一种波形产生数字电路设计及仿真
lm358正弦波方波三角波产生电路

《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
基于Multisim的波形发生器仿真

电子设计自动化题目Multisim分析波形发生器仿真学生姓名陈冰雪学号 20091305020 院系电子与信息工程学院专业电子信息工程任课教师周欣二0一一年十一月二十三基于Multisim的波形发生器仿真陈冰雪(南京信息工程大学电子信息工程系,南京210044)摘要:在Multisim环境下,以波形器为例,本文阐述了该软件在系统仿真分析中的具体应用。
Multisim软件可以把原理图绘制,程序编制,实验仿真和印刷电路板图的生成集成在一个设计环境中,不但可以做到边设计边实验,修改调试方便,而且实验采用的是虚拟元软件和测量仪器,实验成本低,实验速度快。
仿真结果与理论分析结果一致,说明了基于multisim软件仿真在电路设计和基础实验教学中具有非常重要的应用价值。
关键词:Multisim,波形发生器,555定时器0 引言传统的电子技术理论教学中,一般多采用工程近似的方法对电路进行分析、计算,特别是对于较复杂的电路设计时,往往需要改变各种元器件的参数,进行设计与匹配,如果元件参数发生变化,学生在短时间内很难把握电路的输出及各种性能指标。
Muhisim是一种全功能电子电路仿真软件,该软件为用户提供了一个集成化的虚拟设计实验环境,建立电路、仿真分析和结果输出在集成界面中可以全部完成.电路元器件,测量仪器,和仿真结果与实际情况非常接近,满足使用者从参数到产品的设计要求。
采用具有较强的电路仿真与分析功能的Multisim软件,在计算机上“做”实验,具有直观、方便、高效的优点。
并且可通过实际的电路,对最后的设计结果进行验证。
在电子技术教学中引入电路设计仿真软件设计电路,是提高学生电子电路设计水平和设计能力的有效方法,对于培养创新和实用人才、改革传统的实验教学模式,提高实验教学质量有着重要的意义。
¨本文基于Multisim软件平台,结合波形发生器中的波形产生电路进行具体的分析与仿真研究。
1.系统方案及思路需求分析:以Multisim为基础设计仿真能输出波形的振荡器Multisim简介:Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
简易波形发生器的设计

XXXX学院课程设计报告课程名称:单片机课程设计院系:电气与信息工程学院专业班级:自动化09102班学生姓名: X X指导教师: X X X完成时间: 2012年6月10日报告成绩:简易波形发生器简易波形发生器是一种常用的信号源,它广泛地应用在电子技术实验、自动控制系统和其他科研领域。
本系统能够准确产生方波、正弦波、锯齿波及三角波。
基于数模转换芯片DAC0832技术的简易波形发生器由六个部分组成:MCU模块、波形发生模块、静态LED 数码管显示模块、键盘输入模块、在线下载模块以及电源模块。
MCU模块采用STC89C51RC 单片机进行数据处理,波形发生模块采用DAC0832及LM324进行波形发生及变换,静态LED数码管显示模块利用3位八段共阳极数码管及3个74LS164显示当前波形频率,键盘模块采取外部中断方式扫描键值,在线下载模块选用MAX232芯片进行单片机程序下载,电源模块使用三端稳压器为系统提供能源。
运用Altium Designer软件绘制了单元电路以及总体电路图,借助Proteus仿真软件对电路进行了虚拟实验,通过仿真分析,满足了课题性能指标的要求,成功地实现了简易波形发生器的设计。
关键词波形发生器;DAC0832;STC89C51RC;静态显示Simple waveform generator is a common source, it is widely used in the experiment of electronic technology, automatic control system and other scientific fields. The system can accurately produce a square wave, sine wave, sawtooth wave and triangle wave. Based on the digital-analog conversion chip DAC0832 simple waveform generator consists of six parts: MCU module, waveform generator module, static LED digital display module, keyboard input module, the download module and power supply. The MCU STC89C51RC microcontroller is for data processing. The waveform generation module which made of DAC0832 and LM324 is used to generate waveform and transform. The static LED digital display module uses three eight out common anode digital and three 74LS164 to show the current waveform frequency. The keyboard module to take external interrupt the scan key. Download module use a MAX232 chip microcontroller program download. The power supply uses three-terminal regulator to provide energy for the system. Altium Designer were used to draw a unit circuit as well as the overall circuit. With Proteus simulation software to conduct virtual experiments on the circuit, simulation analysis, to meet the requirements of the subject of performance indicators, the successful implementation of a simple waveform generator design.Keywords waveform generator ;DAC0832;STC89C51RC; static LED digital display目录摘要 (I)Abstract (II)第一章简易波形发生器的方案设计 (1)1.1简易波形发生器的方案分析与比较 (1)1.1.1 基于数模转换芯片DAC0832的简易波形发生器的设计 (1)1.1.2 基于MAX038函数发生器的简易波形发生器的设计 (1)1.1.3 基于DDS波形发生技术的简易波形发生器的设计 (2)1.2 简易波形发生器的总体结构说明 (2)第二章简易波形发生器的电路设计 (3)2.1 MCU模块 (3)2.1.1 STC89C51RC单片机 (3)2.1.2 复位电路 (5)2.1.3 时钟电路 (5)2.2 DAC0832模块 (5)2.2.1 DAC0832芯片基本介绍 (6)2.2.2 DAC0832波形发生电路 (7)2.3 静态LED数码管显示模块 (7)2.3.1 移位寄存器74LS164 (7)2.3.2 静态显示电路 (8)2.4 键盘输入模块 (8)2.5 在线下载模块 (9)2.6 电源模块 (9)2.7 总体电路说明 (9)第三章简易波形发生器的程序设计 (10)3.1系统接口定义 (10)3.2 主程序 (10)3.3 外部总中断1中断服务程序 (11)第四章简易波形发生器仿真分析 (13)4.1初始界面 (13)4.2 波形发生仿真 (13)4.2.1 正弦波的仿真分析 (13)4.2.2 锯齿波发生仿真分析 (14)4.2.3 三角波发生仿真分析 (15)4.2.4 方波发生仿真分析 (17)总结 (19)参考文献 (20)致谢 (21)附录1:简易波形发生器原理图 (22)附录2:简易波形发生器Protues仿真图 (23)附录3:简易波形发生器元器件明细表 (24)附录4:简易波形发生器源程序 (25)第一章 简易波形发生器的方案设计简易波形发生器是一种常用的信号源,它广泛地应用在电子技术实验、自动控制系统和其他科研领域。
第五组--信号波形合成电路实验(2010年电子竞赛C题论文)2

