成等领域都有广泛的应用。

通过不对称合成可以合成具有特定立体结构和生物活性的分子,为新药物的设计和合成提供了重要的手段。

同时,不对称合成还可以合成具有特殊功能的材料,如手性催化剂、手性液晶等。

六、不对称合成的挑战与展望尽管不对称合成方法在有机合成领域取得了巨大的进展,但仍然面临着一些挑战。

例如,如何提高手性诱导剂的效率和选择性,如何降低催化剂的成本等都是当前亟待解决的问题。

未来,随着催化剂的发展和合成方法的创新,不对称合成方法将得到进一步的完善和拓展,为有机合成领域的发展提供更多可能性。

化学合成中的不对称合成技术

化学合成中的不对称合成技术在有机化学领域中,合成手段的发展一直是研究的重要方向之一。

不对称合成技术是一种能够合成具有立体异构体的有机分子的方法,被广泛应用于药物、农药、天然产物合成等领域。

本文将探讨不对称合成技术的原理、应用以及未来的发展方向。

一、不对称合成技术的原理不对称合成技术是指通过引入具有手性性质的试剂或催化剂,使得反应只生成一种立体异构体的合成方法。

其中,手性试剂或催化剂是实现不对称合成的关键。

这些手性试剂或催化剂能够选择性地与底物发生反应,产生具有特定立体结构的产物。

主要的不对称合成技术包括手性配体催化、手性分子催化、手性荧光探针和手性相系统。

手性配体催化是最常见的不对称合成技术之一,其中金属催化剂与手性配体配对,通过底物与催化剂之间的相互作用,实现对立体构型的选择性催化。

手性分子催化是一种最近兴起的不对称合成技术,它利用手性有机小分子作为催化剂,实现对底物的不对称催化。

手性荧光探针和手性相系统则利用手性小分子的发光性质或手性结构对底物进行选择性响应,实现不对称合成。

二、不对称合成技术的应用不对称合成技术在有机合成中有着广泛的应用。

它不仅可以用于合成具有特定立体构型的有机分子,还可以用于解决合成中的对映体纯度和产物选择性的问题。

在药物合成中,不对称合成技术被广泛应用于合成具有药效活性的手性药物。

通过选择合适的手性试剂或催化剂,可以选择性地合成单一对映体,从而提高药物的治疗效果和减少副作用。

例如,利巴韦林和普鲁卡因就是应用不对称合成技术合成的手性药物。

在农药合成中,不对称合成技术可以用于合成具有高效杀虫活性的手性农药。

不对称催化反应和手性分子催化反应是常用的合成手段。

利用不对称合成技术,可以合成出对映体纯度高的农药,提高农作物保护的效果。

在天然产物合成领域,不对称合成技术可以用于合成复杂天然产物的手性中间体。

许多天然产物具有复杂的结构和多种生物活性,合成难度很大。

不对称合成技术的应用可以大大提高合成效率,并获得对映体纯度高的天然产物。

不对称合成名词解释

不对称合成名词解释不对称合成是化学中一个重要的概念,它是指反应产物中碳原子的排列不对称或不饱和,可以通过精确的合成来做出精确的产物。

不对称合成非常重要,因为它可以让化学家们控制结构,例如控制碳原子的排列顺序,从而创造出更高级的材料和制剂,用于药物研究、纳米技术等领域。

不对称合成最常用的方法是以多种不同的有机物质为原料,通过反应得到不对称的产物。

有了不对称合成,化学家们可以实现精确控制,有助于研究出新的有效材料,以满足特定的应用场景要求。

不对称合成的方法很多,常用的有金属配位盐催化、酸催化、光催化和水溶性催化等,它们都有其自身的特点和应用。

金属配位盐催化是一种最常用也最受欢迎的方式,一般通过加入活性金属与有机物质发生反应,从而形成不对称的产物,可以使不对称产物的排列更加精确。

酸催化法也是一种简单而有效的方式,可以使不对称产物的形成更加清晰和精确。

它通过加入酸来促进有机物质中发生的反应,从而产生不对称的产物。

光催化和水溶性催化是近年来得到广泛应用的两种方法,在光催化中经由发射和吸收光来产生不对称的产物,而水溶性催化则是在水溶液中添加催化剂,通过光照来促进有机物质中发生反应,从而产生不对称的产物。

