数电常用芯片应用设计
数电实验74ls00芯片

数字时钟实验报告一、实验电路图实验电路图由protuse软件绘制任务一电路图任务二及拓展任务电路图二、实验结果1.利用两块74ls160构成秒计数器,并连接数码管显示两个74ls160如图连接,将输出端分别接一个数码管,实验结果为当芯片一接入时钟信号时,两个数码管将构成秒计数器,最右边的为个位,从9变成0的时候,十位加一,当数值变为59后,在给一个脉冲,显示将变为00。
2.在一的基础上再用两片74hc160构成分计数器电路图如图连接。
在实验一图的基础上再加两片74ls160,实验结果为四个数码管构成分秒计数器,各位没10进1,秒十位每6分十位将进一,当数值变为59:59时,在下一个脉冲到来后,数值将变为00:00。
3.实现校时功能在实验二电路图连接的基础上,给每个74ls160芯片的脉冲输入端接时钟信号,并用开关控制。
实验结果为当要具体校时某一位时,关闭其芯片所对应的开关,并打开其他所有开关,当具体某一位数值显示为所要设置的数字时打开其开关。
校时完成后打开第一块芯片对应的开关即可正常工作。
三、实验时遇到的问题及解决办法完成实验一没有遇到什么问题,在完成实验二时,数码管显示不正常,仔细排查原因后,发现是芯片输出端与数码管的连接有问题,改正后任务二正常完成。
完成实验三时在校时上出现了问题,原来仿真电路图上只要控制脉冲就可实现校时,但在实际操作中,用脉冲控制很难实现,手抖一下或者接触一下人体就会产生多余的脉冲信号,后来我们用给ENP置0的方法成功解决了问题。
四、实验方案的正确性及可行性任务一的具体方案是给第一块74ls160芯片接入脉冲信号,在把输出端接到数码管上,RCO进位端接入与非门取反后接到芯片二的cp脉冲输入端,输出端同样接数码管,再把Q1,Q2输出端引出来接到与非门,把输出接到芯片二的MR置0端即可实现秒的计数功能任务二的具体操作方案是在实验一的基础上将芯片二的Q1,Q2输出端经过与非门,把输出接到MR的同时引出一根线接到芯片三的CP端芯片三,芯片四的连接于芯片一,二的连接相同。
chip方案

chip方案近年来,随着科技的不断发展和智能化的快速推进,芯片技术作为一种重要的核心技术,越来越受到人们的关注和重视。
本文将对目前热门的芯片方案进行探讨,并分析其在各个领域的应用。
一、芯片方案的概述芯片方案是指在特定的技术条件下,设计和制造用于特定用途的芯片的方法和步骤。
芯片方案有很多种,例如数字电路设计、模拟电路设计、嵌入式系统设计等。
每种方案都有自己的特点和适用范围。
二、数字电路设计方案数字电路设计是指使用数字信号进行信息处理的电路设计。
目前,数字电路设计在计算机、通信等领域得到了广泛应用。
常见的数字电路设计方案有半导体逻辑芯片设计、可编程逻辑器件设计等。
1. 半导体逻辑芯片设计半导体逻辑芯片是一种集成电路芯片,用于实现逻辑函数的功能。
它由多个逻辑门电路组成,可以实现布尔逻辑运算和算术运算等功能。
半导体逻辑芯片设计方案主要包括逻辑电路设计、布局设计、时序设计等。
2. 可编程逻辑器件设计可编程逻辑器件是一种可以根据用户需要进行编程的器件,通常用于实现中小规模逻辑功能。
常见的可编程逻辑器件有可编程门阵列(PLA)、可编程逻辑阵列(PLC)等。
可编程逻辑器件设计方案主要包括逻辑设计、编程设计和测试设计等。
三、模拟电路设计方案模拟电路设计是指使用连续变化的电压或电流信号进行信息处理的电路设计。
模拟电路在音频处理、功率放大等领域有着广泛的应用。
常见的模拟电路设计方案有放大器设计、滤波器设计、混频器设计等。
1. 放大器设计放大器是一种可以将输入信号放大的电路,常用于放大音频信号和射频信号。
放大器设计方案主要包括放大器类型的选择、放大器参数的设计以及放大器的线性性能和稳定性的分析等。
2. 滤波器设计滤波器是一种可以将特定频率范围的信号通过而将其他频率范围的信号抑制的电路。
滤波器设计方案主要包括滤波器类型的选择、滤波器参数的设计以及滤波器的幅频特性和相频特性的分析等。
四、嵌入式系统设计方案嵌入式系统是指将计算机技术应用于各种电子设备中的系统。
常用数字电位器芯片

数字电位器是一种可编程电子器件,它具有与模拟电位器类似的滑动端,可以通过编程改变其电阻值。
