永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷

合集下载

永嘉县第二中学2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二中学2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )A .20B .25C .22.5D .22.752. 在等差数列{}n a 中,11a =,公差0d ,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.3. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q4.设双曲线=1(a >0,b >0)的渐近线方程为y=x ,则该双曲线的离心率为( )A.B .2C.D.5. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4) 6. 如图是一个多面体的三视图,则其全面积为( )A.B.C.D.7.已知,y满足不等式430,35250,1,x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y=+的最大值为()A.3 B.132C.12 D.158.数列{a n}满足a1=,=﹣1(n∈N*),则a10=()A.B.C.D.9.=()A.﹣i B.i C.1+i D.1﹣i10.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除11.抛物线x2=4y的焦点坐标是()A.(1,0)B.(0,1)C.()D.()12.函数的最小正周期不大于2,则正整数k的最小值应该是()A.10 B.11 C.12 D.13二、填空题13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n}为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .14.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.17.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .18.设函数,若用表示不超过实数m的最大整数,则函数的值域为 .三、解答题19.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值.20.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.21.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.22.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.23.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.24.(本小题满分12分)已知椭圆C A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.永嘉县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.2.【答案】A【解析】3.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.4.【答案】C【解析】解:由已知条件知:;∴;∴;∴.故选C.【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及c2=a2+b2及离心率的概念与求法.5.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.6.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.7.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.8.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.9.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.10.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.11.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.12.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.二、填空题13.【答案】0.【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n }是周期为6的周期数列, ∴b 2016=b 336×6=b 6=0, 故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.14.【答案】②④⑤【解析】解析:构造函数()()x g x e f x =,()[()()]0x g x e f x f x ''=+>,()g x 在R 上递增, ∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.15.【答案】649π【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.16.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:417.【答案】【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形ABD1的面积为4,设点A1到平面AB1D1的距离等于h,则,1则h=故点A1到平面AB1D1的距离为.故答案为:.18.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1, 故y=1;③<<1时,﹣<﹣<0,1<+<, 故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.三、解答题19.【答案】【解析】解:由题意可得:∵当a >1时,函数f (x )在区间[1,2]上单调递增,∴f (2)﹣f (1)=a 2﹣a=a ,解得a=0(舍去),或a=.∵当 0<a <1时,函数f (x )在区间[1,2]上单调递减,∴f (1)﹣f (2)=a ﹣a 2=,解得a=0(舍去),或a=.故a 的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.20.【答案】(1)x y 82;(2)964. 【解析】试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积22b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直线BD 的方程为()21--=x ky .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .利用四边形ABCD 面积BD AC S 21=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,则直线BD 的斜率为k1-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148)2(22y x x k y ,得0888)12(2222=-+-+k x k x k .111]∴2221218k k x x +=+,22212188k k x x +-=.12)1(324)(1||22212212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。

永嘉县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)2. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( ) A .{﹣2} B .{2} C .{﹣2,2} D .∅3. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=4. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .105. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个6. 某几何体三视图如下图所示,则该几何体的体积是( )A .1+B .1+C .1+D .1+π7. 抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )A .B .C .D .8. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10B .﹣10C .9D .159. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差10.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10B .9C .8D .511.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.12.已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④二、填空题13.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 14.设f (x )为奇函数,且在(﹣∞,0)上递减,f (﹣2)=0,则xf (x )<0的解集为 .15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .16.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .17.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .三、解答题19.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).(I)若∠AOB=α,求cosα+sinα的值;(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.20.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.21.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.24.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.永嘉县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.2.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】C【解析】试题分析:函数30,+∞上单调递减,不=-+是偶函数,但是在区间()=为奇函数,不合题意;函数21y xy x合题意;函数2x=为非奇非偶函数。

