初中几何折叠问题的三种解法

合集下载

中考数学点对点-几何折叠翻折类问题(解析版)

中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的问题类型,涉及到几何和代数等多个方面,具有一定的挑战性和趣味性。

下面是一些折叠问题的解题技巧:
1. 观察折叠过程,提取关键信息。

在折叠问题中,通常会涉及到两个或多个图形的折叠,需要观察折叠过程,并提取关键信息。

例如,在将一个矩形折叠成正方形的过程中,关键信息可能是矩形的长和宽,或者是正方形的边长。

2. 利用几何图形的性质,进行推理和计算。

折叠问题通常涉及到几何图形的性质,例如面积、周长、角等。

在解决问题时,需要利用这些性质进行推理和计算。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,进而计算出折叠后的形状。

3. 利用代数知识,进行化简和求解。

折叠问题还可以利用代数知识进行化简和求解。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,并将它们用代数式表示出来。

然后,通过解方程组或代数式的方法求解答案。

4. 寻找规律,构建模型。

有些折叠问题可以通过寻找规律,构建模型来解决。

例如,在将一个正多边形折叠成平面图形的过程中,可以尝试利用正多边形的边数来构建模型。

通过模型,可以更好地理解和解决问题。

折叠问题是初中数学中的一种重要问题类型,需要学生掌握一定
的几何和代数知识,并学会利用这些知识进行推理和计算。

同时,学生还需要具备较强的逻辑思维能力和分析问题的能力,才能有效地解决折叠问题。

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

例1如图,将矩形ABCD沿AE折叠,使点D落在BC边上的点F处,已知AB=6,BC=10,则CE的长为多少?分析:根据折叠可知:△ADE≌△AFE⇒AD=AF=BC=10,DE=EF.在Rt△ABF中,AB=6,AF=10,根据勾股定理,得BF==8,所以CF=10-8=2.设CE的长为x,则DE=EF=6-x.在Rt△CEF中,CF=2,CE=x,EF=6-x,根据勾股定理列出方程,即可求出x的长.例2如图,将矩形ABCD折叠,使点A与点C重合,折痕为EF,若AB=3,AD=4,你能求折痕EF的长吗?分析:连接AC交EF与点O,由翻折可得到FE垂直平分AC,那么AF=FC,易证△AEO≌△CFO.那么求出OF长,乘2后就是EF长,利用直角三角形ABF求解即可.总结矩形折叠问题解题技巧和关键步骤(1)折叠确定全等等量线段转移(2)求出线段长度(3)设未知数,利用勾股关系建立方程好记性不如烂笔头,快快整理笔记在笔记本上,找题目练练哦!题目已经给你们准备好啦专题小练一.选择题1.(2018•牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为( )A.6 B.5C.4 D.32.(2019•辽阳)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP 折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是( )3.(2019•桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )4.(2018•朝阳)如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为( )5.(2018•毕节市)如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为( )二.填空题(共4小题)6.(2019•盘锦)如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF= .7.(2019•西藏)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为 .8.(2019•长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD 折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC 相交于点G,则△GCF的周长为 .9.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为 cm.三.解答题10.(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.▍ 声明:本文整理自网络,如有侵权,请联系删除。

七年级折叠问题解题技巧

七年级折叠问题解题技巧

七年级折叠问题解题技巧一、折叠问题中的基本性质与关系1. 折叠性质在折叠过程中,折叠前后的图形全等。

这意味着对应边相等,对应角相等。

例如,将一个三角形沿着某条直线折叠,折叠后的三角形与原三角形的对应边长度不变,对应角的大小也不变。

折痕是对应点连线的垂直平分线。

比如将矩形ABCD沿着EF折叠,使得点A与点C重合,那么EF就是AC的垂直平分线。

2. 常见的几何图形中的折叠三角形折叠例1:在△ABC中,∠C = 90°,将△ABC沿着直线DE折叠,使点A与点B 重合,若AC = 6,BC = 8,求折痕DE的长。

