七年级数学下册期末测试题及答案共五套
【3套打包】莆田市中山七年级下册数学期末考试试题(含答案)

最新七年级下学期期末考试数学试题(答案)一、选择题(本题共36分,每小题3分,请将答案填入下表中相应的空格内)1.平面直角坐标系内,点P (-3,-4)到y 轴的距离是A.3B.4C.5D.-3或7解析考察点到y 轴的距离即是|x|=|-3|=3,故选A2.下列说法不一定成立的是A.若a>b ,则a+c>b+cB.若2a>-2b ,则a>-bC.若a>b ,则ac 2>bc 2D.若a<b ,则a-2<b+1解析本题考察不等式运算,c=0时,ac 2=bc 2=0,故选C3下列各选项的结果表示的数中,不是无理数的是A.如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,点A 表示的数B.5的算术平方根C.9的立方根D. 144解析本题考察什么是无理数,144=12,故选D4.若正多边形的一个内角是150°,则该正多边形的边数是A.6B.10C.12D.16解析正多边形的一个内角是150°,则一个外角为180°-150°=30°,正多边形的外角和为定值360°,所以360/30=12,故选C5.右图是北京市地铁部分线路示意图。
若分别以正东、正北方向为x轴,y 轴的正方向建立平面直角坐标系,表示西单的点的坐标为(-4,0),表示雍和宫的点的坐标为(4,6),则表示南锣鼓巷的点的坐标是A.(5,3)B.(1,3)C.(5,0)D.(-3,3)解析本题考察坐标系,首先确定原点(0,0),然后确定南锣鼓巷的点的坐标为(1,3),故选B6.如图,A 处在B 处的北偏东45°方向,A 处在C 处的北偏西15°方向,则∠BAC 等于A.30°B.45°C.50°D.60解析如图∵BD//CE ∴∠CBD+∠BCE=180(两直线平行,同旁内角互补)∴∠ABC+∠ACB=∠CBD+∠BCE-45°-15°=180-60∵∠ABC+∠ACB=180-∠BAC(三角形内角和180)∴∠BAC=60,故选D7.下列等式正确的是A.()332-=-B.12144±=C.28-=-D.525-=-解析考察的算数平方根是大于等于0,故选D8.如图天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围,在数轴上可表示为D E解析由图列不等式组+-32<x x故选A 9.4和10,则这个三角形的周长为A.18B.22C.24D.18或24解析考察三角形两边和大于第三边,三角形两边差小于第三边,∴4不能为腰,故选C10.已知点M (1-2m ,m-1)在第二象限,则m 的取值范围是A.21<m B.1>m C.1<m <21 D.1<m <21-解析列不等式组⎩⎨⎧-<x x 故选B 11.1等于A.72°B.60°C.50°D.58°解析考察两个全等三角形,对应边相等,对应边夹角相等,故选D12.不等式组⎩⎨⎧+-2-m <32<x x x 无解,则m 的取值范围是A.m<1B.m ≥1C.m ≤1D.m>1解析解不等式组得⎩⎨⎧得m-2≦-1,得m ≦1,故选C 2分)13.若1-x 在实数范围内有意义,则实数x 的取值范围是 。
【3套打包】常州市七年级下册数学期末考试试题(含答案)(1)

最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )A B C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >6.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是( )A.21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个10.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x°和y°,那么所适合的一个方程组是()A.4890y xy x-+⎧⎨⎩==B.482y xy x⎨⎩-⎧==C.48290x yy x⎨⎩-+⎧==D.48290y xy x⎨⎩-+⎧==二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上.相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.14.如图,直线AB,CD点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:20.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,求∠C的度数.21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21x y ⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,∴电子百拼的人数为24-(6+4+6)=8人,补全图形如下:(3)估算全区参加科技比赛的获奖人数约是3215×1680=643人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. 【分析】(1)利用网格特点和平移的性质得出答案;(2)再利用(1)中平移的性质得出△MNP ;(3)先由AC 平移到A 1C 1,再由A 1C 1平移到MP ,所以线段AC 扫过的部分为两个平行四边形,于是根据平行四边形的面积公式可计算出线段AC 扫过的面积.【解答】解:(1)将△ABC 向右平移5个单位长度,然后再向上平移1个单位长度,可以得到△MNP ;故答案为:右,5,上,1;(2)如图所示:△MNP ,即为所求;(3)线段AC 扫过的面积为:4×5+1×6=26.