数字电位器通常由数字芯片和机械结构组成,可以实现高精度的电阻调节,广泛应用于音频、通信、测量和控制等领域。
以下是一些常用的数字电位器芯片介绍:1. I2C数字电位器:该芯片采用I2C总线接口,具有低功耗、高精度、高稳定性和易用性等特点。
它可以调节电压范围为0V至5V,调节范围为10kΩ至1MΩ,精度为±1%或±0.5%。
该芯片适用于各种需要调节电压和阻抗的场合。
2. SPI数字电位器:该芯片采用SPI总线接口,具有更高的精度和稳定性,调节范围通常在数十kΩ到数MΩ之间。
它还具有自动对准功能,可以快速准确地调节阻抗。
该芯片适用于音频、通信、仪器仪表等领域。
3. 4线数字电位器:该芯片具有4个引脚,可以实现高精度、宽范围、快速调节和低噪音等特点。
它具有手动调节和自动扫描两种模式,可以根据需要进行选择。
该芯片适用于各种需要调节电压、阻抗和增益的场合。
4. 双面数字电位器:该芯片具有双面结构,一面是电阻片,另一面是LED阵列。
通过调节电阻片的阻抗,可以改变LED阵列的亮度,从而实现亮度调节。
该芯片适用于各种需要调节亮度的场合,如显示器、灯具等。
在使用数字电位器芯片时,需要注意以下几点:1. 选择合适的接口方式:根据应用需求选择合适的接口方式,如I2C、SPI、UART等。
2. 确定调节范围和精度:根据实际需求确定数字电位器的调节范围和精度,选择合适的产品型号。
3. 注意引脚定义:数字电位器芯片通常具有不同的引脚定义,需要仔细阅读产品手册,确保正确连接。
4. 调试和校准:在安装和使用数字电位器后,需要进行调试和校准,以确保其工作正常。
总之,数字电位器芯片在许多领域都有广泛应用,选择合适的芯片型号并根据实际需求进行正确使用,可以提高系统的性能和稳定性。
常用模拟开关芯片型号与功能和应用介绍

CD4051引脚功能图
UDD 16
(+15V)
INH C
6
9
BA
10
11
电平转换
地8
译码驱动
UEE 7
(-15V)
3 4 2 5 1 12 15 14 13
SmS7 S6 S5 S4 S3 S2 S1 S0
{S4
IN/OUT
S6 (OUT/IN S)m
{S7
IN/OUT
S5 INH UEE
1
16
2
1
1
0
1
0
“13”
1
1
1
0
0
“14”
1
1
1
1
0
“15”
1
均不接通
高压型模拟开关
高压模拟开关采用全数字电路,时间为数字拨码设置, 可实现模拟断路器跳合闸时间设置、三相/分相操作选 择、输入信号逻辑控制等作用,从而模拟断路器的跳、 合闸动作
高压模拟开关特性 ◆ 模拟断路器可模拟跳闸和合闸时间,时间设置
成套继电保护屏的整组试验,可真实地模拟断路器的 跳合闸时间。在整组试验时模拟高压断路器的跳闸及 合闸,以避免由于重复的整组试验造成断路器反复分 合带来的不良影响。
MAX4800A,MAX4802A 高压模拟开关
MAX4800A/MAX4802A可为超声成像和打印机应用 提供8通道高压开关。该器件采用BCDMOS工艺,提 供8个高压低电荷注入SPST开关,由20MHz串行接口 控制。数据被移入到内部8位移位寄存器,并通过带使 能和清除输入的可编程锁存器保持数据。上电复位功 能确保所有开关在上电时为开启状态。
INH为“1”时断开 所有通道的接通。
常用模拟开关芯片型号与功能和应用介绍

常用模拟开关芯片型号与功能和应用介绍
1.CD4066:
CD4066是一种四路双开关模拟集成电路。
它可以用作高速CMOS开关、模拟信号开关和数字信号开关。
CD4066具有低电平阈值和高通串脉冲响
应等特性,可以通过外部电压来控制其开关状态。
其应用包括模拟开关、
数据路由、模拟选择器和模拟交换等。
2.MAX4617:
MAX4617是一种低电阻四路双开关。
它具有低电阻和低电平失真的特点,可用于模拟交换、模拟多路复用和模拟电流控制等应用。
MAX4617还
具有高速开关时间和广泛的供电电压范围,适用于多种电路设计。
3.ADG601:
ADG601是一种单路、高精度CMOS模拟开关芯片。
它具有低电位失真、低电流和低电压操作的特点,适用于音频信号开关、电量计选择、过程控
制和自动测试设备等应用。
ADG601还具有低串扰和低抖动等特性,可以
提供高品质的信号传输。