解析:因为点A与点B重合,所以DE是AB的垂直平分线。

先根据勾股定理求出AB=公式。

设AB中点为F,则AF=公式。

由于△ADE和△BDE全等,所以AD = BD。

设BD = x,则AD = x,CD = 8 x。

在Rt△ACD中,根据勾股定理公式,即公式,解得公式。

再根据相似三角形,△ADE∽△ABC,公式,即公式,解得DE=公式。

矩形折叠例2:矩形ABCD中,AB = 3,BC = 4,将矩形沿对角线AC折叠,求重叠部分(△AEC)的面积。

解析:因为矩形沿对角线AC折叠,所以△ADC≌△AEC。

设AE = x,则BE = 4 x。

在Rt△ABE中,根据勾股定理公式,即公式,解得公式。

所以公式。

二、解题步骤与技巧1. 步骤第一步:根据折叠性质确定相等的边和角。

这是解决折叠问题的基础,只有明确了这些关系,才能进一步进行计算。

第二步:设未知数。

通常根据所求的量或者与所求量相关的线段设未知数,然后利用勾股定理、相似三角形等知识建立方程。

第三步:求解方程。

通过解方程得到未知数的值,从而求出最终答案。

2. 技巧利用勾股定理在直角三角形中,折叠后常常会形成新的直角三角形,此时可以利用勾股定理建立方程求解。

如上述矩形折叠的例子中,在Rt△ABE中利用勾股定理求出AE的长度。

利用相似三角形当折叠后的图形与原图形存在相似关系时,利用相似三角形的对应边成比例来求解。

数轴折叠问题解题技巧

数轴折叠问题解题技巧

数轴折叠问题解题技巧数轴折叠问题解题技巧引言数轴折叠问题是一类在数学中常见的几何问题。

解决数轴折叠问题需要灵活运用数学知识和技巧,下面将介绍几种常用的解题技巧。

技巧一:折叠线的计算折叠线是数轴折叠问题中的关键要素,通过计算折叠线的长度,可快速求解问题。

•技巧1:对称性质–找出数轴的对称点,并通过对称性将问题简化。

–根据对称性质,折叠线长度等于数轴两点之间的距离。

•技巧2:使用勾股定理–当数轴上的点形成直角三角形时,可使用勾股定理计算折叠线的长度。

–根据勾股定理,折叠线的平方等于两个边长度的平方和。

技巧二:角度的计算角度是数轴折叠问题中另一个重要的考察点,通过计算角度,可以进一步推导出所求解。

•技巧1:利用三角函数–当数轴上的两个点与折叠线形成直角时,利用三角函数可以计算出角度。

–根据三角函数的定义,角度等于正弦、余弦或正切的反函数值。

•技巧2:使用余弦定理–当数轴上的三个点不形成直角时,可以使用余弦定理计算角度。

–根据余弦定理,角度的余弦等于与该角对应的三条边长度的关系。

技巧三:解题思路总结解决数轴折叠问题需要掌握一定的解题思路,下面给出几点总结:•思路1:分析题目–仔细阅读题目,理解题目所给条件和要求,将问题进行抽象化。

–尝试简化问题,找出与数轴折叠问题相似的几何问题。

•思路2:构建数学模型–将折叠线、角度等要素用数学符号进行表示,建立数学模型。

–基于数学模型,思考如何运用已有的数学知识解决问题。

•思路3:推理和验证–根据已知条件,进行推理和验证,寻找合理的解。

–可以通过试错法或反证法等思维方式,验证所得解是否正确。

结论数轴折叠问题解题涉及到折叠线计算、角度计算和解题思路等多个方面。

通过掌握上述技巧和思路,我们可以更好地解决数轴折叠问题,提高数学解题能力。

希望本文介绍的数轴折叠问题解题技巧对您有所帮助!技巧四:案例分析通过对一些典型的数轴折叠问题进行案例分析,可以加深对解题方法的理解和掌握。

案例1:三等分线段的问题题目描述:将数轴上的线段AB三等分,求折叠线的长度。

数学折叠问题初一

数学折叠问题初一

数学折叠问题初一
在初一的数学课程中,折叠问题是一个常见的话题。

这些问题通常涉及到几何形状,特别是多边形和纸张的折叠。

通过解决这些问题,学生可以锻炼他们的空间想象能力和几何推理能力。

以下是一些常见的初一数学折叠问题的类型和解决方法:
1. 角度计算
问题:一张纸被折叠一次,使得一个角与另一个角重合。

计算新形成的角度。

解决方法:首先理解折叠是轴对称的。

如果知道原始角度,可以通过减去或加上相应的角度来找到新角度。

2. 长度计算
问题:一张纸被折叠后,某一部分与另一部分重合。

计算重合部分的长度。

解决方法:利用相似三角形或全等三角形的性质来计算长度。

3. 面积计算
问题:一张纸被折叠后,形成一个新的形状。

计算新形状的面积。

解决方法:根据折叠后的形状,使用相应的面积公式进行计算。

4. 折叠模式识别
问题:描述一个特定的折叠过程,然后要求学生识别出最终的形状或模式。

解决方法:通过逻辑推理和空间想象来预测最终的形状或模式。

5.多步骤折叠
问题:一张纸经过多次折叠后形成一个复杂的形状。

要求学生描述或分析这个过程。

解决方法:分步骤进行,每次只关注一次折叠,然后逐步建立整体的理解。

解决这些问题时,建议学生使用实际的纸张进行模拟,这有助于他们更好地理解折叠过程并锻炼空间想象能力。

同时,也要鼓励学生多练习不同类型的折叠问题,以提高他们的解题技巧和速度。

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧初二数学四边形的折叠问题技巧数学中的几何形状是我们学习的重要内容之一。