永嘉县三中2018-2019学年上学期高二数学12月月考试题含解析

永嘉县三中2018-2019学年上学期高二数学12月月考试题含解析

永嘉县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设函数f(x)在x0处可导,则等于()A.f′(x0)B.f′(﹣x0)C.﹣f′(x0)D.﹣f(﹣x0)2.P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为()A.a B.b C.c D.a+b﹣c3.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.4.设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.5.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()A. C. D.时,函数f(x)的最大值与最小值的和为()A.a+3 B.6 C.2 D.3﹣a6.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x 3 4 5 6y 2.5 3 4 4.50.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35 B.=0.7x+1 C.=0.7x+2.05 D.=0.7x+0.457.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③8. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件 9. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除10.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 11.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5} C .{1,2,3,4,5} D .∅12.已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB •u u u r u u u r的最小值为A 、42-+B 、32-+C 、422-+D 、322-+二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx ex x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 14.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.16.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .三、解答题19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.20.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.22.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.23.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)①求实数a的值;②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.24.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.永嘉县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.2.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.4.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.5.【答案】A【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.6.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.7.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.8.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.9. 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”的否定是“a ,b 都不能被5整除”.故应选B .【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.10.【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 11.【答案】B【解析】解:∵C U A={1,5}∴B ∪(∁U A )={2,5}∪{1,5}={1,2,5}.故选B .12.【答案】D.【解析】设PO t =,向量PA u u u r 与PB u u u r 的夹角为θ,21PA PB t ==-,1sin 2t θ=, 222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t tθ==-->u u u r u u u r g ,2223(1)PA PB t t t∴=+->u u u r u u u r g ,依不等式PA PB ∴u u u r u u u rg 的最小值为223-.二、填空题13.【答案】11[133e e ⎧⎫+⋃+⎨⎬⎩⎭,) 【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+, 当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点, 当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 14.【答案】 2 .【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数, ∴定义域关于原点对称, 即﹣2a+3a ﹣1=0, ∴a=1, ∵函数为奇函数,∴f (﹣x )==﹣,即b •2x ﹣1=﹣b+2x , ∴b=1. 即a+b=2, 故答案为:2.15.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 16.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A (3,4),显然直线z=ax+by 过A (3,4)时z 取到最大值12, 此时:3a+4b=12,即+=1, ∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b 时“=”成立, 故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.17.【答案】6.【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.18.【答案】.【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.三、解答题19.【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.20.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.21.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴DF∥BC1,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;…(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.DF=BC1==1,A1D==,A1F=A1C=1.在△A1DF中,由余弦定理可得:cos∠A1DF==,∵∠A1DF∈(0,π),∴∠A1DF=,∴异面直线BC1和A1D所成角的大小;…(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.∴=﹣S△BDE﹣﹣=∴三棱锥C﹣A1DE的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.23.【答案】【解析】解:(1)因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f(x)在[﹣1,3m]上不单调,所以3m>1,…(2分)得,…(3分)(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)所以实数a的值为2.…②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,t2=g(x)=log2x,t3=2x,所以当x∈(0,1)时,t1∈(0,1),…(7分)t2∈(﹣∞,0),…(9分)t3∈(1,2),…(11分)所以t2<t1<t3.…(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.24.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.。

永嘉县第二中学校2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二中学校2018-2019学年高二上学期第二次月考试卷数学

永嘉县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=的定义域为( )A .(﹣∞,﹣2)∪(1,+∞)B .(﹣2,1)C .(﹣∞,﹣1)∪(2,+∞)D .(1,2)2. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④3. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (15. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( )A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð6. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.7. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件8. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.9. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .B .C .D .10.函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.11.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对12.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题13.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .14.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .15.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.16.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .17.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.18.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .三、解答题19.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.20.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值.(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.21.已知函数f (x )=xlnx ,求函数f (x )的最小值.22.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.23.已知椭圆C :22221x y a b+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.24.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.永嘉县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意得:,解得:1<x<2,故选:D.2.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.3.【答案】A【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.4.【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 5. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 6. 【答案】B7. 【答案】C【解析】解:由a 2b >ab 2得ab (a ﹣b )>0, 若a ﹣b >0,即a >b ,则ab >0,则<成立,若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立, 若<则,即ab (a ﹣b )>0,即a 2b >ab 2成立,即“a 2b >ab 2”是“<”的充要条件, 故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.8. 【答案】B9. 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错; 故答案为:B 10.【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