高,在高压、高频、大功率的场合不适用。 综合以上的分析,由 TI 公司生产的宽带低失真单位增益稳定的电压反馈运算放
大器 OPA842 组成的滤波电路满足本次设计的要求,因此选择方案二。 1.1.3 移相电路
方案一:用双极性运算放大器 OP07 组成的移相电路,由于 OP07 具有非常低的 输入失调电压,所以在很多应用场合不需要额外的调零措施。OP07 是一种低噪声, 非斩波稳零的双极性运算放大器,由它组成的移相电路具有电路简单、工作可靠、成 本低、波形好、适应性强,而且可以提供 180°的相移。
表一:信号编码表
A0
A1
X
1
0
0
1
0
波形 正弦波 方波 三角波
A0、A1 表示波形设定端;X 表示任意状态;1 为高电平;0 为低电平。 74LS14 非门对输出的信号进行整形,使输出的波形更加的理想。 3.1.2 分频电路 分频电路如附录图 3 所示,由 74LS90、74LS00、CD4013 三片芯片组成。先将 300KHz 的方波信号进行 3 分频、5 分频、15 分频,再通过 D 触发器二分频,最终得到 50KHz、 30KHz、10KHz 的正弦波信号。 74LS90 不仅可以用于计数,还能用于分频,一片 74LS90 可构成最大进制计数器 是十进制,若分频数大于 10,则要用两片或多片级联,级联后高位的周期即为分频 后的周期,但占空比并非 50%,这就需要用 D 触发器对分频后的方波进行整形。74LS00 是四集成与非门,在电路中起缓冲隔离的作用。CD4013 是由两个相同的、相互独立 的数据型触发器构成。每个触发器有独立的数据、置位、复位、时钟输入和 Q 及 Q
方案三:用 MAX038 精密、高频波形发生器来产生方波信号,电路结构简单,能产 生 0.1Hz~20MHz 的方波信号,波形的频率和占空比可以由电流、电压或电阻控制 。 MAX038 构成的电路低失真、低漂移、外围元件少、可靠性和稳定性好,但相对于上 面的方案而言,价格会稍高一点。
基于Multisim软件的可编程波形发生器设计

