北师大版七年级上册第二章有理数及其运算知识点总结
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版

2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
北师大版七年级上册数学第二章有理数及其运算讲义(学生、家长、教师必备)

第二章有理数及其运算■通关口诀:学好有理并不难;基本概念要通关。
整分统称有理数;小数有理也无理。
数轴加上反绝倒。
还有负数非负数。
六个概念先学好;五种运算无漏洞。
科学记数表大数;寻找规律有方法。
■正奇数学学堂第一讲:有理数与数轴【知识点一】正数、负数和0。
1.相反意义的量:由具有相反意义的词表示的两个量叫做具有相反意义的量。
2.具有相反意义的两个量:规定其中一个量用正数表示;另一个量就用负数表示。
3.正负数:正数:大于0的数;负数:小于0的数。
其中正数的正号可省略不写。
负数的负号必须写出。
4.0:不仅表示“没有”,它还是正数与负数的分界。
同时也是具有相反意义的量的基准量。
既不是正数又不是负数。
5.正数与负数的分界:数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
6.重新认识两个符号——⑴“+”:运算符号表示加;性质符号表正数。
⑵“-”:运算符号表示减;性质符号表负数。
★正奇点睛:1.其实上述两个符号还有“自己”和“相反”的意思。
学了相反数自会明白。
2.注意“负负得正”与“双重否定变肯定”的关系。
〖母题示例〗1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m表示的意义是()A.向东行进50m C.向北行进50mB.向南行进50m D.向西行进50m5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有()A.2个B.3个C.4个D.5个7.如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?8.10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
有理数的乘方 北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)
北师大版七年级数学上册第二章知识点整理

北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略). l 0既不是正数也不是负数,0是整数也是偶数.① 正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;② 不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数 a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:① 同号两数相加,符号不变,把绝对值相加;② 异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵ 减法法则:① 减去一个数,等于加上这个数的相反数,依据加法法则② 加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:① 两数相乘,同号得正,异号得负,把绝对值相乘;② 任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③ 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③ 除以一个数,等于乘上这个数的倒数,即 .⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③ 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂 2n+1,2n-1; 偶次幂 2n);0的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
北师大版七年级数学上册第二章知识点整理