推荐-永嘉二中高三第二次月考数学试卷 精品

推荐-永嘉二中高三第二次月考数学试卷 精品

时间(小时)一、选择题:本大题共12个小题,每小题5分,共60分。

1.=-+-+→542lim 221x x x x x ( )(A )21 (B ) 1 (C )52(D )412.设复数12ω=-,则1+ω=( )(A ) ω- (B ) 2ω (C ) 1ω-(D )21ω3.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①:在丙地区中有20个特大型销焦点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( )(A )分层抽样,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简随机抽样法,分层抽样法4.设函数2322,2()42,2x x f x x x x a+⎧>-⎪=--⎨≤⎪⎩在2x =处连续,则a =( )(A)12- (B)14- (C)14(D)135.满足条件|z-i|=|3+4i|复数z 在复平面上对应点的轨迹是( )(A )一条直线 (B )两条直线 (C )圆 (D )椭圆 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为( ) (A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =( ) (A)42 (B)22(C)41 (D)218.复数1z =, 则22z z -= ( )(A )–3 (B ) 3 (C ) -3i (D )3i9.()nn x 21lim -∞→存在,则实数x 的取值范围是 ( )(A )()1,0(B )[]0,1 (C )[)0,1 (D )(]0,1永嘉二中高三第二次月考数学试卷18.1010.列命题中,真命题是 ( )(A )函数的最大值一定不是这个函数的极大值 (B )函数的极大值可以小于这个函数的极小值 (C )函数在某一区间上的极小值就是函数的最小值 (D )函数在开区间内不存在最大值和最小值11.12321211111lim n n n n n n n n →∞-⎛⎫-+-+- ⎪+++++⎝⎭的值为 ( ) (A) 1- (B) 0 (C) 12(D) 112.同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上, ξ=0表示结果中没有正面向上,则E ξ=( )(A )1 (B )12 (C )14 (D )34二、填空题:本大题共4 个小题,每小题4分,共16分。

永嘉县高级中学2018-2019学年高二上学期第一次月考试卷数学

永嘉县高级中学2018-2019学年高二上学期第一次月考试卷数学

永嘉县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.在△ABC中,b=,c=3,B=30°,则a=()A.B.2C.或2D.22.已知集合M={x||x|≤2,x∈R},N={﹣1,0,2,3},则M∩N=()A.{﹣1,0,2} B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3}3.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.4.某几何体的三视图如图所示,该几何体的体积是()A.B.C. D.5.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37 121新设备22 202根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对6.函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度7.集合{}5,4,3,2,1,0=S,A是S的一个子集,当Ax∈时,若有AxAx∉+∉-11且,则称x为A的一个“孤立元素”.集合B是S的一个子集, B中含4个元素且B中无“孤立元素”,这样的集合B共有个A.4B. 5C.6D.78.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A.B.18 C.D.9.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.10.已知f(x)=x3﹣3x+m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()A.m>2 B.m>4 C.m>6 D.m>811.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人12.曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1二、填空题13.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .16.下图是某算法的程序框图,则程序运行后输出的结果是____. 17.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .18.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.(14分)已知函数1()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分20.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.21.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.22.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.23.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.24.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.永嘉县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.2.【答案】A【解析】解:由M中不等式解得:﹣2≤x≤2,即M=[﹣2,2],∵N={﹣1,0,2,3},∴M∩N={﹣1,0,2},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.4.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.5.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.6.【答案】A【解析】解:根据函数的图象:A=1又解得:T=π则:ω=2当x=,f()=sin(+φ)=0解得:所以:f(x)=sin(2x+)要得到g(x)=sin2x的图象只需将函数图象向右平移个单位即可.故选:A【点评】本题考查的知识要点:函数图象的平移变换,函数解析式的求法.属于基础题型7.【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

