西南交通大学路基课程设计

西南交通大学路基课程设计
西南交通大学路基课程设计

西南交通大学《路基工程》课程设计报告

学生姓名:

学生学号:

班级编号:

指导教师:王迅

2015 年 6月 5 日

目录

1设计资料 (1)

2说明书 (1)

3计算书 (5)

4设计图纸 (13)

5参考文献 (15)

6附录 (16)

1设计资料

1.1线路基本信息

某Ⅰ级重型双线铁路,旅客列车设计行车速度140km/h,K2+500~K3+500 段路堤处于直线地段,路堤挡土墙高度9m,挡土墙上部路堤高度为1m。根据实际情况,需设置重力式挡土墙。

1.2设计荷载

只考虑主力(主要力系)的作用,且不考虑常水位时静水压力和浮力。

1.3设计材料

挡土墙材料为片石砌体,墙背填料为碎石类土。相关参数可以参考附表。

2说明书

2.1认真分析设计任务书所提供的设计依据。

2.2依据

依据《铁路路基设计规范(TB10001-2005)》,确定双线铁路的线间距,并确定路基各部分尺寸。

2.3换算土柱的确定

进行路基及其加固建筑物的力学检算时,系将路基面上的轨道静载和列车竖向活载一起换算成与路基土体容重相同的矩形土体,此为换算土柱。

绘制出换算土柱高度及分布宽度计算图示,并选取参数进行计算。计算结果可参照《铁路路基设计规范(TB10001-2005)》附表A进行检查。

当墙后填料不均匀时,为方便计,可将墙后填料视作均质材料进行计算,容重可取墙后填料的平均容重。

2.4挡土墙尺寸的初步拟定

采用重力式仰斜挡土墙。根据规范,初步拟定墙顶宽度、墙背和墙胸的坡度、墙底宽度和坡度,然后进行检算。

2.5挡土墙设计荷载的计算

作用在挡土墙上的力,一般可只计算主力,在浸水地区、地震动峰值加速度为0.2g (原为八度)及以上地区及有冻胀力等情况下,尚应计算附加力和特殊力。本设计中只考虑如下主力:

1、墙背填料及荷载的主动土压力

作用在挡土墙墙背的主动土压力,一般按库仑主动土压力公式计算。 当破裂面交于路基面时,破裂棱体的面积S 随着挡土墙及破裂面位置而变化, 但都可归纳为一个表达式:

00tan S A B θ=-

式中 ()00,,A f H a h =

()000,,,,,,B f H a b h K l α=

当边界条件确定后,A 0、B 0为常数,并可从破裂棱体的几何关系求得。

附表《各种边界条件下的库仑

主动土压力公式》给出了不同边界条件下的库仑主动土压力计算公式。在具体计算时,由于无法预知破裂面的位置,一般是先假设破裂面位置,然后按此情况计算出破裂角θ,再根据几何关系来校核假设是否正确。若假设不合理,则需选用另外的破裂面位置重新计算,直至校核合理。最后可根据附表中公式计算土压力的大小,方向和作用点位置。

编程思路:限定破裂角θ由α~900-υ循环,给定搜索步长Δθ=0.1~0.50,以不同破裂角θ值确定相应土压力,从中找出最大值即为主动土压力。

2、墙身重力及位于挡土墙顶面上的恒载

(1)墙身重力可由挡墙面积乘以挡墙圬工的容重得到;

(2)挡土墙顶面上的恒载:若设计中的换算土柱一部分已侵入挡土墙墙顶范围,则此部分换算土柱应计入挡土墙顶面上的恒载。

3、基底的法向力及摩擦力

2.6挡土墙的检算 2.6.1挡土墙稳定性检算

表2-1挡土墙稳定性检算要求

检算项目 主要力系 主要力系加附加力系

滑动稳定系数K c ≥1.30,≤1.5 ≥1.20 倾覆稳定系数K 0

≥1.50,≤1.7

≥1.30 偏心距e

土质地基

≤B/6

≤B/6

岩石地基

≤B/4 ≤B/4 基底应力σ

≤[容许承载力]

≤1.2[容许承载力]

(1)挡土墙沿基底的抗滑动稳定系数(非浸水)

()''

00

tan tan x x x c x N E E f E K E N αα??+-??+??=

-?∑∑∑∑

式中 N ∑——作用基底上的总垂直力(kN );

x

E

∑——墙后主动土压力的总水平分力(kN );

'

x

E ——墙前土压力的水平分力(kN ); 0α——基底倾斜角(°);

f ——基底与地层间的摩擦系数。

倾斜基底尚应检算沿地基水平方向的滑动稳定性。基底下有软弱土层时,还应检算该土层的滑动稳定性。

(2)挡土墙抗倾覆稳定系数

y

M K M

=

∑∑

式中

y

M

∑——稳定力系对墙趾的总力矩(kN ?m );

M

∑——倾覆力系对墙趾的总力矩(kN ?m )。

(3)挡土墙基底合力的偏心距

022y M M B B e C N

-=-=-

∑∑∑

式中 e ——基底合力的偏心距(m ),当为倾斜基底时,为倾斜基底合力

的偏心距;

B ——基底宽度(m ),倾斜基底为其斜宽;

C ——作用于基底上的垂直分力对墙趾的力臂(m );

N ∑——作用于基底上的总垂直力(kN )。

当为倾斜基底时,作用于其上的总垂直力:

'

0cos sin x

N N E

αα=?+?∑∑∑

(4)基底压应力

()

12121261620

6320,63N B e e B B N B

e C

N B

e B C σσσσσ??≤± ???>==<-==

-∑∑∑,时,=时,,时,

式中 1σ——挡土墙趾部的压应力(kPa );

2σ——挡土墙踵部的压应力(kPa )。

2.6.2挡土墙截面强度检算

通常仅选取一、两个墙身截面进行强度捡算,如基底、基础顶面、1/2墙高处、墙身变截面处等截面。

表2-2挡土墙稳定性检算要求

检算项目主要力主要力加附加力

压应力σ≤[容许承载力] ≤1.3[容许承载力]

剪应力τ≤[容许承载力] ≤[容许承载力]

偏心距e≤0.3B’≤0.35B’

