测量误差和数据处理总结共52页

合集下载

测量误差及数据处理方法课件

测量误差及数据处理方法课件

1
K
K i1
Ni
N
现在学习的是第14页,共62页
§ 1.2测量结果误差估算及评定方法
2 标准偏差(均方根差)
标准偏差是一个描述测量结果离散程度 的参量。用它来评定随机误差有以下优 点: 1)稳定性,σ值随K变化较小。 2)它以平方计值,与个别误差的符号无 关,能反映数据的离散程度。 3)与最小二乘法吻合。
以上两公式应牢记,并注意应用技巧
现在学习的是第27页,共62页
§ 1.4 间接测量结果误差估算及评定
4 间接测量结果和不确定度评定 的基本步骤
(1)计算各直接测量物理量的值和它们的不确定
度;即N=f(x,y,z)中的x,y,z和ux,uy,uz。
(2)根据不确定度的传递公式计算间接测量量的不确
定度。uN或uN/N,保留1位。
现在学习的是第15页,共62页
§ 1.2测量结果误差估算及评定方法
范围
置信概率(真值落在确定
范围内的概率)
N —N
N 2 — N 2

N 3 N 3
68.3% 95.4%
99.7%
通常将 3称为随机误差的极限误差。
现在学习的是第16页,共62页
§ 1.2测量结果误差估算及评定方法
(1)测量列的实验标准差
P σ小
σ大
0
δ
现在学习的是第8页,共62页
§ 1.1测量与误差概念
(3)粗大误差
a.定义:明显超出规定条件下预期的误差。
b.产生原因:错误读数、仪器有缺陷、环境干扰等 。
c.应避免出现粗大误差。如出现粗大误差,应分析粗大 误差产生的原因。处理数据时,剔除异常数据。
现在学习的是第9页,共62页

测量误差与数据处理

测量误差与数据处理

ε=n lim ∞
∑(x −m)
i=1 i
n
2
t
sx =
x
(xi − x)2 ∑
i=1
n

n
n −1
实验中先用贝塞尔公式计算测量列的标准偏差,然后,用t分布因 子对标准偏差进行修正,从而获得测量列的标准偏差.实验中常用 的t因子如表: 当n>6时,ε≈s 证明见后 ε=sχT0.683统误差大
准确度高
正确度好但精密度差 正确度好但精密度
不确定度(uncertainty) 不确定度
不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性.不确定度提
供了测量分散范围的一个量度,它以很大的可能性包含了真值.它包含有A类不确定 度分量(随机误差统计分析所获)和B类不确定度分量(非统计方法所获).
δ仪
-δ仪 δ
Δ仪
均匀分布
对于正态分布:仪器不确定度 对于正态分布 仪器不确定度 u仪与仪器误差限的关系为 与仪器误差限的关系为:u 仪=kp×δ仪/C 为置信因子, kp为置信因子,在一倍标准偏 差下的置信概率0.683,C=3, 差下的置信概率0.683,C=3, 故uB=δ仪/3.
综上所述,所谓 类不确定度应由贝塞尔公式 算出有限次测量的标准偏差,然后 综上所述 所谓A类不确定度应由贝塞尔公式 算出有限次测量的标准偏差 然后 所谓 类不确定度应由贝塞尔公式S算出有限次测量的标准偏差 用平均标准偏差S 作为A类不确定度 类不确定度u 再由u 乘以因子t 用平均标准偏差 X作为 类不确定度 A = S X 再由 A乘以因子 p来求得扩展不 n 确定度UA.所以 确定度 所以: UA=uA×tP 所以 B类不确定度的评估 类不确定度的评估: 类不确定度的评估