永嘉县二中2018-2019学年高二上学期第二次月考试卷数学

永嘉县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}2. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+3. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .4. 下面是关于复数的四个命题:p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 45. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确6. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .97. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .108. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .49. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .210.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .311.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能则几何体的体积为( )意在考查学生空间想象能力和计算能已知关于 的不等式上恒成立,则实数的取值范围是__________ 的最小值为 .的值为 .的模为 .17.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .18.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .三、解答题1920142015CBA 5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.20.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.21.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.22.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.23.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.24.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?永嘉县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵x 2<2 ∴﹣<x <∴P={x ∈Z|x 2<2}={x|﹣<x <,x ∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2}, ∴∁U P={2} 故选:A .2. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 3. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.4.【答案】C【解析】解:p:|z|==,故命题为假;1p2:z2===2i,故命题为真;,∴z的共轭复数为1﹣i,故命题p3为假;∵,∴p4:z的虚部为1,故命题为真.故真命题为p2,p4故选:C.【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.5.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.6.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.7.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.8.【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,设AB的中点为E,过A、E、B分别作准线的垂线,垂足分别为C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG====5,∴EH=EG﹣1=4,则AB的中点到y轴的距离等于4.故选D.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.9.【答案】A解析:解:由作出可行域如图,由图可得A (a ,﹣a ),B (a ,a ),由,得a=2.∴A (2,﹣2),化目标函数z=2x ﹣y 为y=2x ﹣z ,∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 10.【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2. 故选:C11.【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .12.【答案】D【解析】二、填空题13.【答案】【解析】因为在上恒成立,所以,解得答案:14.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4, 故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.15.【答案】3【解析】7sinsin sin cos cossin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭4=, sin cos 733sin 12ααπ-∴==, 考点:1、同角三角函数之间的关系;2、两角和的正弦公式. 16.【答案】 2 .【解析】解:∵复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.17.【答案】 546 .【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16) =(1+2+...+8)+(2+22+ (28)=+=36+29﹣2 =546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.18.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率.三、解答题19.【答案】【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:=,3分球的命中率为:=.(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,, ξ的可能取值为0,2,3,5,P (ξ=0)=(1﹣)(1﹣)=,P (ξ=2)==,P(ξ=3)=(1﹣)×=,P(ξ=5)==,∴该运动员在最后1分钟内得分ξ的分布列为:∴该运动员最后1分钟内得分的数学期望为Eξ==2.【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想.20.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.21.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)22.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,∴抛物线C的方程为x2=2y;(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,∴直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x2﹣2kx﹣4=0,此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,由韦达定理,得:x1+x2=2k,x1x2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.23.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃。

永嘉县高中2018-2019学年上学期高三数学10月月考试题

永嘉县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .22. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.3. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 4. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π5. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 6. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.7. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 8. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2C .0D .29. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.10.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .11.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.12.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .14.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .15.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).16.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.三、解答题(本大共6小题,共70分。