2.6.3检算不通过处理办法

若上述各项检算中有不合格者,则应调整挡土墙尺寸,重新进行计算,直到各项检算指标全部合格。

2.7绘制挡土墙设计图纸

采用Autocad制图,采用3号图纸,绘图比例1:200,并附设计说明。

3计算书

3.1挡土墙与路堤相关参数

3.1.1挡土墙几何信息

采用浆砌片石仰斜式重力挡土墙,墙高9m,墙顶填土高度1m,顶部有墙帽宽1.6m,厚0.4m,底部水平,底宽1.5米。墙背,墙胸全采用仰斜,坡度均为1:0.25。

3.1.2土壤地质情况

填土为碎石类土,内摩擦角为40°,填土与墙背间的摩擦角为26.67°,容重为19KN/m3,基地与底层的摩擦系数f取0.5。

3.1.3挡土墙墙材料

帽石采用c15混凝土,墙身采用7.5号砂浆,片石砌体,砌体容重22KN/m3,砌体容许压应力为[σ]=1050KPa,容许剪应力[τ]=100KPa。

3.1.4车辆和轨道荷载

为了计算方便,可检算换化为路基填土的均布土层,并采用全断面布载。查阅《列车和轨道荷载换算土柱高度及分布宽度表》可得土柱换算高度为 3.2m,宽度为3.3m。

3.1.5双线铁路路基尺寸

路基面宽度11.2m,双线铁路中心线间距为4m。

3.2墙背土压力计算

对于墙前被动土压力

E,在挡土墙基础一般埋深的情况下,考虑到自然力与

p

人畜活动的作用,偏于安全。一般不计算被动土压力,只计算主动土压力。3.2.1破裂面计算

假设破裂面存在如图3-1,存在情况有五种,则有五种计算公式。利用计算机编程对下列五种情况进行检算。经过计算破裂面存在范围III内,其角度 为36.78°。(计算机模拟计算结果以及代码存于附录)

图3-1 假设破裂面存在的五种范围

3.2.3验算破裂面是否交于荷载内

破裂面至墙踵

0.642rad

荷载内缘至墙踵

0.518rad

荷载外缘至墙踵

0.733rad

0.518<0.642<0.733

破裂面在荷载内

3.2.1主动土压力计算

在情况III 下,破裂面位置及各种几何参数表示如图3-2

图3-2

其主动土压力计算公式如下

α

σ?ψ-+=

)

(2a 21

00H a h H A +++=)(

αtg h a H H h K D b B )22(2

1

)(ab 21000++++++=

)

sin()

cos()

(00a ψθ?θθγ++-=B tg A E

=ψ52.63°

82912.3291210=+??++?=)()(A

365.314

1

)2.3229(9212.3)95.15.1(5.11210=??++??+?++??=B

1.1302287.0)365.3174755.082(19a =?-??=E 同时对该区域内其它角度进行验算 当?=35θ

1.128259.0)365.317.082(19=?-??=a E 当?=5.35θ

99.128251.0)365.31713.082(19=?-??=a E 当?=9.35θ

4.129244.0)36

5.31723.082(19=?-??=a E 当?=5.36θ

130)365.31740.082(19=?-??=a E 当?=9.36θ

8.1292266.0)365.3175.082(19=?-??=a E

所以36.78°是该区域内主动土压力最大的破裂面角度。 3.2.2土压力作用点位置的确定

92455.2)

22(33)33(3012

2

3021123x =+-+++-+=h h ah aH H h h h H h H a H Z 23114.2y =+=αtg Z B Z x

3.3墙身稳定性检算 3.3.1滑动稳定性检算

()''

00

tan tan x x x c x N E E f E K E N αα??+-??+??=

-?∑∑∑∑

式中 N ∑——作用基底上的总垂直力(kN )(考虑帽石重量的影响);

x

E

∑——墙后主动土压力的总水平分力(kN );

'x

E ——墙前土压力的水平分力(kN )这里'x E =0; 0α——基底倾斜角(°)这里0α=0°;

f ——基底与地层间的摩擦系数。

N E E a k 9.126976.01.130)cos(x =?=-=αδ

3

.134.192

.1265.0)43.282295.1236.14.0(>=?+??+??=c K 滑动稳定性检算通过。 3.3.2倾覆稳定性检算

y

M K M

=

∑∑

式中

y

M ∑——稳定力系对墙趾的总力矩(kN ?m );

M

∑——倾覆力系对墙趾的总力矩(kN ?m )。

(帽石重力影响考虑其中)

6

.179.192

.292.12695.272.1423.243.28875.12970>=??+?+?=K 倾覆稳定性检算通过。

3.3.3挡土墙基底应力及偏心距离检算

022y M M B B e C N

-=-=-

∑∑∑

式中 e ——基底合力的偏心距(m ),当为倾斜基底时,为倾斜基底合力

的偏心距;

B ——基底宽度(m ),倾斜基底为其斜宽;

C ——作用于基底上的垂直分力对墙趾的力臂(m );

N ∑——作用于基底上的总垂直力(kN )(考虑帽石的重力)。

当为倾斜基底时,作用于其上的总垂直力:

'

0cos sin x

N N E

αα=?+?∑∑∑

m 11.072

.1443.2829754

.29225.1e -=++-=

6

e B <

偏心距检算通过 基底压应力

()

12121261620

6320,63N B e e B B N B

e C

N B

e B C σσσσσ??≤± ?

??>==<-==

-∑∑∑,时,=时,,时,

式中 1σ——挡土墙趾部的压应力(kPa );

2σ——挡土墙踵部的压应力(kPa )。

KPa

400][5

.166.0177.22654

.32699.1261

2

=<=±=σσσ)(

基底压应力检算通过。 3.3.4挡土墙墙身截面强度检算

这里检算墙身中间位置的法向应力,其公式与基底应力公式一致。

022y M M B B e C N

-=-=-

∑∑∑

式中 e ——截面合力的偏心距(m ),

B ——截面宽度(m );

C ——作用于截面上的垂直分力对墙趾的力臂(m );

N ∑——作用于截面上的总垂直力(kN )。

B

3.033.042.02

5.1e <=-=

a

1050][)e 61(86

.27805

.3712

KP B

B

N =<=

±=-∑σσσ

墙身法向应力检算通过。

剪应力检算

对主动土压力作用处截面进行剪应力计算

Kpa B

E 100][6.845

.192

.126xi

=<===

∑ττ

剪应力检算通过。

4设计图纸

5参考文献

[1] 铁道工程.郝瀛主编.铁道工程.中国铁道出版社,2000;