这些模拟开关芯片的功能和应用广泛,可以满足不同领域的需求。
它
们在信号传输、数据交换、功率控制和信号处理等方面发挥着重要作用。
无论是工业自动化、通信设备、消费电子产品还是医疗设备,这些模拟开
关芯片都能够提供可靠和精确的信号控制。
因此,选取适合的模拟开关芯
片对于电路设计和系统性能至关重要。
IC集成电路型号大全及40系列芯片功能大全

IC集成电路型号大全及40系列芯片功能大全IC(集成电路)是一种在单一半导体晶圆上集成了数百至数百万个电子元件的微电子元器件。
IC可以实现丰富的功能,从简单的逻辑门到复杂的微处理器,从模拟电路到数字电路等等。
40系列芯片是一种常见的数字逻辑芯片系列,由于功能完善且易于使用而广泛应用。
1.74系列芯片:74系列芯片是最为常见的逻辑芯片,包括多种逻辑门和触发器等基本逻辑功能。
2.555定时器芯片:555芯片是一种通用的定时器,可以提供稳定的时钟信号和可编程的时间延时。
3.741运算放大器芯片:741芯片是一种常见的运算放大器,用于放大模拟信号。
4.4017计数器芯片:4017芯片是一种十进制分频计数器,可用于频率分频、频率测量和计数等应用。
5.4011门芯片:4011芯片是一种四输入门,常用于数字逻辑电路的组合逻辑设计。
6.4511数码管驱动芯片:4511芯片用于驱动共阳极的七段数码管,可在数字显示电路中用来显示数字。
7.4026计数器/分频器芯片:4026芯片是一种十进制计数器和分频器,常用于数字计数和频率分频应用。
8.4093门芯片:4093芯片是一种四反相器门芯片,可用于数字逻辑电路的时钟触发器设计。
9.4051模拟多路复用器芯片:4051芯片是一种模拟信号多路复用器,用于选择多个模拟信号通道中的其中一个。
10.4066开关芯片:4066芯片是一种模拟信号开关,可用于开关模拟信号通路。
11.4029计数器芯片:4029芯片是一种二进制计数器,可用于数字计数和频率测量等应用。
12.4049缓冲器芯片:4049芯片是一种六非门缓冲器,可用于信号放大和驱动等应用。
13.4081门芯片:4081芯片是一种四与门,常用于数字逻辑电路的与门设计。
14.4013触发器芯片:4013芯片是一种D触发器,可用于数字逻辑电路的时钟触发器设计。
15.4050缓冲器/级联器芯片:4050芯片可用于缓冲模拟信号的传输和级联数字逻辑电路。
基于十进制计数芯片74LS90的设计课程设计

基于十进制计数芯片74LS90的设计课程设计.目录1 设计框图与方案选择................................................11.1 设计思路 (1)1.2 方案的选择与论证 (1)2 单元电路的分析与设计 (3)2.1 脉冲电路设计 (3)2.2显示电路设计 (4)2.2.1 计数器的设计 (4)2.2.2 显示单元电路 (5)2.2.3 控制电路.............................................. 6 3 总体电路设计...................................................... 7 4 系统调试与仿真.................................................... 8 5 实物制作与调试................................................... 10 结束语............................................................. 11 参考文献.. (12)..1 设计框图与方案选择1.1 设计思路首先,本次电子秒表的设计任务要求计数精度可达百分之一秒,因此基准脉冲应该获得频率为100HZ的脉冲信号。
要求可显示时间99.99秒,因此每一位都为十进制位。
控制部分可用三个控制键分别进行启动、暂停、清零功能。
分别实现以上模块功能,即可设计出符合要求的电子秒表。
显示部分译码器计数电路启动暂停多谐振荡清零电路电路原理方框图图11.2 方案的选择与论证方案一基于十进制计数芯片74LS90的设计..题目要求达到可计数99.99秒,则需要四个数码管;要求计数分辨率为0.01秒,那么我们需要相应频率的信号发生器。