永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷

永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线,分别在其左、右焦点,点为双曲线的右支上2222:1(0,0)x y C a b a b-=>>12,F F P 的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐M 12PF F PM (1,0),则双曲线的离心率是( )CA B .2CD 2. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2-3. 已知的终边过点,则等于( )()2,37tan 4πθ⎛⎫+ ⎪⎝⎭A . B .C .-5D .515-154. 设f (x )=(e -x -e x )(-),则不等式f (x )<f (1+x )的解集为()12x +112A .(0,+∞)B .(-∞,-)12C .(-,+∞)D .(-,0)12125. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π6. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④7. 已知函数(),若数列满足[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩n N ∈{}m a ,数列的前项和为,则( )*()()m a f m m N =∈{}m a m m S 10596S S -=A. B. C. D.909910911912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.8. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .9. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >810.已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=()A .2B .1C .D .二、填空题11.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .12.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .13.已知实数,满足,目标函数的最大值为4,则______.x y 2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.14.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 15.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.16.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ()A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题17.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n.18.已知函数f (x )=sin2x •sin φ+cos 2x •cos φ+sin (π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f (x )在[0,π]上的单调递减区间;(Ⅱ)若x 0∈(,π),sinx 0=,求f (x 0)的值.19.(本小题满分12分)已知函数().()2ln f x ax bx x =+-,a b ∈R (1)当时,求函数在上的最大值和最小值;1,3a b =-=()f x 1,22⎡⎤⎢⎥⎣⎦(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求0a =b (]0,e x ∈e ()f x 出的值;若不存在,说明理由;b 20.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1}(1)若a=,求A ∩B .(2)若A ∩B=∅,求实数a 的取值范围.21.设椭圆C : +=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标. 22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,()f x 其导函数的图象过点.()'f x ()12,(1)求函数的解析式;()f x (2)设函数,其中m 为常数,求函数的最小值.()()()'g x f x f x m =+-()g x永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由题意知到直线,得,则为等轴双曲()1,00bx ay -==a b =.故本题答案选C. 1考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲,,a b c ,,a b c ,,a b c 线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,,a c ,,a b c 将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.,a c 2a 2. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =.考点:1、复合函数;2、导数的几何意义.3. 【答案】B 【解析】考点:三角恒等变换.4. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(-)得12x +112f (-x )=(e x -e -x )(-)12-x+112=(e x -e -x )(+)-12x +112=(e -x -e x )(-)=f (x ),12x +112∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-,12即不等式f (x )<f (1+x )的解集为{x |x >-},故选C.125. 【答案】A 【解析】考点:三角函数的图象性质.6. 【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题. 7. 【答案】A.【解析】8.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.9.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值10.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.二、填空题11.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A (3,4),显然直线z=ax+by 过A (3,4)时z 取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b 时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题. 12.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.13.【答案】3-【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线0l 30x y +=0l l 3x y z a +=-经过点时,取得最大值,∴,所以,故l 5(,2)3M 3z a x y -=+max 5()3273z a -=⨯+=max 74z a =+=.3a =-14.【答案】 ①③⑤ 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.15.【答案】 75 【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.16.【答案】A【解析】三、解答题17.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题. 18.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.19.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当时,.0a =()ln f x bx x =-假设存在实数,使有最小值3,b ()(]()ln 0,e g x bx x x =-∈.………7分11()bx f x b x x-'=-=①当时,在上单调递减,(舍去).………8分0b ≤()f x (]0,e ()min 4()e 13,f x f be b e==-==②当时,在上单调递减,在上单调递增,10e b <<()f x 10,b ⎛⎫ ⎪⎝⎭1,e b ⎛⎤⎥⎝⎦∴,满足条件.……………………………10分2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭③当时,在上单调递减,(舍去),………11分1e b ≥()f x (]0,e ()min 4()e e 13,ef xg b b ==-==综上,存在实数,使得当时,函数最小值是3.……………………………12分2e b =(]0,e x ∈()f x20.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x <1}∴A ∩B={x|0<x <1}(2)若A ∩B=∅当A=∅时,有a ﹣1≥2a+1∴a ≤﹣2当A ≠∅时,有∴﹣2<a ≤或a ≥2综上可得,或a ≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A ∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用. 21.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),…设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键. 22.【答案】(1);(2)()2f x x =1m -【解析】(2)据题意,,即()()()2'2g x f x f x m x x m =+-=+-()2222{22m x x m x g x mx x m x -+<=+-≥,,,,①若,即,当时,,故在上12m <-2m <-2m x <()()22211g x x x m x m =-+=-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,单调递减;当时,,故在上单调递减,在2m x ≥()()22211g x x x m x m =+-=+--()g x 12m ⎛⎫- ⎪⎝⎭,上单调递增,故的最小值为.()1-+∞,()g x ()11g m -=--②若,即,当时,,故在上单调递减;112m -≤≤22m -≤≤2m x <()()211g x x m =-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,当时,,故在上单调递增,故的最小值为2m x ≥()()211g x x m =+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,()g x .224m m g ⎛⎫= ⎪⎝⎭③若,即,当时,,故在上单调递12m >2m >2m x <()()22211g x x x m x m =-+=-+-()g x ()1-∞,减,在上单调递增;当时,,故在上12m ⎛⎫ ⎪⎝⎭,2m x ≥()()22211g x x x m x m =+-=+--()g x 2m ⎛⎫+∞ ⎪⎝⎭单调递增,故的最小值为.()g x ()11g m =-综上所述,当时,的最小值为;当时,的最小值为;当时,2m <-()g x 1m --22m -≤≤()g x 24m 2m >的最小值为.()g x 1m -。

