数字电路设计仿真
pspice电路仿真设计

随着电子设计自动化(EDA)的兴起,PSPICE逐渐 成为主流的电路仿真软件。
2000年代至今PSPICE断更新升级,支持更多复杂电路和高级功 能。
PSPICE的主要功能
电路图绘制与编辑
提供丰富的元件库和绘图工具 ,方便用户绘制电路图。
电路仿真与分析
支持多种仿真和分析功能,如 直流分析、交流分析、瞬态分 析等。
设置仿真精度
调整仿真精度,以获得更准确的仿真结果。
设置初始条件
为电路元件设置初始状态,以便进行仿真计 算。
电路仿真的基本步骤
建立电路模型
根据电路原理图,使用PSPICE软件建立相应 的电路模型。
定义元件参数
为电路元件设置合适的参数值,确保仿真结 果的准确性。
运行仿真
启动仿真计算,观察仿真波形和数据,分析 电路性能。
用于嵌入式系统的电路设计和仿真,如微控制器、DSP等。
科研与教育
广泛应用于科研机构和高校,作为电子工程学科的教学和实验工具。
02
PSPICE电路设计基础
电路元件的选取与参数设置
电阻
根据电路需求选择适当的电阻值和功率,设 置合适的电阻精度。
电感
根据工作频率、电流和磁芯材料等参数选择 合适的电感值和额定电流。
时序逻辑电路
02
设计一个同步计数器,通过PSPICE验证其时序行为和性能指标。
微处理器模型
03
使用PSPICE建立微处理器的电路模型,进行功能仿真和性能预
测。
混合信号仿真案例
ADC/DAC仿真
设计一个模数转换器和数模转换 器,利用PSPICE分析其性能和相 互影响。
数字通信系统
设计一个简单的数字通信系统, 包括调制解调器和信道模拟,通 过PSPICE进行系统级仿真和分析。
multisim数字电路仿真实验电子表电路仿真

multisim数字电路仿真实验电⼦表电路仿真Multisim 数字电路仿真实验电⼦表电路仿真汽车⼯程系汽13班张昊 010975实验⽬的⽤Multisim的仿真软件,对数字电路进⾏仿真研究实验内容电⼦表电路的框图如图19.3 所⽰,其⼯作要求如下:时钟输⼊为秒脉冲。
秒计数器为60 进制,BCD 码输出。
秒计数器的进位脉冲送给分计数器,分计数器也是60 进制,BCD 码输出。
分计数器的进位脉冲送给⼩时计数器,⼩时计数器是24 进制,BCD 码输出。
各计数器的输出送显⽰译码器,显⽰译码器的输出送七段数码管。
设⼀个开关,开关合向⾼电平(+5V 电源),计时开始;开关合向地,各计数器清除。
电⼦表电路Multisim 仿真设计图如图19.4 所⽰。
其电路结构是:计数器芯⽚采⽤74290N,其中U1、U2 组成秒计数器,U3、U4组成分计数器,U5、U6 组成⼩时计数器。
显⽰译码器采⽤7448N。
开关J1控制计数和清除。
其他门电路实现进位或清除逻辑功能。
3.选做实验(1)修改图19.4 电路,实现时、分、秒的对表逻辑。
(2)⾃拟⼀个电路进⾏仿真实验。
电路分析本实验中最重要的部分是由两⽚74LS90组成100以内任意进制计数器的原理。
原实验电路图分为两部分,⼀是计数器部分,⼆是译码显⽰部分。
计数器部分由六个74LS90芯⽚组成的两个60进制计数器和⼀个24进制计数器级连⽽成,由秒脉冲使其实现对时,分,秒的计时功能。
其中通过逻辑电路保证分钟计数器的输⼊信号为秒计数器的进位脉冲,时计数器的输⼊脉冲为分计数器的进位脉冲。
另外,还具有同时⼿动清零的功能。
译码显⽰部分由译码器7448N和七段数码显⽰管组成,实现将计数器的值⽤数码显⽰的功能。
对原电路的改进由上述对原电路各部分功能的分析,为⽅便实验,在不影响其功能的前提下,我认为有⼏个地⽅可以作如下修改。
⾸先,可以选⽤四输⼊的带有译码电路的数码管代替原有译码显⽰部分,这样可以使得电路更加简洁,便于分析。
Proteus数字电路的设计与仿真