故答案为:26.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离;作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形23. 【分析】(1)设A 种树苗每株x 元,B 种树苗每株y 元,根据条件“A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元”建立方程求出其解即可;(2)设A 种树苗购买a 株,则B 种树苗购买(36-a )株,根据条件A 种树苗数量不少于B 种数量的一半建立不等式,求出其解即可.【解答】解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得202200x y x y ⎨⎩-+⎧==, 解得8060x y ⎧⎨⎩==,答:A 种树苗每株80元,B 种树苗每株60元.(2)设购买A 种树苗a 株,由题意得: x≥12(36-a ), 解得:a≥12,∵A 种树苗价格高,∴尽量少买a 种树苗,最新七年级(下)数学期末考试试题(答案)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列各数中,是无理数的是( )AB C .311 D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( ) A . B . C . D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A .a-2<b-2B .-3a >-3bC .a 2>b 2D .a-b >06.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A .21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个 B .2个 C .3个 D .4个10.如图,将正方形ABCD 的一角折叠,折痕为AE ,点B 恰好落在点B'处,∠BAD 比∠BAE 大48°.设∠BAE 和∠BAD 的度数分别为x°和y°,那么所适合的一个方程组是( )A .4890y x y x -+⎧⎨⎩==B . 482y x y x⎨⎩-⎧== C .48290x y y x ⎨⎩-+⎧== D .48290y x y x ⎨⎩-+⎧==14.如图,直线AB,CD相交于点O,OM⊥AB于O,若∠MOD=35°,则∠COB= 度.16.如图,把一张长方形纸片ABCD沿EF折叠后,点A与点A′重合(点A在BC边上),点B落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.17.计算:21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程①中y的系数是1,用含x的式子表示y比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21 xy⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,。
北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

七年级数学下册——第一章整式的乘除(复习)单项式整式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. 954aaa=+ B. 33333aaaa=⋅⋅C. 954632aaa=⨯ D. ()743aa=-=⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-20122012532135.2()A. 1- B. 1 C. 0 D. 19973.设()()Ababa+-=+223535,则A=()A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xyyx则=+22yx()A. 25. B 25- C 19 D、19-5.已知,5,3==ba xx则=-bax23()A、2527B、109C、53D、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。
【3套试题】人教版七年级数学下册 期末小专题练习 六 数据收集与整理(含答案)

人教版七年级数学下册期末小专题练习六数据收集与整理(含答案)一、选择题:1.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨2.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个3.随着全球经济危机的到来,我国纺织品行业的出口受到严重影响,下图是甲、乙纺织厂的出口和内销情况.从图中可看出出口量较多的是()A.甲B.乙C.两厂一样多D.不能确定4.下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批 LED 节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式5.为纪念中国人民抗战战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6 000名学生中,随机抽取了120名学生进行调查,在这次调查中()A.6 000名学生是总体B.所抽取的每名学生对“抗日战争”的知晓情况是总体的一个样本C.120名是样本容量D.所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本6.