3.2测量误差和数据处理

3.2测量误差和数据处理

若误差落在区间(-∞,+ ∞ )之中,则其概率 p=1; 若误差落在(-δ,+δ )之中,则上式可改写为:
将上式进行变量置换,设: 则: =2Φ(t)
在实践中常认为δ=±3σ的概率约等于1, 从而将±3σ 称为随机误差的极限误差 随机误差的极限误差。 随机误差的极限误差 即:
δlim=±3σ
算术平均值的极限误差: 算术平均值的极限误差:δlimL=±3σ L
——若某一|υi|>3σ ,则该残余误差为粗大误差,应剔除。 该准则主要适有用于服从正态分布的误差,且重复测量 次数又比较多的情况。
(2)狄克逊准则 ) (3)格罗布斯准则 ) (4)t检验法等 ) 检验法等
§3.2.6 等精度测量结果的处理
步骤如下: (1)判断有无系统误差存在 (2)求算术平均值 (3)计算残余误差 (4)计算标准偏差 σ (5)判断粗大误差并将其剔除 |υ ∣≤3σ (6)求算术平均值的标准偏差 测量结果的表达式: (7)测量结果的表达式: 单次测量时: 单次测量时: L= li±3σ 多次测量时: 多次测量时: 例:(见书P.60)
二、随机误差的评定指标 1.算术平均值 .
对某量进行等精度测量时,由于随机误差的存在,其 获得的测量值不完全相同,此时应以其算术平均值作为最 后的测量结果。即:
由正态分布的性质④可知,当测量次数n增大时,算术平均 值愈趋近于真值。因此——用算术平均值作为最后的测
量结果比用其它任一测量值作为测量结果更可靠。
1、测量器具误差 、 2、方法误差 、 3、标准件误差 、 4、环境误差 、 5、人为误差 、
§ 3.2.2
1.误差分类 .
误差的分类
(1)系统误差 系统误差 在相同条件下,多次测量同一量值时,误差的绝对值和符号 保持不变或按一定规律变化着的误差。 系统误差可分为定值系统误差 变值系统误差 定值系统误差和变值系统误差 定值系统误差 变值系统误差。 (2)随机误差 随机误差 在相同条件下,多次测量同一量值时,绝对值和符号以不可 预定的方式变化着的误差。误差的出现是无规律可循的。 (3)粗大误差 粗大误差 由于测量不正确等原因引起的大大超出规定条件下预计误差 限的那种误差。

测量误差与数据处理实验报告

测量误差与数据处理实验报告

测量误差与数据处理实验报告实验报告格式:
标题:测量误差与数据处理实验报告
摘要:本实验旨在探究测量误差的来源及其处理方法,通过自己设计的实验进行数据采集与处理,最后得出结论并分析误差的影响。

实验结果表明,合理控制误差和精准处理数据非常重要。

1. 实验目的:
通过自己设计的实验了解测量误差的来源和处理方法,掌握精度等基本概念。

2. 实验步骤:
(1) 设计实验:以电容为例,设计了“通过变化距离来测量电容的实验”。

(2) 组装仪器:根据实验设计,组装了测量电容的仪器。

(3) 测量数据:对实验进行了多次测量,得到了电容的测量值。

(4) 数据处理:使用 Excel 等工具处理数据,计算出各项指标和
误差范围,并进行精度等级划分。

3. 实验结果:
(1) 根据数据处理结果,得到平均电容值为3.5μF,标准差为
0.2μF。

(2) 通过进行误差分析,可知测量误差来源主要包括仪器本身
误差、环境因素干扰和人为误差等多方面因素。

(3) 在误差控制和数据处理方面可采用实验平均法、精度等级
标准等方法。

4. 实验结论:
通过本实验的设计和数据处理,在实验中了解了测量误差的来源和处理方法,识别出了各方面因素影响到精度结果的准确性。

同时也提醒了我们在进行实验操作时需严格控制误差,避免产生干扰和误差现象,最终希望以此为基础,提高本人的实验操作、数据分析和综合思考能力。

测量误差及数据处理

测量误差及数据处理

x0
x
相对误差ε是一个无量纲的数据,通常以百分数的形式表
示。相对误差比绝对误差能更好地说明测量的精确程度。例如,
在上面的例子中,ε1=0.002/20×100%=0.01%,ε2= 0.02/250×100%=0.008%,可以看出,后者的测量精度更高。
1.2 测量误差的来源
计量器具 误差
计量器具误差是指计量器具本身在设计、制造和使用
(2)随机误差的评定指标
① 算术平均值 。对同一被测量进行n次等精度测量,测
量结果为x1、x2、…、xn,则算术平均值x 为:
x
x1 x2 xn n
1 n
n i1
xi
测量次数n越大,算术平均值 越趋近于真值x0。因此,用
算术平均值 x 作为最后测量结果是可靠的、合理的。
② 标准偏差σ。
用算术平均值 x 表示测量结果虽然可靠,但不能全面反
映测量精度。例如,有两组测得值: 第一组:12.005,11.996,12.003,11.994,12.002; 第二组:11.90,12.10,11.95,12.05,12.00。
两组测得值的算术平均值 x1= x2=12,但第一组测得
值比较集中,第二组测得值比较分散,也就是说,第一组的 每一个测得值比第二组的更接近于算术平均值,第一组测得 值的测量精度比第二组高。此时,算术平均值就不能准确地 反映测量精度了,而常用标准偏差σ来反映测量精度的高低。