[2] 铁路路基支挡结构设计规范(TB10025-2001).中国铁道出版社,2002;

[3] 铁路路基设计规范(TB10001-2005).中国铁道出版社,2005;

[4] 铁路工程设计技术手册路基.铁道部第一勘测设计院.中国铁道出版社,

1995;

附录程序代码以及结果

#include"stdafx.h"

#include

#include

#include

#define PI 3.1415926

int _tmain(int argc, _TCHAR* argv[]) {double i=0.245;

double second=0;

double tem=0;//中间变量

double third=0;

while(i<0.518)

{

second=19*(50*tan(i)-13.125)*cos(i+0.222222222*PI)/sin(i+0.2924 *PI);

if(second>tem)

{tem=second;}

i=i+0.001;

}

printf("%f\n",tem);

double j=0.518;

double k=0;

double r=0;

while(j<0.73244)

{

third=19*(82*tan(j)-31.365)*cos(j+0.222222222*PI)/sin(j+0.2924* PI);

if(third>r)

{r=third;k=j;}

j=j+0.001;

}

printf("%f %f\n\n",r,k);

double fourth;

double q=0.73244;

double l=0;

double x;

while (q<0.77017)

{

fourth=19*(50*tan(q)-2.565)*cos(q+0.222222222*PI)/sin(q+0.2 924*PI);

if(fourth>l)

{l=fourth;x=q;}

q=q+0.001;

}

printf("%f %f",l,x);

getch();

return 0;

}

隧道钻爆设计-《隧道工程》钻爆课程设计-西南交大峨眉校区

课程名称: 设计题目: 院系: 专业: 年级: 姓名: 指导教师: 西南交通大学峨眉校区 年月日

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日题目隧道钻爆设计 一、设计的目的 掌握隧道钻爆设计过程。 二、设计的内容及要求 根据提供的隧道工程,确定各炮眼类型的炮眼数目;编制钻爆参数表;绘制钻爆设计图;绘制爆破网络图 三、指导教师评语 四、成绩 指导教师(签章) 年月日

隧道爆破设计实例 一、 工程概况 某隧道穿越无区域性断裂构造地带,围岩较为破碎,裂隙较发育,普氏系数f=8~10。地下水以基岩裂隙水为主,水量较发育。隧道内围岩以Ⅳ类围岩为主,主要为片麻岩。隧道断面设计为半圆拱形,底宽B=4.5m 、高H=4.0m 。 二、 施工方案选择 为了保证隧道开挖质量,又能加快施工工期,采用全断面光面爆破施工方案。每月施工28d ,采用4班循环掘砌平行作业,月掘进计划进尺为210m 。 三、 爆破参数选择 1、计算炮眼数N τγ q S N = N ——炮眼数目,不包括未装药的空眼数。 q ——单位耗药量 S ——开挖断面积,m 2。 τ——装药系数,即装药长度与炮眼全长的比值,可参考表1 γ——每米药卷的炸药量,kg/m,2号岩石铵梯炸药的每米质量见表2 开挖断面 []{}23.13B 2B H 22 2B S m =?÷-+??? ?????÷÷=) ()(π 单位炸药消耗量根据表5——5选取,q=1.4kg/m 3。

装药系数τ根据表5——3,并综合考虑各类炮眼的装药系数选取,τ=0.43。 根据表5——4选取γ=0.78,代入上式则有 5 .5578 .043.03 .134.1N =??= 个 实际取55个炮眼。 2、每循环炮眼深度 本工程的月掘进循环计划进尺为210m ,每掘进循环的计划进尺数l=210÷28÷4=1.875m,本设计取炮眼利用率η=0.93,则根据炮眼深度计 算式有L =l/η=1.875/0.93=2.02m 实际取炮眼深度为2m ,每循环进尺l ′=2.0×0.93=1.86m 一般深掏槽眼较炮眼深度加深0.15~0.25m 。 3、炮孔直径 由于地下水以基岩裂隙水为主,水量较发育,因此,选用2号岩石乳化炸药,其药卷直径为32mm ,长度为200mm ,每卷质量为0.15kg 。

路基路面课程设计汇本

路基路面工程-----课程设计 某:赵文杰 学号:09182172 班级:土木91 日期:2012.6.20

一、工程概况 某地区拟新建一级公路,设计年限为15年。夏季近30年连续平均最高温度35℃,冬季最低气温-8℃,土质为红褐色粘性土,近十年冻结指数平均值为250℃?d。 交通年增长率前十年为8%,后5年为6%,路基平均填高2.0m ,地下水距地面1.2m 。交通量如下:小汽车2500辆/日,解放CA15 500辆/日,东风EQ140 500辆/日,黄河JN162 300辆/日。 沿途有碎石、砂石、石灰、粉煤灰、水泥供应。 二、路基路面设计 根据工程概况的特点,以及交通量的要求,新建道路设计为4车道的一级公路,采用沥青路面 1、轴载分析 我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表3-1确定。 表3-1 标准轴载计算参数 ﹙1﹚当以设计弯沉值设计指标及沥青基层层底拉应力验算时,凡前、后轴轴载大于25kN的各级轴载 P的作用次数i n均换算成标准 i

轴载P 的当量作用次数N 。 35.4211 )( p p n C C N i i K i ∑== 式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN ) ; i P — 各种被换算车型的轴载(kN ); C 1— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38; C2— 轴数系数。 K — 被换算车型的轴载级别。 当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算: ()11 1.21C m =+- 式中:m —轴数。 通过hpds 路面结构设计系统计算结果如下: 序号 车 型 名 称 前轴重(kN) 后轴重(kN) 后轴数 后轴轮组数 后轴距(m) 交通量 1 解放CA15 20.97 70.38 1 双轮组 500 2 东风EQ140 23.7 69.2 1 双轮组 500 3 黄河JN162 59.5 115 1 双轮组 300 则其设计年限内一个车道上的累计量轴次e N :