为了了解某市七年级8000人的身高情况,从中抽取800名学生的身高进行统计,下列说法不正确的是()A.8000人的身高情况是总体B.每个学生的身高是个体C.800名学生身高情况是一个样本D.样本容量为8000人7.下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟十一号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式8.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A.B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()x k b 1 A.18户B.20户C.22户D.24户9.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是( )A.90 B.144 C.200 D.8010.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有()鱼.A.1000条B.4000条C.3000条D.2000条二、填空题:11.已知数据有100个,最大值为141,最小值为60,取组距为10,则可分成组.12.某自然保护区的工作人员,欲估算该自然保护区栖息的某种鸟类的数量.他们首先随机捕捉了500只这种鸟,做了标记之后将其放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中20只有之前做的标记,则该保护区有这种鸟类大约______只.13.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.14.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.三 、解答题:15.知识改变命运,科技繁荣祖国”.我国中小学每年都要举办一届科技比赛.下图为我市某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:(1)该校参加机器人、建模比赛的人数分别是 人和 人(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 _____°,并把条形统计图补充完整;(3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我市中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?电子百拼建模机器人 航模 25%25%某校2010年航模比赛 参赛人数扇形统计图16.初一学生小丽、小杰为了了解本校初二学生每周上网时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中4名学生每周上网的时间;小杰从全体初二学生名单中随机抽取了40名学生,调查他们每周上网的时间.你认为哪位学生抽取的样本具有代表性?说说你的理由.17.指出下列调查中的总体、个体、样本和样本容量.(1)从一批冰箱中抽取100台,调查冰箱的使用寿命.(2)从学校七年级学生中抽取10名学生调查学校七年级学生每周用于体育锻炼的时间.18.我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育》的通知,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,“B—了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制成以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1 800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?参考答案1.C.2.C.3.D4.C ;5.D.6.D ;7.D8.D9.D. 10.D. 11.答案为:9. 12.答案为:7500 13.答案为:6000. 14.答案为:286;15.答案为:(1)4 6 (2)24 120 ;(3)2485×8032=994 16.小杰抽取的样本具有代表性.理由如下:小杰选取的样本具有代表性和随机性,而且选取的样本足够大;小丽选取的样本比较特殊,不具有随机性而且选取的样本小.(内容符合题意即可) 17.解:(1)总体是:这批冰箱的使用寿命;个体是:每台冰箱的使用寿命; 样本是:抽取的100台冰箱的使用寿命;样本容量是:100; (2)总体是:七年级学生每周用于体育锻炼的时间;个体是:每个七年级学生每周用于体育锻炼的时间;样本容量是:10. 18.解:(1)抽样调查的学生人数为36÷30%=120(名).(2)B 的人数:120×45%=54(名),C 的百分比:24120×100%=20%, D 的百分比:6120×100%=5%,图略. (3)对“节约教育”内容“了解较多”的学生人数为:1 800×45%=810(名).人教版七年级数学下册第十章数据的收集、整理与描述复习测试题七年级数学下册第十章数据的收集、整理与描述复习测试题(含答案)一、选择题1.一次考试某题得分情况如表所示,若已知该题满分是4分,则表中x的值为( )A.15%B.10%C.40%D.30%2.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查3.下面调查方式中,合适的是( )A.调查你所在班级同学的身高,采用抽样调查方式B.调查湘江的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式4.