误差
所引起的误差。环境条件主要包括温度、湿度、气压、振
动和灰尘等,其中,温度对测量结果的影响最大。
测量人员 误差
测量人员误差是指由测量人员的主观因素所引起的误
差。例如,测量人员技术不熟练、测量瞄准不准确、估读 判断错误和测量习惯等引起的误差。

大学实验指导用书测量误差及数据处理汇总

大学实验指导用书测量误差及数据处理汇总

测量误差及数据处理物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。

而对事物定量地描述又离不开数学方法和进行实验数据的处理。

因此,误差分析和数据处理是物理实验课的基础。

本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。

误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。

误差理论是一门独立的学科。

随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。

误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。

实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。

对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。

§1.1物理量的测量一、测量与单位物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。

因此就需要进行定量的测量,以取得物理量数据的表征。

对物理量进行测量,是物理实验中极其重要的一个组成部分。

对某些物理量的大小进行测定,实验就是将此物理量与规定的作为标准单位的同类量物理量进行比较,得出结论,这个比较的过程就叫做测量。

例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与两个不同的物理量,即长度和时间的标准单位进行比较而获得。

比较的结果记录下来就叫做实验数据。

测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。

显然测量值的大小与选取的标准有关,例如,要测量一杯水的质量,在天平两侧将这杯水与选作质量单位的砝码进行比较,如果采用1g的砝码做计量标准,测得结果为标准1g砝码的100倍,则表示测得该杯水的质量为100g。

误差理论与数据处理知识总结

误差理论与数据处理知识总结

误差理论与数据处理知识总结1、1研究误差的意义1、1、1研究误差的意义为:1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

1、2误差的基本概念1、2、1误差的定义:误差是测得值与被测量的真值之间的差。

1、2、2绝对误差:某量值的测得值之差。

1、2、3相对误差:绝对误差与被测量的真值之比值。

1、2、4引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得比值为引用误差。

1、2、5误差来源:1)测量装置误差2)环境误差3)方法误差4)人员误差1、2、6误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。

1、2、7系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差为系统误差。

1、2、8随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。

1、2、9粗大误差:超出在规定条件下预期的误差称为粗大误差。

1、3精度1、3、1精度:反映测量结果与真值接近程度的量,成为精度。

1、3、2精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3)精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。

1、4有效数字与数据运算1、4、1有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。

从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。

1、4、2测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。

测量误差和数据处理

测量误差和数据处理

测量误差和数据处理(一) 测量与误差1. 测量在科学实验中,一切物理量都是通过测量得到的。

所谓测量就是将待测物理量与规定作为标准单位的标准物理量通过一定的比较,其倍数即为待测物理量的测量值。

测量按测量方式的不同分为直接测量和间接测量两类: ①直接测量(简单测量)运用量具或仪表能直接得到物理量的数值,称为直接测量。

例如,用米尺、游标卡尺、千分尺测量长度;用秒表测时间;用电流表测电路中的电流强度等。

它的特点是:测量结果直接得到。

②间接测量(复合测量)多数物理量,不便或不能直接测量。

但是我们可以先对可直接测量的相关物理量进行测量,然后依据一定的函数关系,计算出待测的物理量,这称为间接测量。

例如,要测量一圆柱体的体积V,可以先用米尺(或卡尺)对直径d 和高度h 进行直接测量,然后根据公式h d V 241π=计算出它的体积。

当然一个物理量应直接测量还是间接测力测量,不使绝对的。

要根据所有的仪器和测量方法来定。

如上例中的圆柱体投入盛有一定量水的量筒中,从液面的上升即可直接得到体积。

2. 真值和近似真值物质是客观存在的,有各种特性。

反映物质特性的物理量在一定条件下,对应有一个确定的客观真实值。

这个数值就称为真值。

从测量者的主观愿望来说,总想测出物理量的真值。

然而任何实际测量中是在一定环境下,用一定的仪器、一定的方法,由一定的人员完成的,由于周围环境不理想、测量方法不完善、仪器设备不精密,而且受到测量人员技术经验和能力等因素的限制,使任何测量都不会绝对精确。

测量值与真值之间的差别,称为误差。

任何测量都有误差,误差贯穿于测量的全过程。

某一物理量的误差,定义为该量的测量值x 与真值μ之差,即: μδ-=x由于真值测不出来,误差又不可避免,所以测量的目的硬是:在给定的条件下,求出被测量的最可信赖值,并对它的精确程度给予正确的估计。

在我们的实验中,最可信赖值取多次测量的算术平均值,它是真值得最好近似,也称近似真值。

用公式表示为 ∑==ni i x n x 11 3. 误差测量数据的精确程度我们使用误差来描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档