西南交通大学项目管理课程设计

题目:国台大厦基坑支护方案 专业:土木工程 姓名: 学号: 班级: 土木工程学院 2010 年 12月

一、综合说明 (一)编制说明: 1.施工指导规划: 业主下发的招标文件、施工图及工程量清单结合本工程实际勘察情况及我公司多年的施工经验。2.编制依据: (1)《现行建筑施工规范大全》等国家有关规范、规程。 (2)省市发布的有关建筑施工质量、安全文件。 (3)我公司有关技术管理、质量管理、安全管理、文明施工的文件。 (3)工程建设标准强制性条文及台州市提高建筑安装工程质量100条规定。 (4)浙江省工程勘察设计勘察资料。 (5)浙江大学建筑设计院设计的施工图。 3.施工组织原则: 1.遵循《资格预审文件》要求的原则。根据《资格预审文件》的规定和要求,本着全面规划、统筹安排、合理部署、科学管理、精心施工的原则进行编制。 2.坚持专业化作业与综合管理相结合的原则。组织专业队伍充分发挥专业人员、设备的优势,采用综合管理手段,合理调配,以达到整体优化的目的。 3.安全生产的原则。采取先进可靠的安全预防措施,确保施工生产和人身安全。 4.保护环境、文明施工的原则。树立环保意识,保护好周围生态环境,做到文明施工。 (二)工程概况 1.建筑工程概况 拟建场地位于台州市区人民西路北,东临天开大厦,南临小内河,西靠市花鸟市场,北临住宅楼。拟建建筑物包括主楼和裙房,主楼地上为21~25 层(共3 幢),框架-剪力墙结构,裙房2层,框架结构均设1层地下室,基础桩型采用大直径钻孔灌注桩。2.基坑工程概况 地下室基坑呈发V 形,长约150m,宽约25m,基坑开挖较深,大面积开挖深度为5.2m。自然地面平整相对标高为-0.500m,基坑开挖深度考虑到地梁垫层底(垫层厚

路基路面课程设计完整版

《路基路面工程》课程设计 学院:土木工程学院 专业:土木工程 班级:道路二班 姓名:黄叶松 指导教师:但汉成 二〇一五年九月

目录 一、重力式挡土墙设计 第一部分设计任务书 (3) (一)设计内容和要求 (3) (二)设计内容 (3) (三)设计资料 (3) 第二部分设计计算书 1. 车辆换算荷载 (4) 2. 主动土压力计算 (5) 3. 设计挡土墙截面 (9) 4. 绘制挡土墙纵横截面(附图1) (30) 二、沥青路面结构设计 1.设计资料 (12) 2. 轴载分析 (12) 3. 拟定路面结构方案 (16) 4. 各材料层参数 (16) 5. 设计指标确定 (17) 6. 确定设计层厚度 (18) 7. 底层弯拉应力验算 (21) 8. 防冻层厚度验算 (29) 9. 方案可行性判定 (29) 10. 绘制路面结构图 (31)

一、重力式挡土墙 第一部分 设计任务书 (一)设计的目的要求 通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。 将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造 拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度2.4m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,0b =7.0 m 。 2.车辆荷载 车辆荷载等级为公路—Ⅱ级,挡土墙荷载效应组合采用荷载组合Ⅰ、Ⅱ,路基宽度33.5m ,路肩宽度0.75m 。 3.土壤工程地质情况

48m钢桥设计

48m钢桁架铁路桥设计 学院:土木工程学院 班级:土木0906 姓名:张宇 学号:1801090603 指导老师:方海 整理日期:2012年01月07日

——目录—— 第一章设计依据 (2) 第二章主桁架杆件内力计算 (4) 第三章主桁杆件设计 (10) 第四章弦杆拼接计算 (14) 第五章节点板设计 (16) 第六章节点板强度检算 (16)

48m钢桁架桥课程设计 一、设计目的: 跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。 2. 结构基本尺寸 计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。

西南交通大学java课程设计

JAVA综合实验:滑板反射小球游戏专业:电子科学与技术(微电子方向) 学号:20132116 姓名:李瑞婷 2014-2015第二学期

源代码: ball.java packageorg.crazyit.ball; importjava.awt.Image; importjava.io.File; importjavax.imageio.ImageIO; importjava.io.IOException; public class Ball extends BallComponent { // 定义球的竖向速度 privateintspeedY = 10; // 定义弹球的横向速度 privateintspeedX = 8; // 定义是否在运动 privateboolean started = false; // 定义是否结束运动 privateboolean stop = false; /** * m 有参数构造器 * * @parampanelWidth * int 画板宽度

* @parampanelHeight * int 画板高度 * @param offset * int 位移 * @param path * String 图片路径 */ public Ball(intpanelWidth, intpanelHeight, int offset, String path) throwsIOException { // 调用父构造器 super(panelWidth, panelHeight, path); // 设置y坐标 this.setY(panelHeight - super.getImage().getHeight(null) - offset); } /** * 设置横向速度 * * @param speed * int 速度 * @return void */ public void setSpeedX(int speed) { this.speedX = speed; } /** * 设置竖向速度 * * @param speed * int 速度 * @return void */

路基路面课程设计例题

路基路面课程设计例题

4.2.1 重力式挡土墙的设计 (1)设计资料: ① 车辆荷载,计算荷载为公路-Ⅱ级。 ② 填土内摩擦角:42°,填土容重:17.8kN/m 3,地基土容重:17.7kN/m 3,基底摩擦系数:0.43,地基容许承载力:[σ]=810kPa 。 ③ 墙身材料采用5号砂浆砌30号片石,砌体a γ=22kN/m 3,砌体容许压应力为[]600=a σkPa ,容许剪应力[τ]=100kPa ,容许拉应力[wl σ]=60 kPa 。 (2)挡土墙平面、立面布置 图4.1 挡土墙横断面布置及墙型示意图(尺寸单 位:m ) 路段为填方路段时,为保证路堤边坡稳定,少占地拆迁,应当设置路堤挡土墙,拟采用重力式挡土墙。 (3)挡土墙横断面布置,拟定断面尺寸 具体布置如上图所示。 (4)主动土压力计算 ①车辆荷载换算 当H ≤2m 时,q=20.0kPa;当H ≥10m 时,q=10.0kPa 此处挡土墙的高度H=10m ,故q=10.0 kPa 换算均布土层厚度:010 0.6m 17.8 q h γ = = = ②主动土压力计算(假设破裂面交于荷载中部) 破裂角θ:

由14α=-?,42φ=?,42212 2 φ δ? = = =? 得:42142149ψφαδ=++=?-?+?=? 0011 (2)()(31020.6)(310)92.322A a H h a H =+++=?++??+= 00011 ()(22)tan 2211 3 4.5(4.5 1.5)0.610(102320.6)tan(14)2231.8B ab b d h H H a h α= ++-++=??++?-??+?+?-?= 00tan tan (cot tan )tan 31.8tan 49(cot 42tan 49)tan 4992.30.68834.5B A θψφψψθ?? =-+++ ? ???? =-?+?+?+? ??? ==? 验核破裂面位置: 堤顶破裂面至墙踵:()tan (103)tan34.58.93m H a θ+=+?= 荷载内缘至墙踵:()tan 4.510tan14 1.58.49m b H d α+-+=+??+= 荷载外缘至墙踵:()0tan 4.510tan14 1.5715.49m b H d l α+-++=+??++= 由于破裂面至墙踵的距离大于荷载内缘至墙踵的距离并且小于荷载外缘至墙踵的距离抗滑稳定性验算,所以破裂面交于路基荷载中部的假设成立。并且直线形仰斜墙背,且墙背倾角α较小,不会出现第二破裂面。 主动土压力系数K 和K 1 [] cos()cos(34.542) (tan tan )tan 34.5tan(14)sin()sin(34.549) 0.10a K θ?θαθψ+?+?= +=??+-?+?+?= 1tan 4.53tan 34.5 5.57m tan tan tan 34.5tan(14) b a h θθα--?? = ==+?+-? 2 1.5 3.43m tan tan tan 3 4.5tan(14) d h θα= ==+?+-? 31210 5.57 3.431m h H h h =--=--=

路基路面课程设计报告

嘉应学院土木工程学院 《路基路面工程》 课程设计 姓名: 专业: 学号: 日期: 指导教师:

一、重力式挡土墙设计 1.设计参数 (1)浆砌片石重力式仰斜路堤墙,墙顶填土边坡1:1.5,墙身纵向分段长度为10m ;路基宽度26m ,路肩宽度3.0m ; (2)基底倾斜角0α:tan 0α=0.190,取汽车荷载边缘距路肩边缘d =0.5m ; (3)设计车辆荷载标准值按公路-I 级汽车荷载采用,即相当于汽车?超20级、挂车?120(验算荷载); (4)墙后填料砂性土容重γ=183/m kN ,填料与墙背的外摩擦角 τ=o 5.18;粘性土地基与浆砌片石基底的摩擦系数μ=0.30,地基容许 承载力[0σ]=250a kP ; (5)墙身采用2.5号砂浆砌25号片石,圬工容重k γ=223/m kN ,容许压应力a a kP 600][=σ,容许剪应力a j kP 100][][==στ,容许拉应力 a L kP 60][=σ (6)墙后砂性土填料的内摩擦角o 37=φ,墙面与墙背平行,墙背仰斜坡度1:0.27(=0115'o ),墙高H=5m ,墙顶填土高a =4m 。 2.破裂棱体位置确定 (1)破裂角(θ)的计算 假设破裂面交于荷载范围内,则有: 02403703180115'=+'+'-=++=o o o o a φτψ 因为o 90<ω

a h H H a h H H h a h a H H h d b ab B tan )2(2 1 tan )2(2 1 )00(0tan )22(21)(21000000+-=+-++=++-++= )2(2 1 ))(2(21000h H H H a h H a A +=+++= 根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式: 711.0)tan )( tan (cot tan tan 0 =+++-=ψψφψθA B 5235'=o θ (2)验算破裂面是否交于荷载范围内 破裂砌体长度:m a H L 21..2)27.0711.0(5)tan (tan 0=-?=+=θ 车辆荷载分布宽度:m d m N Nb L 5.36.03.18.12)1(=++?=+-+= 所以L L <0,即破裂面交于荷载范围内,符合设计。 3.荷载当量土柱高度计算 墙高5m ,按墙高确定附加荷载强度进行计算。按照线性内插法,计算附加荷载强度:m q h 78.018 14 0== = γ 4.土压力计算 4.16)50)(78.0250(21 ))(2(2100=+?++=+++= H a h H a A a h a H H h d b ab B tan )22(2 1 )(21000++-++= 43.4)0115tan()78.0205(521 00='-??++??-+=o 根据路堤挡土墙破裂面交于荷载内部压力计算公式

西南交通大学钢桥课程设计75.4m详解

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师: 设计时间:2016.4.15——2016.6.5

目录 第一章设计资料 (1) 第一节基本资料 (1) 第二节设计内容 (2) 第三节设计要求 (2) 第二章主桁杆件内力计算 (3) 第一节主力作用下主桁杆件内力计算 (3) 第二节横向风力作用下的主桁杆件附加力计算 (7) 第三节制动力作用下的主桁杆件附加力计算 (8) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (22) 第四章弦杆拼接计算和下弦端节点设计 (23) 第一节 E2节点弦杆拼接计算 (23) 第二节 E0节点弦杆拼接计算 (24) 第三节下弦端节点设计 (25) 第五章挠度计算和预拱度设计 (27) 第一节挠度计算 (27) 第二节预拱度设计 (28) 第六章桁架桥梁空间模型计算 (29) 第一节建立空间详细模型 (29) 第二节恒载竖向变形计算 (30) 第三节活载内力和应力计算 (30) 第四节自振特性计算 (32) 第七章设计总结 (32)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=70+0.2×27=75.4m,钢梁分10个节间,节间长度d=L/10=7.54m,主桁高度H=11d/8=11×7.46/8=10.3675m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