Proteus数字电路的设计与仿真
在Proteus中,可以通过图形化界面来设计数字电路。
首先,在工作区中选择Digital模式,然后从元件库中选择所需的数字电路元件,如门电路、时序电路等。
将这些元件拖放到工作区中,然后通过连线连接各个元件,形成完整的数字电路。
可以通过右键点击元件进行属性设置,如输入、输出状态等。
设计完成后,可以进行仿真。
在Proteus中,有两种仿真方式:逻辑仿真和时序仿真。
逻辑仿真可以检查数字电路的逻辑功能是否正确,而时序仿真可以模拟数字电路的时序行为。
通过设置输入信号,可以观察输出信号的变化,并在仿真过程中进行波形图的显示和分析。
在进行仿真之前,需要先设置输入信号的波形,可以手动设置或者通过外部文件导入波形数据。
在仿真过程中,可以随时停止、继续、单步运行,观察信号的变化和仿真结果。
同时,还可以通过添加测试点来监测电路中的特定信号,并通过波形图分析来验证电路设计的正确性。
此外,Proteus还支持调试功能,可以对数字电路进行单步调试,查看元件内部的状态和观察信号的变化,以便找出可能的问题。
总的来说,Proteus可以帮助设计人员进行数字电路的设计与仿真,提高设计的准确性和效率。
实验十、基于multisim数字电路仿真实验

南昌大学实验报告学生姓名:罗族学号: 6103413001 专业班级:生医131班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验十、基于Multisim数字电路仿真实验一、实验目的1、掌握虚拟仪器库中关于测试数字电路仪器的使用方法,如数字信号发生器和逻辑分析仪的使用。
2、进一步了解Multisim仿真软件基本操作和分析方法。
二、实验原理从逻辑分析仪中可以得出74LS138的八个输出端每次输出时,只有一个为低电平,其余为高电平。
字发生器三个输出端信号以‘000-111’二进制循环输入到138的三个输入端ABC。
通过74LS138的真值表可以得出每次八个输出端只有一个低电平,其余七个输出高电平,该结果与逻辑分析仪的显示结果一致,从而通过数字信号发生器与逻辑分析仪可测试得出74LS138译码器逻辑功能三、实验设备Multisim虚拟仪器中的74Ls138,字发生器,逻辑分析仪。
四、实验内容用数字信号发生器和逻辑分析仪测试仪74LS138译码器逻辑功能自拟实验步骤,记录实验结果并进行整理分析。
五、实验步骤1.按设计好的电路连接电路,如图1所示图 12.在Multisim工作区中点击‘字发生器’,在字生器中选择‘循环‘控制,设置中选用上数序计数器,显示类型为二进制,频率为1kHz.图 23.运行仿真电路,点击‘逻辑分析仪’观察74LS138输出的信号变化,运行仿真后,在逻辑分析仪中可观察到输出信号的变化波形以及输入信号波形变化。
六、实验结果及数据分析图 3七、实验总结:通过这次实验了解了虚拟仪器库中关于测试数字电路仪器的使用方法,如数字信号发生器和逻辑分析仪的使用。
进一步了解Multisim仿真软件基本操作和分析方法。
Multisim电路设计与仿真第7章数字电路仿真

217 第7章 Multisim 12在数字电路中的应用和仿真 本章主要介绍Multisim 12中在数字电路中的应用和仿真。
首先进行分立元件特性测试与仿真,然后介绍组合逻辑与时序逻辑电路的分析与仿真,最后介绍555定时器与数/模、模/数转换部分的分析与仿真。
7.1分立元件特性测试与仿真数字电路中逻辑变量有0和1两种取值,对应电子开关的断开和闭合。
构成电子开关的基本元件有二极管、三极管和MOS 管。
理想开关的开关特性有两种:(1)静态特性。
断开时,开关两端的电压不管多大,等效电阻R OFF =∞,电流I OFF = 0;闭合时,不管流过其中的电流多大,等效电阻R ON = 0,电压U AK = 0。
(2)动态特性。
开通时间t on =0,关断时间t off = 0。
客观世界中并没有理想开关。
乒乓开关、继电器、接触器等的静态特性十分接近理想开关,但动态特性很差,无法满足数字电路一秒钟开关几百万次乃至数千万次的需要。
二极管、三极管和MOS 管做为开关使用时,其静态特性不如机械开关,但动态特性很好。
本节主要介绍二极管和三极管的开关特性测试与仿真。
7.1.1二极管开关特性测试与仿真 二极管在正偏导通时的导通压降,硅材料约0.7V ,锗材料约为0.3V ,导通电阻约为几欧姆或几十欧姆,类似关闭合;反向截止时反向饱和电流极小、反向电阻很大(约几百千欧)类似开关断开。
1.使用伏安特性图示仪观察二极管伏安特性曲线图7-1 用伏安特性分析仪观察二极管伏安特性曲线在Multisim 环境下,单击元器件库栏按钮,在弹出的窗口中,“Datebase ”栏选择“Master Datebase”,“Group”栏选择“DIODE”,“Component”栏选择“1N4001”,其它选择默认,把二极管“1N4001”放置在工作区。
再单击仪器仪表库中(IV analyzer,伏安特性分析仪)按钮,放置在工作区。
鼠标左键双击伏安特性分析仪,打开设置窗口,“Component”栏选择“Diode”,可在设置窗口右下角看到二极管符号,即要求外部接线时,左侧端口接“P”区,中间端口接“N”区。
EWB数字电路仿真实验