基于Multisim软件的可编程波形发生器设计徐刚【摘要】Based on Multisim,the paper takes programmable signal generator for example to introduce a method of designing instrument with SCM.Multisim software can integrate some design tools into one single environment,such as plotting,programming,experimentations%本文以可编程波形发生器为例,介绍了一种在Multisim软件环境下设计单片机电路的方法。
该方法运用Multisim软件把原理图绘制、程序编制、实验仿真和印刷版图的生成集成在一个设计环境中,不但做到边设计边实验,修改测试方便,而且实验采用虚拟元器件和测量仪器,实验成本低,速度快。
具体设计了可编程波形发生器的硬件电路,编制了产生三角波、锯齿波和正弦波的程序,仿真运行的结果达到了设计要求。
通过该实例说明,采用Multisim软件设计单片机电路是方便有效的。
【期刊名称】《潍坊学院学报》【年(卷),期】2011(011)004【总页数】4页(P9-12)【关键词】Multisim软件;可编程波形发生器;设计与仿真【作者】徐刚【作者单位】南昌大学,江西南昌330031【正文语种】中文【中图分类】TN79M ultisim是美国国家仪器有限公司推出的以Window s为基础的电子电路仿真软件,它适用于模拟电路、数字电路、模拟/数字混合电路、射频电路以及部分微机接口电路的仿真。
它为用户提供了一个集成化的虚拟设计实验环境,包含了电路原理图的图形输入、电路硬件描述语言输入方式。
通过M ultisim软件和虚拟仪器技术,使用者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程,仿真结果与实验情况非常接近,满足使用者从参数到产品的设计要求。
DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告目录第1章系统设计方案 (2)1.1 设计思路 (2)1.2 方案比较与选择 (2)第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2)2.2 数模转换电路 (3)第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8)4.1 proteus的调试 (8)第5章结论与总结 (11)5.1 结论 (11)(系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。
)5.2 总结 (11)(这是一个主观的总结,谈谈自己收获和不足等方面的内容。
)第1章系统设计方案1.1 设计思路(一)、课设需要各个波形的基本输出。
如输出矩形波、锯齿波,正弦波。
这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。
它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。
然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。
数字电子技术仿真软件Multisim电路设计与仿真应用

第12章数字电子技术仿真软件Multisim 2001电路设计与仿真应用12.1 Multisim 2001软件介绍Multisim 2001是加拿大交互图像技术有限公司(IIT公司)推出的最新版本,其前身是EWB5.0(电子工作平台)。
目前我国用户所使用的Multisim2001以教育版为主。
Electronics Workbench 公司推出的以Windows为系统平台的板级仿真工具Multisim,适用于模拟/数字线路板的设计,该工具在一个程序包中汇总了框图输入、Spice仿真、HDL设计输入和仿真、可编程逻辑综合及其他设计能力。
可以协同仿真Spice、Verilog和VHDL,并能把RF设计模块添加到成套工具的一些版本中。
整套Multisim工具包括Personal Multisim、Professional Multisim、Multisim Power Professional等。
这种仿真实验是在计算机上虚拟出一个元器件种类齐备、先进的电子工作台,一方面可以克服实验室各种条件的限制,另一方面又可以针对不同目的(验证、测试、设计、纠错和创新等)进行训练,培养学生分析、应用和创新的能力。
与传统的实验方式相比,采用电子工作台进行电子线路的分析和设计,突出了实验教学以学生为中心的开放模式。
12.1.1 M ultisim 2001软件操作界面启动Multisim 2001软件后,首先进入用户界面如图12-1所示,Multisim 2001的界面基本上模拟了一个电子实验工作平台的环境。
下面分别介绍主操作界面各部分的功能及其操作方法。
图12-1 Multisim 2001的基本界面1. 系统工具条图12-2所示为Multisim 2001的系统工具条,可以看出,其风格与Windows软件是一致的。
系统工具条中各个按钮的名称及功能如下所示。
2.设计工具条Multisim 2001的设计工具条如图12-3所示,它是Multisim的核心工具。
模拟电子技术实验-波形发生电路