北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1. 有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0 右边的数即比0 大的数叫正数,形如+1, +0.5 , +10.1 , 0.001 …l 负数的概念:数轴上0 左边的数,形如-3 ,-0.2 ,-100…(负号不能省略).l 0 既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准… . 用0 表示;2. 数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0 的相反数是0;a,b 互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“ 即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“ - ”;下面的a,b 即可以是数字,字母,也可以是代数式;(3)一般地,数a 的相反数是-a, 这里的a 表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值》0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;( 4) 比较两个负数,绝对值大的反而小;5. 倒数:(1)乘积为1的两个数互为倒数,所以数a(a工0) 的倒数是1/a ,0没有倒数;( 2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.( 3)用1 除以一个非0 数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数) 相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0 相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加)⑵ 减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0 相乘,得0 ;(另外1 乘任何数都等于这个数本身;-1 乘以任何数都等于这个数的相反数. )③几个不等于0 的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0 除以任何非0 的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n 个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1 时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1; 偶次幂2n );0 的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n 是正整数,它的值等于原数的整数位数减1 , ),这种记数方法叫科学记数法;( 2) 准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;( 3) 精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )
(完整版)北师大版七年级上数学知识点汇总(精心整理)
七年级上册第一章丰富的图形世界第二章有理数及其运算第三章整式及其加减第四章基本平面图形第五章一元一次方程第六章数据的收集与整理第一章:丰富的图形世界一、生活中的立体图形分类1.棱柱的相关概念(初中只讨论直棱柱,即侧面是长方形)①棱:在棱柱中,相邻两个面的交线叫做棱②侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱③根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱......④棱柱所有侧棱都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形①点:线和线相交的地方是点,它是几何中最基本的图形②线:面和面相交的地方是线,分为直线和曲线③面:包围着体的是面,分为平面和曲面④体:几何体也简称体⑤点动成线,线动成面,面动成体二、展开与折叠1.常见立体图形的展开图①圆柱:两个圆,一个长方形②圆锥:一个圆,一个扇形③三棱锥:四个三角形④三棱柱:两个三角形,三个长方形⑤正方体展开图:共有11种,141(6种),231(3种),33(1种),222(1种)⑥要展开一个正方体,需要切开7条棱⑦正方体平面展开图找对立面:相间、Z端三、截一个几何体1.常见立体图形的截面2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形(3456)四、三视图(主视图、左视图、俯视图)1.三视图的6种题型:(1)已知实物图画三视图;(2)已知俯视图,画主视图和左视图;(3)已知主视图、左视图和俯视图,确定小立方体的个数;(4)已知主视图和俯视图,确定小立方体最多和最少个数;(5)已知左视图和俯视图,确定小立方体最多和最少个数;(6)已知主视图和左视图,确定小立方体最多和最少个数。
五、多边形的一些规律1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
第二 章 有理数及其运算 单元复习 22—23学年北师大版数学七年级上册
加法的交换律: a+b=b+a.
加法的结合律: (a+b)+c=a+(b+c
).
探究新知
方法点拨
使用运算律通常有下列情形:
(1)互为相反数的加数放在一起相加(相反数结合法);
(2)能凑整的加数放在一起相加(凑整法);
(3)同号的加数放在一起相加(同号结合法) ;
(4)同分母或易于通分的分数放在一起相加(同分母结合法).
负数的奇数次幂是负数.
当指数不断增加时,底数大于1 的幂的增长速度相当快 .
底数为10的幂的特点:10的n次幂
等于1的后面有n个0.
把一个大于10的数,写成 a×10n 的形式,其中1≤a<10,n是__正整数
_____,这种方法叫做科学记数法.
方法点拨:用科学记数法表示大于10的数的“三步法”
1.定a:确定a,a必须满足1≤a<10;
注意:一个数可以看作这个数本身的一次方,例如8就
是81,通常指数为1时省略不写.
当底数是负数或分数时一定要用括号把底数括起来.
探究新知
结论:正数的任何次幂都是正数.
负数的偶次幂是正数;负数的奇次幂是负数.
0的任意正整数次幂都是0.
利用有理数的乘方解决实际问题时,关键是找到
每次变化后所得的结果与变化次数之间的关系.
-8 + 10 - 6 - 4 ,看作和式,读作“负8、正10、负6、负4的
和”,按运算意义可读作“负8加10减6减4”.
有同分母、有相反数、有整数进行有理数的加减
混合运算时,可以考虑加法的交换律、结合律使
运算简便,在利用运算律时要注意:1.相加得整的
可先相加;2.同分母的可先相加;3.互为相反数的可
七年级数学(北师大版) 上册知识点总结(带关键习题)
北师大版七年级数学上册知识点总结前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。
重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程.第一章丰富的图形世界备注:本单元两个易错点: 1、图形的展开与折叠2、“三视图”判断图形个数1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面.体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形。
(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱.棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球: 由一个面(曲面)围成的几何体。
5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
6、正方体的平面展开图:11种总结规律:一线不过四,田凹应弃之;相间、Z端是对面,间二、拐角邻面知。
3—3型7、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版
C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、有理数的分类
2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用。
1)任何一个有理数都可以用数轴上的一个点来表示
2)在数轴上表示的两个数,右边的数总比左边的数大
3)正数都大于0,负数都小于0;正数大于一切负数;
3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
1)数a 的相反数是-a (a 是任意一个有理数)
2)0的相反数是0.
整数 分
数 正整数(自然数) 零 负分数 有理数
3)若a、b互为相反数,则a+b=0.
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
数a的绝对值记作︱a︱
1) 对任何有理数a,总有︱a︱≥0.
2)零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3)若a>0,则︱a︱= a ;若a<0,则︱a︱= -a ;若a =0,则︱a︱= 0 ;
6、有理数比较大小: 1)正数大于零,负数小于零,正数大于一切负数;
2)数轴上的两个点所表示的数,右边的总比左边的大;
3)两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的,对只含乘除,或只含加减的运算,应从左往右运算。
(3)运算法则
1)有理数加法法则
①同号两数相加,取相同的符号,并把绝对值相加;
②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;
2)有理数减法法则:减去一个数,等于加上这个数的相反数. 即 a-b=a+(-b)
3)有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当因数有偶数个时,积为正.
②几个数相乘,有一个因数为0,积就为0.
4)有理数除法法则①除以一个数等于乘上这个数的倒数;
②两数相除,同号得正,异号得负,并把绝对值相除;0除
以任何一个不等于0的数,都得0.
5)有理数的乘方
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
(4)运算律
加法交换律a
+
=
a+
b
b
加法结合律)
=
a+
+
b
+
+
)
c
(c
(
b
a
乘法交换律ba
ab=
乘法结合律)
a
ab=
c
(bc
(
)
乘法对加法的分配律ac
+)
=
(
c
ab
b
a+。