为了解某市参加中考的45 000名学生的身高情况,抽查了其中1 500名学生的身高进行统计分析.下面叙述正确的是( )A.45 000名学生是总体B.抽查的1 500名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查5.某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计计该校七年级学生在这次数学测试中,达到优秀的学生人数约有()A.140人B.144人C.210人D.216人6.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12B.0.38C.0.32D.327.某班有64位同学,在一次数学检测中,分数只能取整数,统计其成绩绘制成频数直方图,如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.12B.24C.16D.88.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10%B.40%C.50%D.90%9.某校为开展第二课堂,组织调查了本校300名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,根据统计图判断下列说法,其中正确的一项是()A.在调查的学生中最喜爱篮球的人数是50人B.喜欢羽毛球在统计图中所对应的圆心角是144°C.其他所占的百分比是20%D.喜欢球类运动的占50%10.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16%B.24%C.30%D.40%二、填空题1.在描述数据时一般可以作______ 图、______ 图、______ 图、______ 图等.2.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图如果该校有810名学生,则喜爱跳绳的学生约有______ 人3.调查某种家用电器的使用寿命,合适的调查方法是______ .4.为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有______ 条鱼.5.已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表:三、解答题1.老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?2.微信是现代生活进行信息交流的重要工具,为了调查我们身边人使用微信的时间,随机抽取200人,其中有90%的人使用微信,在使用微信的人群中每天使用微信时间在一小时以内的有60人,其余每天使用微信时间在一小时以上.若将年龄小于40岁称为青年人,将年龄不小于40岁称为中年人,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的人中是青年人.(1)根据以上信息,完成下表:(2)已知福建省人口数量约为4000万,试估计福建人有多少万年轻人经常使用微信?3.2019年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表(如下),请根据图表信息解答下列问题:(1)补全频数分布表;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?4.某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:(1)这次活动中抽查的学生有人,表中a=,b=,m=,并补全频数分布直方图;(2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?5.某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:请解答以下问题:(I)把上面的频数分布表和频数分布直方图补充完整;(Ⅱ)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?(Ⅲ)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?参考答案一.选择题1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.D.9.B.10.D.二.填空题1.频数分布直方频率分布直方扇形统计折线统计2.2433.抽样调查4.20005.填表如下:三.解答题1.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.2.解:(1)青年人使用微信的人数为180×75%=135人,其中经常使用微信的人数为120×=80,则中年人中经常使用微信的人数为120﹣80=40人,∴青年人中不经常使用微信的人数为135﹣80=55,∵经常使用微信的人数为90+30=120人,∴不经常使用微信的人数为180﹣120=60,∴中年人中不经常使用微信的人数为60﹣55=5,补全表格如下:(2)估计福建人经常使用微信的年轻人数为4000×=1600(万).3.解:(1)∵C小组的频数为10,频率为0.10,∴抽查的总人数为10÷0.1=100人,∴B小组的频数为100×0.5=50人,A小组的频率为1﹣0.1﹣0.5=0.4,故统计图和统计表为:(2)该校九年级达到优秀的有360×0.4=144人.4.解:(1)总人数=3÷6%=50(人),a=50×30%=15,b=50﹣3﹣15﹣20﹣2=10,m=1﹣6%﹣30%﹣40%﹣4%=20%.