不对称合成技术在21世纪被广泛应用,它已经成为化学领域中的一种重要工具,在制药、材料研究和纳米技术等领域都发挥着重要作用。

例如,不对称合成技术可以用来提高药物的活性,使原料的利用更加高效;它也可以用来研究各种新型材料,为社会和工业生产提供更好的材料;它还可以用来控制纳米材料的结构,从而提高纳米材料的性能。

总而言之,不对称合成是一种重要的化学合成技术,可以有效地提高药物的活性、研究新型材料和提高纳米材料的性能。

它也可以至关重要地帮助化学家们精确控制反应中的碳原子排列,从而实现复杂的反应产物结构。

因此,不对称合成技术在未来将发挥更重要的作用,将成为药物研究、材料研究和纳米技术等领域的有力工具。

它将为世界上的科学家和工程师提供更多的可能性,用于创造出更多的新材料和药物,改善人类的生活环境。

不对称合成


COY +
YOC
R' R H
二、 环外手性传递
Me H Ph NLi CH3I Me H Ph N CH3 H 3.2 : 1 Ph CH3 N H Ph HO BCl3, Et3N PhCHO N H Ph 2.5 : 1 + + Me H Ph N H CH3 Ph HO N H Ph
三、 配位型环内手性传递
(ArO)2AlCH3
O t-Bu CH3Li CH3 OH 21% 99 % Bu-t Al(OAr)2CH3
CH3 + t-Bu
ArO =
O Bu-t
在底物控制反应中,噁唑烷酮、吡咯烷、氨基醇、 酰基磺内酰胺和a-硅烷基酮等手性体系作为手性 辅剂,已经广泛地用于不对称诱导与醛的亲核加 成反应。
Sn(OTf)2 Bu3SnF PhOHO SEt
Catalyst
N Me
N H
100 % syn e.e. > 98 %
不对称成环反应
一、手性双烯体诱导反应
EtO2C O + O O O PhH, reflux EtO2C N O O O syn 100 % d.e. 100% O
N
二、手性亲双烯体诱导反应
H N H CO2H t BuCHO, H+ H N H O Bu-t R 1)LDA 2) RX N H O Bu-t
O
O
H3O+ N H
CO2H R
CO2H H 2N H H
3
Ph 1) CH3OH, HCl N O H CH3 1) LDA CO2CH3 2) CH3I 94% d.e.
Ph N O H CH3
O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