EWB数字电路仿真实验引言在数字电路设计中,仿真实验是非常重要的一环。
它能够帮助我们验证设计的正确性,优化电路的性能,以及避免在实际制造电路之前出现的问题。
本文将介绍EWB(Electronic Workbench)软件的使用,以进行数字电路仿真实验。
什么是EWB?EWB是一款常用的电子电路设计与仿真软件,它可以用来方便地创建、编辑和仿真各种类型的电路。
EWB提供了丰富的元件库和功能,使得我们可以轻松地进行数字电路的设计和仿真实验。
数字电路仿真实验的步骤进行数字电路仿真实验通常可以分为以下几个步骤:步骤一:打开EWB软件首先,我们需要打开EWB软件。
在电脑桌面或应用程序中找到EWB的图标,双击打开软件。
步骤二:创建新电路在EWB软件中,我们可以选择创建一个新电路。
单击软件界面上的“新建”按钮或者选择菜单栏中的“文件 -> 新建”选项,即可创建一个空白的电路。
步骤三:选择元件在EWB软件的元件库中,有各种各样的数字电路元件,如门电路、寄存器、计数器等。
我们可以通过拖拽元件到电路画布上的方法将其添加到电路中。
步骤四:连接元件将所选元件拖拽到电路画布上后,我们需要正确地连接这些元件。
在EWB软件中,选择“连线”工具,然后点击元件上的引脚进行连接。
我们可以使用鼠标在电路画布上拖拽连线,或者直接点击元件引脚进行连接。
步骤五:设置元件参数在EWB软件中,我们可以修改元件的参数,以满足我们的需求。
例如,我们可以修改门电路的真值表或计数器的计数范围。
通过设置元件参数,我们可以进行更加灵活的仿真实验。
步骤六:进行仿真实验完成电路的搭建和参数设置后,我们可以通过点击软件界面上的“仿真”按钮或者选择菜单栏中的“仿真 -> 运行”选项,来进行数字电路的仿真实验。
EWB软件会根据设计的电路和设置的参数,模拟电路的工作过程,并显示相应的结果。
步骤七:分析仿真结果在仿真实验完成后,我们可以观察和分析仿真结果。
EWB 软件提供了丰富的工具和功能,以便我们对仿真结果进行分析和评估。
什么是电路仿真如何进行电路仿真

什么是电路仿真如何进行电路仿真电路仿真是一种模拟电路行为和性能的方法,可以用计算机软件来模拟电子设备的工作原理和性能。
通过电路仿真,可以预测和分析电子设备的行为,优化电路设计,减少实际实验的时间和成本。
电路仿真可以分为两种类型:模拟仿真和数字仿真。
模拟仿真是通过模拟电路中的连续信号来分析电路的性能。
数字仿真是通过模拟电路中的离散信号来分析电路的性能。
在进行电路仿真之前,需要准备仿真软件和电路设计文件。
常用的仿真软件包括Multisim、LTspice和PSpice等。
电路设计文件可以是原理图或者网表文件。
进行电路仿真的步骤如下:1. 创建电路:在仿真软件中,根据设计要求创建电路。
可以通过拖拽电子元件和连接导线来完成电路的构建。
2. 设置元件参数:对每个电子元件进行参数设置,包括电阻、电容、电感等。
这些参数决定了电路的性能。
3. 添加电源:在电路中添加电源,以提供电压或电流。
电源类型可以是直流或交流源,根据实际需求设置参数。
4. 设定测量:选择需要测量的电路参数,例如电流、电压、功率等。
这些参数可以直接从电路中的特定节点进行测量。
5. 运行仿真:点击仿真软件中的运行按钮,开始进行电路仿真。
仿真软件会对电路进行求解,计算出电路中各个节点和元件的电压、电流等参数。
6. 分析结果:根据仿真结果,对电路的性能进行分析和评估。
可以通过绘制波形图、功率谱图等方式来可视化仿真结果。
7. 优化设计:根据仿真结果,对电路进行调整和优化。
可以修改元件参数、电源参数或者电路拓扑结构,以改善电路的性能。
8. 再次仿真:对优化后的电路进行再次仿真,进行性能验证和评估。
如果结果满足设计要求,则电路仿真完成。
电路仿真的优势在于可以快速、经济地评估电路设计的可行性和性能。
相比于传统的实际实验方法,电路仿真节省了时间和成本,提高了设计的效率。
同时,电路仿真还可以帮助设计人员理解电路的工作原理和性能,提供了一个安全和可控的环境进行实验和测试。
数字电路实验Multisim仿真完整版