故答案为:50,15,10,20%;(2)700×70%=490(人),∴该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有490人5.解:(Ⅰ)∵被调查的总数量为6÷12%=50(户),∴10≤x<15的频数为50×32%=16(户)、20≤x<25的频率为4÷50=0.08=8%,补全图形如下:(Ⅱ)估计该小区月均用水量不低于20t的家庭有2000×(8%+4%)=240户;(Ⅲ)∵前三个分组的频率之和为12%+24%+32%=68%,∴家庭月均用水量应定为15t.人教版七年级数学下册第十章数据的收集、整理与描述单元检测试题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题学校:__________ 班级:__________ 姓名:__________考号:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 某同学想了解寿春路与阜阳路交叉路口分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2. 下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某类烟花爆竹燃放安全情况的调查D.对神舟飞船的零部件的质量情况的调查3. 下列调查中,适宜采用普查的是()A.调查我县初三学生每天体育锻炼的时间B.调查全校学生每月花费的零花钱C.调查初三班某次数学考试成绩D.调查初三学生参加这次月考的心理状态4. 某纺织厂从万件同类产品中随机抽取了件进行质检,发现其中有件不合格,那么估计该厂这万件产品中合格品约为()A.万件B.万件C.件D.件5. 下列调查方式合适的是()A.了解炮弹的杀伤力,采用普查的方式B.了解全国中学生的视力状况,采用普查的方式C.了解一批罐头产品的质量,采用抽样调查的方式D.对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6. 某市有名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这名初一学生的数学成绩的全体是总体;②每个初一学生是个体;③名初一学生是总体的一个样本;④样本容量是.其中说法正确的是()A.个B.个C.个D.个7. 某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为,若已知中学生被抽到的人数为人,则应抽取的样本容量等于()A. B. C. D.8. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞条鱼,如果在这条鱼中有条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.条B.条C.条D.条9. 实验中学九年级进行了一次数学测试,参加考试人数共人,为了了解这次数学成绩,下列所抽取的样本中较合理的是()A.抽取前:名同学的数学成绩B.抽取各班学号为的倍数的同学的数学成绩C.抽取、两班同学的数学成绩D.抽取后名同学的数学成绩10. 某校七班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个样本的个数据分别落在个小组内,其中第组有个数,那么第组的频率为________.12. 一个容量为的样本最大值是,最小值是,取组距为,则可分成________组.13. 为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上________,________,得到________图.14. 一组数据的最大值为,最小值为,在绘制频数分布直方图时要求组据为,则组数为________.15. 某校对去年毕业的名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有________人.16. 某校为了了解八年级学生的体能情况,随机选取一部分学生测试一分钟仰卧起坐次数,并绘制了如图所示的直方图,学生仰卧起坐次数在之间的频率是________.该店决定本周进货时,多进一些尺码为厘米的鞋,影响鞋店决策的统计量是________ 18. 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生人,请根据统计图计算该校共捐款________元.19. 今年月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图和图是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.20. 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为个等级:、、、,并将统计结果绘制成两幅不完整的统计图.该年级共有人,估计该年级足球测试成绩为等的人数为________人.三、解答题(本题共计6 小题共计60分,)()计算各种果树面积占总面积的百分比;(2)计算各种果树对应的圆心角度数;(3)制作扇形统计图.(1)活动小组共有学生多少人?(2)制作标本数在个及以上的人数占小组总人数的百分比是多少?(3)根据统计表制作一个形象的统计图.23. 吸烟有害健康:为配合“禁烟”运动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如图所示统计图:同学们一共随机调查了________人;请你把条形统计图补充完整;如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有万人,请估计该地区支持“警示戒烟”这种方式的大约有多少人?24. 