COOH H CH3 OH
R-乳酸
COOH H3C OH
S-乳酸
7
H
局部面Re和Si的描述
关于局部面两侧的立体化学描述,如果三个基团 a,b,c有a>b>c的顺序
Re
c Si a b b
c a
Re
Si
O
R
R'
8
获得单一对映体的途径
手性源(chiral pool)
治疗结核病的药物
合成
前手性 底物
不对称 合成AS*AS*ST
* *
T
*
藉助于手性助剂与反应底物 A 作用而成为手性中间体 AS* ,经 不对称反应得到新的反应中间体S*T*,回收S*后,得到新的手 性产物T*。
10
c.手性试剂的不对称反应 (chiral reagent)
• 底物 A 在进行不对称反应中加入手性试剂 S* ,得到反应产 物为新的手性化合物T*,而手性试剂能部分被回收。
12
• 对映选择性
• 在一个不对称反应中,若底物经转化后形成不等量 的一对对映异构体,则该反应就具有对映选择性
H Ph Ph N B O O H OH + (R) 99 : (S) 1 HO H
Me 10 mol% BH3, THF
1
Corey-Bakshi-Shibata (CBS)还原 衡量对映选择性的优劣: 对映体过量(ee, enantiomeric excess)百分数
左右手互为镜象
• 一个物体若与自身镜象不能叠合,叫具有手性. •在立体化学中,不能与镜象叠合的分子叫手性分子, 而能叠合的叫非手性分子. •在有机化学中,凡是手性分子都具有旋光性(有些手 性分子旋光度很小);而非手性分子则没有旋光性. 6
构型及表达式: R、S构型的确定
· · · 如 在最小基团背面看; 其余三个基团原子序数:大→中→小连接; 顺时针:R;反时针:S。
第9章
不对称合成
1
The Nobel Prize in Chemistry 2001
Ryoji Noyori William S. Knowles "for their work on chirally catalysed hydrogenation reactions" K. Barry Sharpless "for his work on chirally catalysed oxidation reactions"
A
T
不对称合成的定义与分类
对称的反应(选向率为0) 不对称合成 不对称 的反应 立体选择性反应 0<选向率<100%
立体专一性反应 选向率≈100% 底物分子中潜手性单元与反应物作用形成不等量立体异构 体的过程,通过反应把分子中的一个对称的结构单元转化 为不对称的结构单元,称之为不对称合成 选择性 选择性 0 100% 用拆分法提纯 几乎只有一种产物;用重结晶法 可提纯
A
S*
T*
d.不对称催化反应 (chiral catalysis)
• 在底物A进行不对称反应时加入少量的手性催化剂 cat*,使 它与反应底物或试剂形成高反应活性的中间体,催化剂作 为手性模板控制反应物的对映面,经不对称反应得到新的 手 性 产 物 , 而 cat* 在 反 应 中 循 环 使 用 , 达 到 手 性 增 值 (chirality increment) 或 手 性 放 大 效 应 (chirality amplification)。 cat* * 11
• 当对映异构化合物以某种特定的用途,如作为治疗药物使
用时,对映异构体所表现出的生理活性可能很不相同,甚至 截然相反
4
HOOC
HOOC
H 2N
H N H
N
H2N
COOMe (S, S)-异构体的甜度是 COOMe
PhPh
O O
蔗糖的200倍,而其他异 构体却呈苦味
HO COOH
阿斯巴甜
HO HO NH2
为对映异构的化合物则表现出识别能力的差异,因而体现出 不同的生理活性
3
不对称合成的意义 • 手性药物成为医药界的一次重大变革。药物对杂质的要求
是很严格的。因为杂质对人体健康的影响很大,所以药物的
纯度一般要求在 98%以上,并对 2%以下的杂质要明确其性 质和副作用。而对于外消旋体药物来讲,等于有50%的杂质 ,因此用单一对映体(即手性药物)供药成为现代医药工业 一项迫切的任务。
2
不对称合成的意义
• 天然有机化合物大多有旋光现象. 自然界的手性分子绝大 多数是以单一对映异构体的形式存在的,如糖是D-构型的, 氨基酸则是L-构型的。由这些单一构型的有机小分子所形成 的生物大分子如酶、核酸等因而也是具有手性的 • 生物大分子的这种不对称性一方面决定了它们在进行各种
生化反应时具有极高的立体专一性,另一方面对外来的、互
COOH
治疗帕金森氏综合症 的有效药物 NH2 HO
L-多巴
治疗帕金森氏综合症 的有效药物
O N NH O O O
不能透过血脑屏障而产 生严重的副作用
O O HN O O N
导致胎儿畸形
5
对孕妇起镇定作用
(R)-thalidomide
(S)-thalidomide
镜象与手性的概念
左手和右手不能叠合
若底物分子中已有手性中心存在,且反应的产物为不等 量的一对非对映异构体,则该反应就具有非对映选择性
O Me2CuLi H (S) O + H H (S, S) 98 : H (S, R) 2 O
H
衡量非对映选择性的优劣: 非对映体过量(de, diastereomeric excess)百分数
15
非对映体过量(de, diastereomeric excess)百 分数 如果产物 A 和 B 是非对映异构体,
防止“外消旋 化” 会导致失明 “立体选择性”反应,如手 性催化、手性诱导、生物催 化
结晶法
治疗孕妇的早期妊娠反应
外消 旋体
拆分
衍生法 酶法 具有强烈的致畸活性 色谱法
9
a. 手性源的不对称反应(chiral pool)
手性源S*经不对称反应进入了新的手性化合物T*中。
S
*
T
*
b.手性助剂的不对称反应(chiral auxiliary)
13
对映体过量百分率(%ee),简称ee值 若产物是一对对映体,当R构型的产物大于S构型
的产物时,%ee 为
[R] - [S] %ee = 100% [R] + [S]
当S构型的产物大于R构型的产物时,%ee 为
%ee = [S] - [R] 100% [R] + [S]
14
• 非对映选择性
相关文档
最新文档