永嘉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案

永嘉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )A .1个B .2个C .3个D .4个2. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a 3. 已知均为正实数,且,,,则( ),,x y z 22log xx =-22log yy -=-22log z z -=A .B .C .D .x y z <<z x y <<z y z <<y x z<<4. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)5. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是()A .(0,)B .(0,]C .(,]D .[,1) 6. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .7. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±968. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.9. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________杂质高杂质低旧设备37121新设备22202根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对10.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成()A.512个B.256个C.128个D.64个11.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()A.B.C.D.12.“a≠1”是“a2≠1”的()A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.14.的展开式中的系数为(用数字作答).15.(﹣)5的展开式的常数项为 (用数字作答).16.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I ,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 17.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .18.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 . 三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时). 20.已知圆C 的圆心在射线3x ﹣y=0(x ≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ) 求圆C 的方程;(Ⅱ) 点A (1,1),B (﹣2,0),点P 在圆C 上运动,求|PA|2+|PB|2的最大值. 21.(本小题满分12分)已知且过点的直线与线段有公共点, 求直()()2,1,0,2A B ()1,1P -AB线的斜率的取值范围.22.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.23.在等比数列{a n }中,a 2=3,a 5=81.(Ⅰ)求a n ;(Ⅱ)设b n =log 3a n ,求数列{b n }的前n 项和S n . 24.(本小题满分10分)选修4-1:几何证明选讲选修:几何证明选讲41-如图,为上的三个点,是的平分线,交,,A B C O e AD BAC ∠Oe 于点,过作的切线交的延长线于点.D B O e AD E (Ⅰ)证明:平分;BD EBC ∠(Ⅱ)证明:.AE DC AB BE ⨯=⨯永嘉县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.2.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C3.【答案】A【解析】考点:对数函数,指数函数性质.4.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a≤0故选A5.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+﹣2×××cos∠F1PF2,由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),即<4c2<,∴<<1,即<e2<1,∴<e<1;当P与两焦点F1,F2共线时,可得a+c=2(a﹣c),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.6.【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC 的内部及边界,其面积为1;x 2+y 2<1表示圆心在原点,半径为1的圆,在正方形OABC 的内部的面积为=,由几何概型的计算公式,可得点P (x ,y )满足x 2+y 2<1的概率是=;故选C .【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算. 7. 【答案】B【解析】解:∵在等比数列{a n }中,a 1=3,公比q=2,∴a 2=3×2=6,=384,∴a 2和a 8的等比中项为=±48.故选:B . 8. 【答案】C【解析】根据分层抽样的要求可知在社区抽取户数为.C 2492108180270360180108=⨯=++⨯9. 【答案】 A 【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.10.【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D.【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.11.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.12.【答案】B【解析】解:由a2≠1,解得a≠±1.∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.∴“a≠1”是“a2≠1”的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【答案】12【解析】考点:分层抽样14.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:15.