某校七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?(2)表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.25. 如图所示的是一位同学设计的一幅象形统计图,不过这位同学太粗心了,应该给出的题目及一些说明性文字都忘了写,你能看出这幅图是要反应什么内容吗?能把图形中缺少的文字补上吗?(能补上三项文字性的说明即可)26. 下面三幅统计图,反映了某市两个化肥厂三个方面的情况,请看图回答问题.(1)从折线统计图中可以看出,哪个厂的产值增长得快?(2)从条形统计图中可以看出,哪个厂的工人人数多,哪个厂的技术人员多?(3)从扇形统计图中可以看出,哪个厂的外销产品占产品销售总数的百分比大?(4)综合上面的分析,你认为哪个厂的生产搞得好,为什么?参考答案与试题解析七年级数学下册第十章数据的收集、整理与描述单元检测试题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【解析】根据收集数据的基本方法有观察、统计、调查、实验、查阅文献资料或因特网查询等分析判断即可.【解答】解:想了解寿春路与阜阳路交叉路口分钟内各个方向通行的车辆数量,他应采取的收集数据方法为观察,故选:.2.【答案】D【解析】根据适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强,进而判断即可.【解答】解:、适合抽样调查,因为普查的难度较大,故此选项错误;、适合抽样调查,因为调查的破坏性较大,故此选项错误;、适合抽样调查,因为调查的破坏性较大,故此选项错误;、适合全面调查,因为神舟飞船零部件要求极高,不能出现任何问题,故此选项正确.故选:.3.【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:,对全国中学生每天体育锻炼的时间的调查不必全面调查,大概知道因为普查工作量大,适合抽样调查;,调查全校学生每月花费的零花钱,适合抽样调查;,调查初三班某次数学考试成绩,适合普查;,调查初三学生参加这次月考的心理状态,适合抽样调查.故选:.4.【答案】A【解析】由于件中进行质检,发现其中有件不合格,那么合格率可以计算出来,然后利用样本的不合格率估计总体的不合格率,就可以计算出万件中的不合格品产品数,进而求得合格品数.【解答】解:∵件中进行质检,发现其中有件不合格,∴合格率为,∴万件同类产品中合格品约为万件.故选.5.【答案】C【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:、了解炮弹的杀伤力,有破坏性,故得用抽查方式,故本选项错误;、了解全国中学生的视力状况,工作量大,得用抽查方式,故本选项错误;、了解一批罐头产品的质量,工作量大,得用抽查方式,故本选项正确;、对载人航天器“神舟七号”零部件的检查十分重要,故进行普查检查,故本选项错误.故选.6.【答案】C【解析】根据总体、个体、样本、样本容量的定义即可判断.【解答】解:①这名初一学生的数学成绩的全体是总体正确;②每个初一学生的期末数学成绩是个体,故命题错误;③名初一学生的期末数学成绩是总体的一个样本,故命题错误;④样本容量是,正确.故选.7.【答案】D【解析】根据分层抽样方法,设抽到的大、中、小学生人数分别为、、,由抽到的中学生人数可得,继而可得样本容量.【解答】解:设抽到的大、中、小学生人数分别为、、,由可得,∴应抽取的样本容量等于(人),故选:.8.【答案】C【解析】首先求出有记号的条鱼在条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
【3套打包】上海民办兰生复旦中学最新七年级下册数学期末考试试题(含答案)

最新七年级下册数学期末考试题及答案一、选择题(本大题共 8 小题,每题 3 分,共 24 分) 1.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠52.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A .110°B .125°C .140°D .160°3.点 P (-2,3)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.某班共有学生 49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一 半.若该班男生人数为 x ,女生人数为 y ,则下列方程组中,能正确求出 x 、y 的是( )A .492(1)x y y x -=⎧⎨=+⎩B .492(1)x y y x +=⎧⎨=+⎩C .492(1)x y y x -=⎧⎨=-⎩D .492(1)x y y x +=⎧⎨=-⎩5.在正整数范围内,方程 3x +y =10 的解有( ) A .0 组B .1 组C .2 组D .3 组6.已知 a <b ,则下列不等式中正确的是()A .a +3>b +3B .3a >3bC .-3a >-3bD .33a b> 7.不等式-3x ≤6 的解集在数轴上正确表示为()8.下面各调查中,最适合使用全面调查方式收集数据的是()A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度. 10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 . 11.在△ABC 中,已知两条边 a =3,b =4,则第三边 c 的取值 范围是 .12.方程3x-5y=15,用含x的代数式表示y,则y=.13.已知57xy=⎧⎨=⎩是二元一次方程k x-2y-1=0 的一组解,则k=.14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量xmg(毫克)的范围是.15.