西南交通大学钢筋混凝土伸臂梁课程设计92#题

钢筋混凝土伸臂梁课程设计第0页钢筋混凝土伸臂梁设计 姓名:XXX 学号:XXX 班级:XXX 指导老师:XXX 设计时间:XXX

钢筋混凝土伸臂梁课程设计第0页 目录 1、钢筋混凝土伸臂梁设计任务书 (1) 2、设计资料 (3) 3、内力计算 (4) 3.1设计荷载值 (4) 3.2组合工况 (4) 2.3 包络图 (6) 4、正截面承载力计算 (7) 4.1 确定简支跨控制截面位置 (7) 4.2 配筋计算 (7) 5、斜截面承载力计算 (10) 5.1 截面尺寸复核 (10) 5.2 箍筋最小配筋率 (10) 5.3 腹筋设计 (10) 6、验算梁的正常使用极限状态 (12) 6.1 梁的挠度验算 (14) 6.1.1 挠度限值 (14) 6.1.2 刚度 (14) 6.1.3 挠度 (17) 6.2 梁的裂缝宽度验算 (17) 7、绘制梁的抵抗弯矩图 (19) 7.1 按比例画出弯矩包络图 (19) 7.2 确定各纵筋及弯起钢筋 (20) 7.3 确定弯起钢筋的弯起位置 (20) 7.4 确定纵筋的截断位置 (20)

1、钢筋混凝土伸臂梁设计任务书 (编写:潘家鼎 2013.10.26) 一、设计题目:某钢筋混凝土伸臂梁设计 二、基本要求 本设计为钢筋混凝土矩形截面伸臂梁设计。学生应在指导教师的指导下,在规定的时间内,综合应用所学理论和专业知识,贯彻理论联系实际的原则,独立、认真地完成所给钢筋混凝土矩形截面伸臂梁的设计。 三、设计资料 某支承在370mm 厚砖墙上的钢筋混凝土伸臂梁,如图1所示。 g k 、g k 、q 2k q 1k l 2 l 1 185 185 185 185 C B A 图1 梁的跨度、支撑及荷载 图中:l 1——梁的简支跨计算跨度; l 2——梁的外伸跨计算跨度; q 1k ——简支跨活荷载标准值; q 2k ——外伸跨活荷载标准值; g k =g 1k +g 2k ——梁的永久荷载标准值。 g 1k ——梁上及楼面传来的梁的永久荷载标准值(未包括梁自重)。 g 2k ——梁的自重荷载标准值。 该构件处于正常坏境(环境类别为一类),安全等级为二级,梁上承受的永久荷载标准值(未包括梁自重)g k1=21kN/m 。 设计中建议采用HRB500级别的纵向受力钢筋,HPB300级别的箍筋,梁的混凝土和截面尺寸可按题目分配表采用。 四、设计内容 1.根据结构设计方法的有关规定,计算梁的内力(M 、V ),并作出梁的内力图及内力包络图。 2.进行梁的正截面抗弯承载力计算,并选配纵向受力钢筋。 3.进行梁的斜截面抗剪承载力计算,选配箍筋和弯起钢筋。

高速公路路基路面课程设计

目录 一、设计题目: (2) 二、设计资料: (3) 1.设计任务书要求 (3) 2.气象资料 (3) 3.地质资料与筑路材料 (3) 4.交通资料 (4) 5.设计标准 (5) 三、路基设计 (5) 1.填土高度 (5) 2.横断面设计 (6) 3.一般路堤设计 (6) 4.陡坡路堤 (7) 5.路基压实标准 (7) 6.公路用地宽度 (8) 7.路基填料 (8) 四、路基路面排水设计 (9) 1.路基排水设计 (9) 2.路面排水设计 (10)

3.中央分隔带排水设计 (10) 五、沥青路面设计分析与计算 (11) 1.轴载分析 (12) 2.方案一 (13) 2.1当E0=30Mp时 (13) 2.2、当E0=60MPa 时 (18) 3.第二方案: (22) 3.1当E0=30MPa时 (22) 3.2当E0=60MPa时 (26) 六、水泥混凝土路面结构分析与计算 (30) 1.当EO=30MPa时 (31) 2.当EO=60MPa时 (35) 七、方案比较 (39) 八、参考书目 (41) 九、附图 (41) 一、设计题目: 某高速公路的路面结构计算与路基设计

二、设计资料: 1、设计任务书要求 河南某公路设计等级为高速公路,设计基准年为2010年,设计使用年限为15年,拟比选采用沥青路面结构或水泥混凝土路面,需进行路面结构设计。 2、气象资料 该公路处于Ⅱ5区,属于温暖带大陆性季风气候,气候温和,四季分明。年气温平均在14℃~14.5℃,一月份气温最低,月平均气温为-0.2℃~0.4℃,七月份气温27℃左右,历史最高气温为40.5℃,历史最低气温为-17℃,年平均降雨量为525.4毫米~658.4毫米,雨水多集中在6~9月份,约占全年降雨量50%以上。平均初霜日在11月上旬,终霜日在次年3月中下旬,年均无霜日为220天~266天。地面最大冻土深度位20厘米,夏季多东南风,冬季多西北风,年平均风速在3.0米/秒左右。 3、地质资料与筑路材料 路线位于平原微丘区,调查及勘探中发现,该地区属第四系上更新统(Q3al+pl),岩性为黄土状粘土,主要分布于低山丘陵区,坡地前和山前冲积、倾斜平原表层,具有大空隙,垂直裂隙发育,厚度变化大,承载能力低,该层具轻微湿陷性。应注意发生不均匀沉陷的可

土木工程路基路面课程设计

路基路面课程设计 目录 一、课程设计任务书 二、水泥路面工程设计 沥青路面设计 三、路基挡土墙设计

路基路面课程设计指导书 1.课程设计的目的 路基路面课程设计是对路基路面工程一个教学环节,通过路基路面课程设计使同学们能更加牢固地掌握本课程的基本理论、基本概念及计算方法,并通过设计环节把本课程相关的知识较完整地结合起来进行初步的应用,培养同学的分析、解决工程实际问题的能力。同时,通过课程设计,使同学对相关《设计规范》有所了解并初步应用。 2. 课程设计的内容 (1)重力式挡土墙设计:挡土墙土压力计算;挡土墙断面尺寸的确定; 挡土墙稳定性验算;挡土墙排水设计;绘制挡土墙平面、立面、断面图。(2)沥青混凝土路面设计:横断面尺寸的确定;路面结构层材料的选择; 路面结构层厚度的拟定及计算;路面结构层厚度的验算;分析各结构 层厚度变化时对层底弯拉应力的影响;绘制路面结构图。要求至少拟定 2个方案进行计算。 (3)水泥混凝土路面设计:横断面尺寸的确定;水泥混凝土路面结构层材料的选择;路面结构层厚度的拟定及层底拉应力的验算;确定水泥混凝土 路面板尺寸及板间连接形式;绘制水泥混凝土纵、横缝平面布置图和 水泥混凝土路面结构组合设计图。 3. 课程设计原始资料