可采用集成电路555定时器与电阻和电容组成的多谐振荡器。
芯片设计与应用开发方案

芯片设计与应用开发方案第一章芯片概述 (2)1.1 芯片的定义与发展 (2)1.2 芯片的分类与特点 (2)第二章芯片设计基础 (3)2.1 芯片设计流程 (3)2.2 芯片架构设计 (4)2.3 芯片功能评估 (4)第三章芯片核心技术与组件 (5)3.1 神经网络处理器(NPU) (5)3.2 存储器技术 (5)3.3 通信接口技术 (5)第四章芯片硬件设计 (6)4.1 芯片硬件架构设计 (6)4.2 芯片硬件模块设计 (6)4.3 芯片硬件验证与测试 (7)第五章芯片软件设计 (7)5.1 芯片软件架构设计 (7)5.2 芯片驱动程序开发 (8)5.3 芯片软件优化 (8)第六章芯片在边缘计算中的应用 (8)6.1 边缘计算概述 (8)6.2 芯片在边缘计算中的优势 (9)6.2.1 低功耗与高功能 (9)6.2.2 高度集成 (9)6.2.3 灵活部署 (9)6.3 芯片在边缘计算中的应用场景 (9)6.3.1 物联网设备 (9)6.3.2 智能家居 (9)6.3.3 智能交通 (9)6.3.4 工业制造 (9)6.3.5 医疗健康 (9)6.3.6 金融科技 (10)第七章芯片在云计算中的应用 (10)7.1 云计算概述 (10)7.2 芯片在云计算中的优势 (10)7.2.1 提高计算功能 (10)7.2.2 降低能耗 (10)7.3 芯片在云计算中的应用场景 (10)7.3.1 大数据处理 (10)7.3.2 人工智能服务 (10)7.3.3 企业级应用 (11)7.3.4 云游戏与虚拟现实 (11)7.3.5 智能家居与物联网 (11)第八章芯片在物联网中的应用 (11)8.1 物联网概述 (11)8.2 芯片在物联网中的优势 (11)8.3 芯片在物联网中的应用场景 (12)第九章芯片在智能驾驶中的应用 (12)9.1 智能驾驶概述 (12)9.2 芯片在智能驾驶中的优势 (13)9.3 芯片在智能驾驶中的应用场景 (13)9.3.1 环境感知 (13)9.3.2 决策制定 (13)9.3.3 操作执行 (13)第十章芯片发展前景与挑战 (14)10.1 芯片发展趋势 (14)10.2 芯片面临的挑战 (14)10.3 芯片产业发展策略与建议 (14)第一章芯片概述1.1 芯片的定义与发展人工智能技术的飞速发展,芯片作为支撑这一技术的重要硬件基础,正日益成为产业界和学术界的关注焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
74ls138摘要:74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路.引脚图:工作原理:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。
利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。
内部电路结构:功能表真值表:简单应用:74ls139:74LS139功能:54/74LS139为2 线-4 线译码器,也可作数据分配器。
其主要电特性的典型值如下:型号 54LS139/74LS139 传递延迟时间22ns 功耗34mW当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。
若将选通端(G1)作为数据输入端时,139 还可作数据分配器。
74ls139引脚图:引出端符号:A、B:译码地址输入端G1、G2 :选通端(低电平有效)Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:74LS139真值表:74ls164:164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA-QH)均为低电平。
串行数据输入端(A,B)可控制数据。
当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。