如图,是小恺同学6 次数学测验的成绩统计表,则该同学6 次成绩中的最低分是.16.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容易;③写作比奥数容易;④舞蹈比奥数容易.则预测正确的有(填序号即可).三、解下列方程组、不等式(组)(本大题共4小题,每小题6分,共24 分)17.43624x yx y+=⎧⎨+=⎩18.15(2)3224x x yx y⎧-+=⎪⎨⎪+=⎩19.2151132x x-+-<20.936325xx-≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案1.A.2.B.3.B.4.D.5.D.6.C.7.D.8.B.9.116;10.0<m<2;11.c>7;12.0.6x-3;13最新七年级(下)数学期末考试题(答案)一、选择题(共12小题,每小题3分,共36分,每题给出4个选项,只有一个是正确的).1.石鼓文,秦刻石文字,因其刻石外形似鼓而得名.下列石鼓文,是轴对称的是()答案:A2.2015年诺贝尔医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为()A、0.456×10﹣5B、4.56×10﹣6C、4.56×10﹣7D、45.6×10﹣8答案:B3.下列运算正确的是()A、(﹣a2b3)2=a4b6B、(﹣a3)•a5=a8C、(﹣a2)3=a5D、3a2+4a2=7a4答案:A4.下列各组数作为三条线段的长,使它们能构成三角形的一组是()A、2,3,5B、9,10,15C、6,7,14D、4,4,8答案:B5.下列事件中是确定事件的是()A、小王参加光明半程马拉松,成绩是第一名B.小明投篮一次得3分C.一个月有31天D.正数大于零答案:D6.下列各式,能用平方差公式计算的是()A、(2a+b)(2b﹣a)B、(13a+1)(﹣13a-1)C.(2a﹣3b)(﹣2a+3b)D、(﹣a﹣2b)(﹣a+2b)答案:D7.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BD=2CD,点D到AB的距离为4,则BC的长是()A、4B、8C、12D、16答案:C8.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是()A、13B、15C、215D、415答案:A9.如图,点E,点F在直线AC上,DF=BE,∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是()A、∠B=∠DB、AD=CBC、AE=CFD、∠A=∠C答案:B10.如图,CO⊥AB,垂足为O,∠DOE=90°,下列结论不正确的是()A、∠1+∠2=90°B、∠2+∠3=90°C、∠1+∠3=90°D、∠3+∠4=90°答案:C11.如图,直线a和b被直线c所截,下列条件中不能判断a∥b的是()A、∠1=∠3B、∠2=∠5C、∠2+∠4=180°D、∠2+∠3=180°答案:C12.如图,已知点D为等腰直角△ABC内一点,∠ACB=90°,AD=BD,∠BAD=30°,E 为AD延长线上的一点,且CE=CA,若点M在DE上,且DC=DM.则下列结论中:①∠ADB=120°;②△ADC≌△BDC;③线段DC所在的直线垂直平分线AB;④ME=BD;正确的有()A、1个B、2个C、3个D、4个答案:D二、填空题(每小题3分,共12分)13.计算:2﹣1=.答案:1 214.用一根长为20cm的铁丝围成一个长方形,若该长方形的一边长为xcm,面积为ycm2,则y与x之间的关系式为.答案:y=﹣x2+10x15.如图,△ABC中,DE是边AB的垂直平分线,AB=6,BC=8,AC=5,则△ADC的周长是.答案:1316.如图,在△ABC中,已知点D,E,F,分别为BC、AD、CE的中点,且S△ABC=16,则S阴影=.答案:4三、解答题(本题共7小题,其中第17题10分,第18题6分,第19题6分,第20题6分,第21题6分,第22题9分,第23题9分,共52分) 17.(10分)计算:(1)﹣22×(π﹣3.14)0﹣|﹣5|×(﹣1)2019(2)3x 2y 2﹣4x 3y 2÷(﹣2x )+(﹣3xy )2解:(1)原式=-4×1-5×(-1)=1 (2)原式=3x 2y 2+2x 2y 2+9 x 2y 2=14 x 2y 218.(6分)先化简,再求值[(x ﹣y )2+(2x +y )(x ﹣y )]÷(3x ),其中x =1,y =﹣2019 解:原式=2222(22)(3)x xy y x xy y x -++--÷ =2(33)(3)x xy x -÷ =x y -当x =1,y =﹣2019时,原式=202019.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作△ABC 关于直线a 的轴对称图形△ADC ; (2)若∠BAC =35°,则∠BDA = ; (3)△ABD 的面积等于 .解:(1)如下图,(2)∠BDA=90°-35°=55°;(3)△ABD的面积等于:12×8×7=28;20.(6分)在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为,是红球的概率为,是白球的概率为.(2)如果任意摸出一个球是绿球的概率是15,求袋中内有几个白球?解:(1)14,512,13;(2)设袋中内有x个白球,则3 35x ++=15,解得:x=7,所以,袋中内有7个白球。
最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。