【答案】 ﹣10 【解析】解:由于(﹣)5展开式的通项公式为T r+1=•(﹣1)r•,令15﹣5r=0,解得r=3,故展开式的常数项是﹣10,故答案为:﹣10.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 16.【答案】 ①②⑤ 【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.17.【答案】 .【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.18.【答案】 y2=4x或y2=16x .【解析】解:因为抛物线C方程为y2=3px(p>0)所以焦点F坐标为(,0),可得|OF|=因为以MF为直径的圆过点(0,2),所以设A(0,2),可得AF⊥AMRt△AOF中,|AF|=,所以sin∠OAF==因为根据抛物线的定义,得直线AO切以MF为直径的圆于A点,所以∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,因为|MF|=5,|AF|=,所以=,整理得4+=,解之可得p=或p=因此,抛物线C的方程为y2=4x或y2=16x.故答案为:y2=4x或y2=16x.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x ,即x=100时,等号成立.所以,当x=100时,f (x )在区间(20,200]上取得最大值.综上所述,当x=100时,f (x )在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ) 函数v (x )的表达式(Ⅱ) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.20.【答案】【解析】解:(Ⅰ)设圆C 的方程为(x ﹣a )2+(y ﹣b )2=r 2(r >0)…圆心在射线3x ﹣y=0(x ≥0)上,所以3a ﹣b=0…①.…圆与直线x=4相切,所以|a ﹣4|=r …②…圆被直线3x+4y+10=0截得的弦长为,所以…③…将①②代入③,可得(3a+2)2+12=(a ﹣4)2,化简得2a 2+5a=0,解得a=0或(舍去)…所以b=0,r=4,于是,圆C 的方程为x 2+y 2=16.…(Ⅱ)假设点P 的坐标为(x 0,y 0),则有.…=38+2(x 0﹣y 0).下求x 0﹣y 0的最大值.…解法1:设t=x 0﹣y 0,即x 0﹣y 0﹣t=0.该直线与圆必有交点,所以,解得,等号当且仅当直线x 0﹣y 0﹣t=0与圆x 2+y 2=16相切时成立.于是t 的最大值为,所以|PA|2+|PB|2的最大值为.…解法2:由可设x 0=4sin α,y 0=4cos α,于是,所以当时,x 0﹣y 0取到最大值,所以|PA|2+|PB|2的最大值为.…【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,勾股定理,点到直线的距离公式,以及正弦函数的定义域与值域,是一道综合性较强的题.21.【答案】或.3k ≤-2k ≥【解析】试题分析:根据两点的斜率公式,求得,,结合图形,即可求解直线的斜率的取值范围.2PA k =3PB k =-试题解析:由已知,,11212PA k --==-12310PB k --==--所以,由图可知,过点的直线与线段有公共点, ()1,1P -AB所以直线的斜率的取值范围是:或.3k ≤-2k ≥考点:直线的斜率公式.22.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分EF CD P EF GH ⊥由题意,得,,,∴,14BH a =34CH a =12BG a =2222516GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分EF FG F =I GH ⊥EFG ∵平面,∴平面平面.……………………………6分GH ⊂AGH AGH ⊥EFG23.【答案】【解析】解:(Ⅰ)设等比数列{a n }的公比为q ,由a 2=3,a 5=81,得,解得.∴;(Ⅱ)∵,b n =log 3a n ,∴.则数列{b n }的首项为b 1=0,由b n ﹣b n ﹣1=n ﹣1﹣(n ﹣2)=1(n ≥2),可知数列{b n }是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n 项和公式,是基础的计算题. 24.【答案】【解析】【解析】(Ⅰ)因为是⊙的切线,所以…………2分BE O BAD EBD ∠=∠又因为………………4分CAD BAD CAD CBD ∠=∠∠=∠,所以,即平分.………………5分CBD EBD ∠=∠BD EBC ∠(Ⅱ)由⑴可知,且,BAD EBD ∠=∠BED BED ∠=∠∽,所以,……………………7分BDE ∆ABE ∆ABBD AE BE =又因为,DBC DBE BAE BCD ∠=∠=∠=∠所以,.……………………8分DBC BCD ∠=∠CD BD =所以,……………………9分ABCD AB BD AE BE ==所以.……………………10分BE AB DC AE ⋅=⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( )A B .2 C D .22. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2-3. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .54. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)5. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π6. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④7. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 8. 设0<a <1,实数x ,y满足,则y 关于x 的函数的图象形状大致是( )A. B. C. D.9. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >810.已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.二、填空题11.已知点M (x ,y)满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .12.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .13.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 14.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)15.