当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。
引脚功能:CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端(图1 74LS164封装图)(图2 74LS164 内部逻辑图)极限值电源电压7V输入电压……… 5.5V工作环境温度54164………… -55~125℃74164………… -0~70℃储存温度……-65℃~150℃(图3 真值表)H-高电平L-低电平X-任意电平↑-低到高电平跳变QA0,QB0,QH0 -规定的稳态条件建立前的电平QAn,QGn -时钟最近的↑前的电平(图4 时序图)应用实例:如图所示的电原理图,利用74LS164串行输入并行输出芯片作一个简单的电子钟,要求四个数码管显示时钟;其中LED1显示小时的十位,LED2显示小时的个位,LED3显示分钟的十位,LED4显示分钟的个位。
解:采用单片机的串行口输出字形码,用74LS164和74LS139作为扩展芯片。
74LS164的功能是将80C51串行通信口输出的串行数据译码并在其并口线上输出,从而驱动LED 数码管。
74LS139是一个双2-4线译码器,它将单片机输出的地址信号译码后动态驱动相应的LED。
因74LS139电流驱动能力较小,故用末级驱动三极管9013作为地址驱动。
将4只LED的字段位都连在一起,它们的公共端则由74LS139分时选通,这样任何一个时刻,都只有一位LED在点亮,也即动态扫描显示方式,其优点使用串行口进行LED通信程序编写相当简单,用户只需将需显示的数据直接送串口发送缓冲器,等待串行发送完毕标志位即可。
串行动态LED扫描电路参考程序:org 0100hmov scon,#00hmain:mov r3,#00hloop:mov r4,#0e8hdelay:acall displaydinz r4,delayinc r3cjne r3,#oah,loopajmp maindisplay:clr p3.2clr p3.3acall dispacall delay1setb p3.3acall dispacall delay1setb p3.3clr p3.2acall dispacall delay1setb p3.2setb p3.3acall dispacall delay1retdisp: mov a,r3mov dptr,#tablemovc a,@a+dptrmov buff,await: jnb ti,waitclr tiretdelay1:mov r6,#10hloop1:mov r7,#38hloop2:djnz r7,loop2djnz r6,loop1rettable :db 0c0h,0f9h,oa4h,0b0h,99hdb 92h,82h,0f8h,80h,90hend74ls373:简要说明:74LS373是八D锁存器(3S,锁存允许输入有回环特性),常应用在地址锁存及输出口的扩展中。
SN74LS373, SN74LS374 常用的8d锁存器,常用作地址锁存和i/o输出. 可以用74hc373代换. 74LS373是低功耗肖特基TTL8D锁存器,74H373是高速CMOS器件,功能与74LS373相同,两者可以互换。
74LS373内有8个相同的D型(三态同相)锁存器,由两个控制端(11脚G或EN;1脚OUT、CONT、OE)控制。
当OE接地时,若G为高电平,74LS373接收由PPU输出的地址信号;如果G为低电平,则将地址信号锁存。
工作原理:74LS373的输出端O0~O7可直接与总线相连。
当三态允许控制端OE为低电平时,O0~O7为正常逻辑状态,可用来驱动负载或总线。
当OE为高电平时,O0~O7呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。
当锁存允许端LE为高电平时,O 随数据D而变。
当LE为低电平时,O被锁存在已建立的数据电平。
74LS373引脚(管脚)图:74LS373内部逻辑图:74LS373真值表:利用74LS373设计的一个超实用型抢答器:利用74LS373设计的抢答器电路它由一片8D锁存器74LS373。