(1)挡土墙设计资料 丹通高速公路(双向4车道)K28+156~ K28+260段拟修建重力式挡土墙,墙体采用浆砌片石,重度为22kN/m3。墙背填土为砂性土,重度为18kN/m3。地基为岩石地基,基底摩擦系数为0.5。结合地形确定挡土墙墙高(H)5m (K28+250),墙后填土高度(a)6m,边坡坡度1:1.5,墙后填土的内摩擦角为Φ=32o,墙背与填土摩擦角δ=Φ/2。 (1)新建水泥混凝土路面设计资料 1)交通量资料:据调查,起始年交通组成及数量见表;公路等级为一级公路,双向4车道;预计交通量增长率前5年为7%,之后5年为为6.5%,最后5年为4%;方向不均匀系数为0.5 2)自然地理条件:公路地处V3区,设计段土质为粘质土,填方路基 高3m,地下水位距路床3.5m。 润交通组成及其他资料 车型分类代表车型数量(辆/天) 小客车桑塔娜2000 2400 中客车江淮AL6600 330 大客车黄海DD680 460 轻型货车北京BJ130 530 中型货车东风EQ140 780 重型货车太脱拉111 900 铰接挂车东风SP9250 180 4.设计参考资料 (1)《公路沥青路面设计规范》 (2)《水泥混凝土路面设计规范》 (3)《公路路基设计规范》

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

最新西南交通大学地下工程课程设计(1)

地铁车站主体结构设计(地下矩形框架结构) 西南交通大学地下工程系

目录 第一章课程设计任务概述 0 1.1 课程设计目的 0 1.2 设计规范及参考书 0 1.3 课程设计方案 0 1.3.1 方案概述 0 1.3.2 主要材料 (3) 1.4 课程设计基本流程 (4) 第二章平面结构计算简图及荷载计算 (5) 第三章结构内力计算 (8) 第四章结构(墙、板、柱)配筋计算 (11)

第一章课程设计任务概述 1.1 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2 设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS) 1.3 课程设计方案 1.3.1 方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m,地下水位距地面3m,中柱截面的横向(即垂直于车站纵向)尺寸固定为0.8m(如图1-1标注),纵向柱间距8m。为简化计算,围岩为均一土体,土体参数详见表1-2,采用水土分算。路面荷载为2 kN,钢筋混凝土 20m /

路基路面工程课程设计

一、 二、 三、路基(挡土墙)设计 1.1 设计资料 某新建公路重力式路堤墙设计资料如下。 (1)墙身构造:墙高8m ,墙背仰斜角度)0214(25.0:1' ,墙身分段长度20m ,其余初始拟采用尺寸如图1-1所示。 图1-1 初始拟采用挡土墙尺寸图 (2)土质情况:墙背填土为砂性土,其重度3kN/m 517.=γ,内摩擦角 30=?;填土与墙背间的摩擦角 152/==?δ。地基为整体性较好的石灰岩,其容许承载力 kPa 485][=σ,基底摩擦系数5.0=f 。

(3)墙身材料:采用5号砂浆砌30号片石,砌体重度3a m /kN 23=γ,砌体容许压应力kPa 610][a =σ,容许剪应力kPa 66][a =τ,容许压应力kPa 610][al =σ。 1.2 劈裂棱体位置确定 1.2.1 荷载当量土柱高度的计算 墙高6m ,按墙高缺点附加荷载强度进行计算。按照线形内插法,计算附加荷载强度:2kN/m 15=q ,则: m 8605 1715 0..q h == = γ 1.2.2 破裂角()θ的计算 假设破裂面交于荷载范围内,则有: ' '583030150214 =++-=++=?δαψ 因为 90<ω,则有 ()()H a h H a A +++= 0022 1 ()()65086026502 1 +?++=... 72 26.= ()()α tan 222 121000h a H H h d b ab B ++-++= ()()'.......5830tan 8602502662 1 86025251515021 ??+?+?+?++??= 30 19.= 根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式:

东南大学路基路面课程设计报告

沥青路面厚度设计 计 算 书 学号: 姓名: 班级: 成绩: 日期:2014年9月

沥青路面厚度设计 A、基本情况 某地拟新建一条二级公路省道,路线总长21km,双向四车道,路面宽度为16m,该地属公路自然区划IV区,路基为低液限粘土土质,填方路基最大高度2.1m,路床顶距地下水位平均高度1.4m,属中湿状态,根据室内试验法确定土基回弹模量50MPa,年降雨量1200mm,最高气温39℃,最低气温-10℃。拟采用沥青混凝土路面,根据规范规定,查表得其设计使用期12年。 B、交通荷载情况 根据区域交通分析预测近期交通组成和交通量如表1所示,交通量年平均增长率为4%。 表1 近期交通组成与交通量 要求:试根据交通荷载等级,选择相应的基层(和底基层)材料进行组合设计,并根据进行沥青路面厚度设计计算,编制计算书(计算书格式及编目示例附后)。

一、基本设计条件与参数 依题意得,基本设计条件如下:新建二级公路,双向四车道,路面宽度16m ,公路自然区划IV 区,低液限粘土土质,填方路基最大高度2.1m ,路床顶距地下水位平均高度1.4m ,中湿状态,年降雨量1200mm ,最高气温39℃,最低气温-10℃。 基本参数如下:土基回弹模量50MPa ,设计使用期12年,交通量年平均增长率为4%。 二、交通量分析 本设计的累计当量轴次的计算以双轮组单轴载100kN 为标准轴载,以BZZ-100表示。 1. 当设计弯沉值为指标时,当量轴次计算公式及计算结果如下: 4.35 121 k i i i P N C C n P =?? = ? ??∑ 注:轴载小于25kN 的轴载作用不计 查《规范》得该公路车道系数为0.4,累计当量轴次计算如下: ()[]()[] (次)6 12 10835.84.0418.402704 .0365104.0136511?=???-+=?-+= ηN r r N t e 属于中等交通。 2. 以半刚性基层层底拉应力为指标计算当量轴次