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( ) A .1 B .±1 CD.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题17.已知数列{a n }满足a 1=,a n+1=a n+,数列{b n }满足b n=(Ⅰ)证明:b n ∈(0,1) (Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有an .18.已知函数f (x )=sin2x •sin φ+cos 2x •cos φ+sin (π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f (x )在[0,π]上的单调递减区间;(Ⅱ)若x 0∈(,π),sinx 0=,求f (x 0)的值.19.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;20.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1} (1)若a=,求A ∩B .(2)若A ∩B=∅,求实数a 的取值范围.21.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.永嘉县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.2. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 3. 【答案】B 【解析】考点:三角恒等变换. 4. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f(x)<f(1+x)等价于|x|<|1+x|,,即x2<1+2x+x2,∴x>-12即不等式f(x)<f(1+x)的解集为{x|x>-12},故选C.5.【答案】A【解析】考点:三角函数的图象性质.6.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.7.【答案】A.【解析】8.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.9.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值10.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.二、填空题11.【答案】4.【解析】解:画出满足条件的平面区域,如图示:,由,解得:A (3,4),显然直线z=ax+by 过A (3,4)时z 取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b 时“=”成立, 故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.12.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.13.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a =-.14.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.15.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.16.【答案】A【解析】三、解答题17.【答案】【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,∴,下面用数学归纳法证明:0<b n<1.①由a1=∈(0,1),知0<b1<1,②假设0<b k<1,则,∵0<b k<1,∴,则0<b k+1<1.综上,当n∈N*时,b n∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.18.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f (x )= 令(k ∈Z )即:所以:函数f (x )在[0,π]上的单调区间为:(Ⅱ)因为x 0∈(π,2π),则:2x 0∈(π,2π)则: =sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.19.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分20.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x <1}∴A ∩B={x|0<x <1} (2)若A ∩B=∅当A=∅时,有a ﹣1≥2a+1 ∴a ≤﹣2 当A ≠∅时,有∴﹣2<a ≤或a ≥2综上可得,或a ≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A ∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.21.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.22.【答案】(1)()2f x x =;(2)1m -【解析】(2)据题意,()()()2'2g x f x f x m x x m =+-=+-,即()2222{22m x x m x g x mx x m x -+<=+-≥,,,,①若12m <-,即2m <-,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在12m ⎛⎫- ⎪⎝⎭,上单调递减,在()1-+∞,上单调递增,故()g x 的最小值为()11g m -=--. ②若112m -≤≤,即22m -≤≤,当2m x <时,()()211g x x m =-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减; 当2m x ≥时,()()211g x x m =+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为224m m g ⎛⎫= ⎪⎝⎭. ③若12m >,即2m >,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在()1-∞,上单调递减,在12m ⎛⎫ ⎪⎝⎭,上单调递增;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为()11g m =-.综上所述,当2m <-时,()g x 的最小值为1m --;当22m -≤≤时,()g x 的最小值为24m ;当2m >时,()g x 的最小值为1m -.。

相关文档
最新文档