实验: 波形发生电路一、 实验目的1.掌握RC 桥式正弦波振荡电路的原理与设计方法;2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法;3.了解运放转换速率对振荡波形跳变沿的影响。
二、实验仪器名称及型号KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。
模块化实验装置。
本实验将使用三种集成运放:µA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。
87654321µA741+Vcc -VccOUT OA2NC 141312114321LM324(TL084)1098765V-4OUT 4IN-4IN+3OUT3IN-3IN+图1 741A 、LM324和TL084的引脚图三、实验内容1.RC 桥式正弦波振荡电路(SPOC 实验)(1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。
其中集成运放可采用µA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。
电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为,相频特性为,,根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。
(2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。
U opp= 18.1V ;U opp= 6.1V ;(3)正反馈系数F u的测定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种波形产生数字电路设计及仿真
1设计原理
DDS 直接频率合成技术是一种直接从相位的角度合成所需波形的技术。
此设计旨在设计一个模拟波形的产生电路,采用quartus ii 软件作为可编程逻辑设计环境,该软件有两种设计方式,原理图输入和采用HDL 语言输入,实现模拟波形的产生。
数字电路设计包含组合逻辑电路和时序逻辑电路设计,其中组合逻辑电路的设计是设计的重点。
因此需要对时钟有较强的理解。
本设计可以采用Verilog HDL 硬件描述语言编写程序实现波形的产生,可以产生三种波形,正弦波,方波以及三角波。
其中正弦波调用quartus 自带的IP 核,通过单端口的ROM 来查表获得查表数据,通过调用ip 可以实现设计要求。
方波和三角波虽然也可以通过此方式,但是也可以通过编写计数器分频实验来实现设计,方波可以直接通过半个周期信号为低电平,半个周期为高电平。
三角波通过将计数器的值先增加后减少获得。
波形产生电路在电子设计中占据很重要的地方,有一定的研究价值。
2功能描述
(1)实现正弦波、三角波、方波的输出;
(2)信号输出通过各个波形的使能信号来区分输出何种波形;
(3)信号调节方式可控,这里由于是仿真故没编写按键扫描程序; FPGA 的设计流程如下:
系统框图如图所示:
3设计定义
4 HDL语言编写流程
设计代码包含设计时钟分频进程、三角波产生进程、方波产生进程和信号输出电路进程。
其中每个进程通过过程语句always来通过敏感信号如时钟上升沿和异步复位信号时钟下降沿来采样。
其中设计流程图如下图所示:
5设计代码
见附录
6验证及仿真
仿真的方式有功能仿真和时序仿真,要设计这么一款电路,首先需要通过功能仿真。
工具有quartus ii自带的波形仿真文件和编写顶层设计的testbench 测试程序来进行仿真。
其中可以设置仿真时间、仿真精度、以及信号的输入类型定义和数值,设置好这些数据就可以进行仿真,不过采用testbench仿真相对复杂一点,需要用到modelsim软件来仿真,优点是仿真时间和仿真精度可以更高,仿真波形也相对较美观。
一个最基本的Testbench包含三个部分,信号定义、模块接口和功能代码。
编写Testbench的三个基本步骤:
1、对被测试设计的顶层接口进行例化;
2、给被测试设计的输入接口添加激励;
3、判断被测试设计的输出相应是否满足设计要求。
方式一:采用波形仿真
(1)首先新建一个仿真波形文件,save 为.vwf的文件格式。
设置仿真输入输入输出变量及其仿真波形初始化设置,具体配置如下。
(2)开始功能仿真设置
由于设计综合后需要观察,输入变量是否能对输出变量进行控制,需要先进行功能仿真,在Processing->Simulation Tool下面,选择功能仿真Function,仿真输出加入你保存的波形文件,点击Start开始仿真,等待一定时间,生成Report 同时quartus波形仿真功能还可以设置仿真的结束时间,默认为1us,这里根据要求可以将时间设置到50us,以便于更好的观察波形。
正弦信号功能仿真图
这里仿真的时钟周期设置为10ns,而1-ROM中数据需要通过address地址端来自增才能在qout端口输出ROM中保存的数据,address通过时钟上升沿触发来控制,相当于时钟对其进行采样。
方波输出功能仿真图
方波的输出,其实就是在一个周期中,一半时间处于高电平,一半时间处于低电平,故其波形相对其他几种波形较容易实现。
三角波功能仿真图
要输出三角波,需要定义一个计数变量0~255之间取值,然后在0~255处于计数上升,255~0处于计数递减。
锯齿波功能仿真图
锯齿波的形成类似于三角波,但是上升时间与下降时间不同。
RTL传输图
下面是该系统的寄存器传输水平的电路图。
方式二:采用Testbench仿真
仿真代码附录所示。
板级验证图
7设计总结
通过本次设计了解了FPGA的开发流程,以及如何运用EDA工具进行数字电路的开发,学会了简单的使用HDL语言,主要是Verilog HDL语言进行开发。
基本了解了设计过程的如何去验证程序,如何检验时序是否符合设计要求。
过程犯了很多错误,总结得出,程序书写的规范性是很重要的,只有书写规范了,才能更好的检测到错误所在,模块设计的设计思想是很重要的,首先编写好各个底层模块,顶层模块通过调用子层模块的来设计,如果一个设计要求用到系统分频后的时钟,不能直接用计数器分频的时钟作为其他模块的时钟,可以采用时钟使能的方
式,增加一个使能信号来控制其他模块的时钟。