西南交大继电保护及课程设计

-、问答题(16分) 1.三段式电流保护其各段是如何实现选择性的?比较三段式电流保护第1. I.川段的灵敏度和保护范围。 电流I段是靠电流动作值来实现动作选择性的,因为动作电流大于本线路末端短路时可能通过保护的最大短路电流,保证了区外短路时不会误动。 电流II段是通过动作电流和动作时限共同实现选择性的,因为II段的动作电流大于相邻线路电流I段的动作电流,因此相邻线路I段以外的范围短路,保护不会误动,而I段范围内的短路,则因为其动作时限大于相邻线路I段的动作时限而不会误动。 电流III段是通过动作电流和动作时限实现选择性的,因为III段的动作值满足灵敏度逐级配合关系,且动作时限是按阶梯原则整定的,则距离电源最远的保护动作时限最短,然后逐级增加一个时限级差△t。 由于电流III段的动作电流是按躲过最大负荷电流整定的,因此动作值最小,从而动作最灵敏。 二单项选择题(88分) 2.小电流配电系统的中性点经消弧线圈接地,普遍采用()。 A.全补偿 B.过补偿C、欠补偿 正确答案: B 3.考虑助增电流的影响,在整定距离保护I段的动作阻抗时,分支系数应取()。 A.大于1,并取可能的最小值 B.大于1,并取可能的最大值 C.于1,并取可能的最小值 正确答案: C 4、() 既能作被保护线路的主保护,又可作相邻线路的后备保护。 A.闭锁式方向纵联保护B、闭锁式距离纵联保护 C.纵联电流相位差动保护 正确答案: B 5.大接地电流系统发生单相接地故障,故障点距母线远近与母线上零序电压的关系是() . A.无关 B.故障点越远零序电压越高C、故障点越远零序电压越低 正确答案: 6、以下关于三段式电流保护的说法,正确的是(). A.电流速断保护在最小运行方式下的保护范围最大 B.限时电流速断保护-般在本线路首端发生短路时不应该动作切除故障 C、定时限过电流保护在本线路输送最大负荷时应该动作跳闸 正确答案: B 7.方向闭锁高频保护发信机起动后,当判断为内部短路时,() 。 A.两侧发信机立即停信B、两侧发信机继续发信 C.反方向-侧发信机继续发信 正确答案,A 8.电力系统发生故障时,由故障设备(或线路)的保护首先切除故障,是继电保护()的要求。 A.选择性B、可靠性 c.灵敏性 正确答案: A 9.对具有同步检定和无电压检定的重合闸装置,在线路发生瞬时性故障跳闸后()。 A.先台的-侧是检同期侧B、先合的-侧是检无压侧 c.两侧同时台闸 正确答案: B 10、在高频保护的通道加工设备中的()主要是起到阻抗匹配的作用,防止反射,以减少衰耗。 A. 高频阻波器 B. 耦合电容器C、结合滤波器 正确答案: C 11.变压器差动保护的范围为() . A.变压器低压侧 B.变压器高压侧 C.压器两侧电流互感器之问设备 正确答案: C

钢桥课程设计48米单线铁路下承式栓焊简支梁主桁设计

48米单线铁路下承式栓焊简支梁主桁设计

目录 第一部分设计说明书 一、设计资料----------------------------4 二、钢梁上部总体布置及尺寸拟定--------------------------4 1、钢桁架梁桥的优缺点--------------------------4 2、设计假定和计算方法---------------------------4 3、主桁杆件截面选择---------------------------5 4、节点设计原则---------------------------5 5、设计思路和步骤----------------------------5 6、参考文献 ----------------------------6 第二部分设计计算书 一、打开软件-----------------------------------7 二、创建模型-----------------------------------7 1.设定造作环境-----------------------------------7 2.定义材料和截面-----------------------------------7 3.建立节点和单元-----------------------------------8 4.输入边界条件-----------------------------------8 5.输入荷载(1)——加载自重--------------------------------9 6.运行结构分析(1)-----------------------------------10 7.查看结果-----------------------------------10 8.输入荷载(2)——活载添加-------------------------------12 9.运行结构分析(2)----------------------------------13 10.查看结果-----------------------------------13 三、主力求解-----------------------------------14 1.冲击系数-----------------------------------14 2.活载发展均衡系数-----------------------------------14

铁路路基工程课程设计西南交大

课程名称:铁路路基工程 设计题目:软土地基加固设计 专业:铁道工程 年级: 姓名: 学号: 设计成绩: 指导教师(签章 西南交通大学峨眉校区 年月日 设计任务书 专业铁道工程姓名唐强学号20087125 开题日期:2011 年 5 月11 日完成日期:2011 年 6 月10 日题目软土地基加固设计

一、设计的目的 通过设计,巩固所学的软土地基处理的基本知识,熟悉软土地基处理的原理和方法,从而加深对所学内容的理解,提高综合分析和解决实际工程问题的能力。(参考 二、设计的内容及要求 1.路基边坡坡度及边坡防护设计 2.计算路堤极限高度 H,判断是否需要采用加固措施; c 3.通过比选确定应选择何种加固方案; 4.掌握中轴线线下应力的计算和沉降量的计算; 5.固结度修正的计算; 6.绘制路基加固断面图; 三、指导教师评语 四、成绩 指导教师(签章 年月日 一、设计目的 本课程设计的目的是使学生能综合应用《铁路路基工程》课程所学知识,并熟悉铁路路基设计的基本过程。

二、设计内容 1.路基边坡坡度的设计; 2.路基本体工程的设计; 3.路基边坡防护工程的设计; 4.基底设计(针对软土地区。 三、设计资料 1.线路资料 常速,直线地段,单线路堤,路堤高m 7,路基面宽m 5.7,边坡坡度75.1:1:1=m ,线路等级按I 级次重型标准,活载换算高度m h 4.30=,宽m l 5.30=。 2.地基条件 地面以下m 13范围内为软土,灰黑色、流态;m 13以下为中砂层,地下水位与地面齐平。软土竖向固结系数为s cm C v /10323-?=,径向固结系数为 s cm C r /10 423 -?=; 变形模量为2/30cm kg ,泊松比4.0=μ,容重3 /3.17m kN =γ, kPa C u 18=,?=5.4u ?,?=20cu ?。 3.填料

相关文档
最新文档