数字电路实验M u l t i s i m仿真HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一逻辑门电路一、与非门逻辑功能的测试74LS20(双四输入与非门)仿真结果二、门)三、与或非门逻辑功能的测试四、现路;一、分析半加器的逻辑功能二.74LS138接成四线-十六线译码器 00000001011110001111(2)用一片74LS153接成两位四选一数据选择器; (3)用一片74LS153一片74LS00和接成一位全加器(1)设计一个有A 、B 、C 三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y 1=1),如果密码不符,电路发出报警信号(Y 2=1)。
以上四个小设计任做一个,多做不限。
还可以用门电路搭建实验三 触发器及触发器之间的转换1. D 触发器逻辑功能的测试(上升沿)2. JK 触发器功能测试(下降沿)Q=0Q=0略3. 思考题:(1)(2)(3)略实验四寄存器与计数器1.右移寄存器(74ls74 为上升沿有效)位异步二进制加法,减法计数器(74LS112 下降沿有效)也可以不加数码显示管3.设计性试验(1)74LS160设计7进制计数器(74LS160 是上升沿有效,且异步清零,同步置数)若采用异步清零:若采用同步置数:(2)74LS160设计7进制计数器略(3)24进制83进制注意:用74LS160与74LS197、74LS191是完全不一样的实验五 555定时器及其应用1.施密特触发器输入电压从零开始增加:输入电压从5V开始减小:2.单稳态触发器3.多谢振荡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路设计仿真(抢答器显示部分)
一、设计任务与要求
1、抢答器同时供8名选手或8个代表队比赛,分别用8个按钮S0 ~ S7表示。
2、显示功能。
即选手按动按钮,并在LED数码管上显示,同时扬声器发出报警声响提示。
6、默认显示器上显示00。
三、设计原理与参考电路
如图所求,电路用到了三个数字芯片,分别是编码器,译码器和反向器
功能说明:按键没有按下时,数码管显示为0,当按下时,显示相应的数字,这里我选用了一个优先编译器,优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。
常用的集成优先编码器IC有10线-4线、8线-3线两种。
10线-4
线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54 /74148、54/74LS148。
10线-4线8421 BCD码优先编码器74LS147的真值表见表。
74LS147的引脚图如图,其中第9脚NC为空。
74LS147优先编码器有9个输入端和4个输出端。
某个输入端为0,代表输入某一个十进制数。
当9个输入端全为1时,代表输入的是十进制数0。
4个输出端反映输入十进制数的BCD码编码输出。
74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。
当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。
编码后我们要将其进行译码并在数码管上输出,译码器我选用了74ls247,这个芯片的输入是高电平有效,而147的输出是低电平,所以要进行电平匹配,我选用了一个反向器,它将低电平反向成高电平,故选用了CD4069,反向后输入译码器74ls247,它是集电极开路输出的BCD——七段译码器/驱动器,输出端(a~g)为低电平有效,可直接驱动指示灯或共阳极LED。
当要求输入 0~15时,消隐输入(/BI)应为高电平或开路,对于输出 0时还要求脉冲消隐输入(/RBI)为高电平或开路。
当 BI为低电电平,不管其它输入端状态如何,a~g 均为截止态。
当/RBI和地址端(A~D)均为低电平,并且灯测试(/LT)为高电平时,a~g均为截止态,脉冲消隐输出(/RBO)为低电平。
当 BI为高电平开路时,/L T的低电平可使a~g 为低电平。
其引脚图和真值表如图所示:
根据说明,247可以直接驱动共阳数码管,可是在仿真时发现数码管不亮,检查发现电流不够,但是在实际搭接电路中它是可以点亮数码管,为了仿真可以实现我就又加了一级三极管驱动,这样就解决了上面的问题。
仿真的结果如图:。