8只组别按键开关S1-S8,8组别抢答有效的状态显示发光二极管L1-L8,一个复位按键FW等组成。
该8路竞赛抢答器,每组受控于一个抢答按键开关,高电平表示抢答有效。
设置主持人控制键FW用于控制整个系统清0和抢答有效开始控制的启动。
每按下一次复位键FW时,使8D锁存器的控制端G为高电平,若组别按键开关S1~S8中任何一个都没按下,即对应8D锁存器的输入端D均为低电平,则此时8个输出端均为低电平,对应的发光二极管均不点亮,表示抢答者正在准备抢答状态。
按下复位键FW时,8D锁存器的控制端G为高电平,若组别按键开关S1-S8中存在一个或几个处于按下状态,即与之对应的8D锁存器的输入端D为高电平,此时与之对应的8D锁存器的输出端立即为高电平,对应的发光二极管被点亮,表示抢答者违规了。
只有每按下一次复位键FW,并在复位键FW抬起后,抢答才是有效的。
系统具有第一抢答信号鉴别和锁存功能。
在主持人将系统复位并使抢答有效开始后,第一抢答者按下抢答按钮。
对应的输入引脚接高电位1,8D锁存器的对应输出端立即为高电平1。
二极管VD1-VD8组成了或门电路。
使三极管VT1基极得到高电位而饱和导通使锁存器的G 为低电平,将8D锁存器的输入信号锁存在了输出端,输入端的信号变化将不在影响输出端。
对应点亮的发光二极管指示出第一抢答者的组别。
在显示有效的组别的同时,也可同时采用蜂鸣器警示。
设计特点:8D锁存器74LS373的允许端G的控制信号不是周期固定的脉冲信号,而是将取自锁存器输出端的信号处理后得到的,保证电路结构最简洁、处理时间最快捷,同时减少了脉冲源存在可能带来的干扰,使电路性能更可靠。
74ls151:简要说明:8选1数据选择器(有选通输入端,互补输出)151为互补输出的8选1数据选择器,共有54/74151、54/74S151、74LS151三种线路结构形式,其主要电特性的典型值如下:数据选择端(ABC)按二进制译码,以从8个数据(D0-D7)中选取1个所需的数据。
只有在选通端STROBE为低电平时才可选择数据。
151有互补输出端(Y、W),Y输出原码,W输出反码。
管脚图:引出端符号:A、B、C 选择输入端D0-D7 数据输入端STROBE 选通输入端(低电平有效)W 反码数据输出端Y数据输出端功能表:逻辑图:极限值:电源电压 ------------------------------------------7V 输入电压54/74151、54/74S151---------------------------------5.5V 54/74LS151 ------------------------------------7VCD4532:图为CD4532编码芯片引脚仿真分布图(GND 为第8脚,VCC为16脚省略未画出)EI引脚为高电平的时候,D0~D7输入相应的电平信号时Q0~Q2可以输出不同的二进制数据,同时EO输出低电平,GS输出高电平,D0~D7与Q0~Q2的关系如下:D0 为高电平Q2Q1Q0 输出000D1 为高电平Q2Q1Q0 输出001D2 为高电平Q2Q1Q0 输出010D3 为高电平Q2Q1Q0 输出011D4 为高电平Q2Q1Q0 输出100D5 为高电平Q2Q1Q0 输出101D6 为高电平Q2Q1Q0 输出110D7 为高电平Q2Q1Q0 输出111。
以下电路可以印证这种状态,在D6按键按下输入高电平时,GS EO Q2 Q1 Q0分别输出10110。
图为测试CD4532引脚的状态我们都非常熟悉7LS138这个芯片把3个引脚的输出状态扩展为8个引脚输出的状态。
使用CD4532你就可以将8个输入引脚的状态转化为3个引脚的输入状态。
在单片机项目开发过程中,如果单片机引脚作为接收外界信号不够用时,实用CD4532是非常实用的。
555:555时基电路的特点:555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体.图为555集成电路内部结构图:555集成电路是8脚封装,双列直插型,如图所示:555时基集成电路各引脚功能描述:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;⑧是电源正极VC。