四边形作为一种常见的几何形状,其折叠问题技巧也是我们需要掌握的。

本文将介绍初二数学中四边形的折叠问题技巧。

一、矩形的折叠问题技巧矩形是一种特殊的四边形,其两对边相等且平行。

在处理矩形的折叠问题时,我们需要注意以下几个技巧。

1. 折叠对角线:将一个矩形沿对角线方向折叠,可以得到重叠的两个直角三角形。

这个技巧在解决一些矩形面积、周长等问题时很有用。

2. 平行线折叠:我们还可以将矩形沿其中一对平行边折叠,使得另外一对平行边重合。

这样可以得到一个与原来矩形相似且大小相等的矩形。

这个技巧在解决一些矩形相似性质的问题时很有帮助。

二、平行四边形的折叠问题技巧平行四边形是一种具有两对平行边的四边形。

在处理平行四边形的折叠问题时,我们也可以运用一些技巧。

1. 对折:可以将平行四边形沿两对平行边分别对折,使得两对对折线上的点重合。

这样可以证明平行四边形的对角线互相平分。

2. 平移:可以将平行四边形平移,使得相邻两边重合,从而得到一个与原平行四边形相似的形状。

这个技巧在解决一些平行四边形相似或面积问题时很有用。

三、菱形的折叠问题技巧菱形是一种特殊的平行四边形,其四条边相等且对角线垂直。

在折叠菱形时,我们可以运用一些技巧。

1. 中点折叠:可以将菱形沿对角线方向折叠,使得两个对角线的中点重合。

这样可以得到一个与原菱形相似的等腰直角三角形。

2. 对称折叠:可以将菱形沿其中一条对称轴折叠,使得两个顶点重合。

这样可以得到一个与原菱形相似的小菱形。

四、梯形的折叠问题技巧梯形是一种具有一对平行边的四边形。

在折叠梯形时,有如下技巧可用。

1. 平行线折叠:可以将梯形沿长边折叠,使得两个平行边重合。

这样可以得到一个与原梯形相似的矩形。

这个技巧在解决一些梯形相似性质的问题时很有帮助。

2. 对称折叠:可以将梯形沿对称轴折叠,使得两个底边重合。

这样可以得到一个与原梯形相似的小梯形。

三角形折叠问题解题技巧

三角形折叠问题解题技巧

三角形折叠问题解题技巧
三角形折叠问题是一种常见的几何问题,它的解题技巧也有很多种。

本文将介绍一些解决三角形折叠问题的技巧和方法,帮助读者更好地理解和解决这类问题。

1. 观察三角形的形状和特征
在解决三角形折叠问题时,首先需要观察三角形的形状和特征。

三角形的形状和大小不同,折叠方式也会有所不同。

如果三角形是等边三角形,那么可以通过将三角形对折来确定对称轴,从而确定折叠的方向和方式。

2. 利用对称性质
三角形具有对称性,这也是解决三角形折叠问题的重要技巧之一。

利用对称性质,可以确定三角形的对称轴,并通过对折或旋转来确定折叠方式。

3. 利用三角形的三边关系
在解决三角形折叠问题时,还可以利用三角形的三边关系。

例如,如果已知三角形的三边长度,可以通过计算三角形的面积来确定折叠后
的形状和大小。

4. 利用平行四边形的性质
在一些情况下,三角形折叠问题可以转化为平行四边形折叠问题。

例如,如果已知三角形的一条边平行于另一条边,那么可以将三角形折叠为一个平行四边形,并利用平行四边形的性质来解决问题。

5. 利用剪裁和组合
在解决三角形折叠问题时,还可以利用剪裁和组合的方法。

例如,可以将三角形剪裁成一个矩形和两个三角形,然后将其组合成一个更简单的形状,再对其进行折叠。

这种方法可以大大简化问题的难度和复杂度。

综上所述,解决三角形折叠问题需要观察三角形的形状和特征,利用对称性质和三角形的三边关系,以及利用剪裁和组合的方法。

通过掌握这些技巧和方法,读者可以更好地解决三角形折叠问题,并提高其几何解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何折叠问题的三种解法
初中几何折叠问题的三种解法
初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。

在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。

方法一:手工模拟法
手工模拟法是一种简单直观的方法。

它通过将纸张折叠成所需形状来解决问题。

步骤:
1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 将纸张按照比例剪成相应大小。

3. 按照题目要求,将纸张进行折叠,直到得到所需形状。

4. 计算所需参数并得出答案。

优点:
手工模拟法操作简单易懂,适合初学者使用。

同时也能够帮助学生更好地理解折叠问题的本质。

缺点:
手工模拟法需要较长时间完成,并且需要精确测量和折叠。

同时也容易出现误差和偏差。

方法二:平面几何法
平面几何法是一种基于平面几何知识来解决问题的方法。

它通过利用图形相似性和对称性来计算所需参数。

步骤:
1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 根据平面几何知识,计算所需参数,如角度、长度等。

3. 得出答案。

优点:
平面几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解平面几何知识的应用。

缺点:
平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。

同时也容易出现计算错误和漏算情况。

方法三:三维几何法
三维几何法是一种基于立体几何知识来解决问题的方法。

它通过利用立体图形的投影和相似性来计算所需参数。

步骤:
1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。

3. 得出答案。

优点:
三维几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更
好地理解立体几何知识的应用。

缺点:
三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投
影和相似性有深入理解。

同时也容易出现计算错误和漏算情况。

结论:
初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面
几何法和三维几何法是常见的三种方法。

不同方法适用于不同的问题,学生应该根据具体情况选择合适的方法来解决问题。

相关文档
最新文档