神经生物学实验指导书

合集下载

神经生物反馈实验指导(初稿)

神经生物反馈实验指导(初稿)

目录1 实验目的 12 设备简介 13 训练原理 23.1 脑电反馈训练原理 23.2 34 SMR波反馈训练 54.1 训练目的 5 4.2 训练方法 54.2.1 被试介绍4.2.2 训练程序54.3 训练总结75 心率变异性反馈训练85.1 训练目的5.2 训练方法85.2.1 被试介绍85.2.2 训练程序95.3 训练总结6 皮电反馈训练116.1 训练目的116.2 训练方法116.2.1 被试介绍16.2.2 训练程序116.3训练总结137 总结13参考文献14附录Ⅰ脑电反馈信息采集表15 附录Ⅱ外周反馈信息采集表神经生物反馈实验指导(初稿)1 实验目的(1)掌握SMR波、心率变异性、皮电等生物反馈训练的基本原理(2)掌握中枢指标(θ波、α波、SMR波、β波)和外周指标(SDNN、RMSSD、%LF、%HF、LF/HF、Mean、StdDev)等生理指标的意义(3)熟悉SMR波、心率变异性、皮电等生物反馈的训练过程(4)收集有效个案数据进行分析,并对训练效果进行评估(5)结合个案训练效果总结、提炼出适当有效的生物反馈训练程序2 设备简介采用荷兰Mind-Media公司生产的Spirit-16高级认知神经16通道生物反馈仪作为训练设备。

此设备精度为24Bits(即可转换1677万生理信号),最大可连接16个通道,其中1~8通道作为单级脑电连接通道,9-16通道作为外周生理信号连接通道,包括呼吸、心率、皮电、皮温、肌电等。

图1 Spirit-16高级认知神经16通道生物反馈仪两台17寸液晶显示屏作为反馈程序的呈现工具,其中一台是主屏,可呈现各种具体生理指标信号的线性或条形图,作为主试监控屏;另一台是副屏,呈现具体的生物反馈画面,供被试训练之用。

图2 高级认知神经16通道生物反馈仪的主屏、副屏此生物反馈训练系统通过随机自带的BioTrace+4.0版软件包进行数据的收集和分析。

此软件包功能强大,与Spirit-16生物反馈仪配合,可以进行多种生理信号的记录、采集、反馈程序的呈现及数据的分析和导出等多种工作。

神经生物学实验报告-家兔大脑

神经生物学实验报告-家兔大脑

神经生物学实验-家兔大脑实验一、 实验目的1.记录家兔大脑皮层诱发电位;2.了解家兔大脑皮层运动区的刺激效应;3.学习去大脑方法。

二、 实验原理大脑皮层诱发电位是指感觉传入系统受到刺激时,在大脑皮层上某一局限区域所引导的电位变化。

诱发电位一般由主反应、次反应和后发放三个部分组成:主反应(潜伏期:8~20ms )出现在代表区中心,电位先正后负,反应突触前和突触后的电活动;次反应(潜伏期:30~80ms )出现在代表区的周围区域,阈值较高,波形呈高幅正电位;后发放(次反应之后)是周期性、单向动作电位,可能是丘脑神经元周期性的电活动。

本实验是以适当的电刺激作用于左前肢的浅桡神经,在右侧大脑皮层的感觉区引导家兔的诱发电位。

用这种方法可以确定动物的皮层感觉区,在研究皮层机能定位上起着重要作用,但是在实验过程中需要考虑自发放电对诱发电位的影响。

由于大脑皮层随时都存在自发放电活动,诱发电位经常出现在自发电活动的背景上,为了减少自发放电的影响,我们可以利用电子平均装置,自发电位多次叠加,相互抵消(人的诱发电位),或者对实验动物深度麻醉,压抑自发放电活动的幅度。

大脑皮层运动区是躯体运动机能的高级中枢,电刺激该区的不同部位,可以引起躯体不同部位的肌肉运动。

人大脑皮层运动区的定位一般有交叉支配、倒置分布、区域大小与精细程度呈正比这三个原则。

除上面部肌受双侧皮层支配外,躯体其他部分肌肉则是受对侧皮层支配,同样除去头面部对应大脑皮层运动区是正立分布,躯体其他部分肌肉对应的大脑皮层运动区均为倒置分布。

从中脑四叠体的前、后丘之间切断脑干的动物,称去大脑动物。

在切断脑干前后丘的过程中,由于神经系统内,中脑以上水平的高级中枢对肌紧张的抑制作用被阻断,而中脑以下图 1 诱发电位过程图 图 2 大脑皮层运动区交叉倒置各级中枢对肌紧张的易化作用相对加强,因此出现了伸肌紧张亢进的现象。

动物表现为四肢僵直,头向后仰,尾向上翘的角弓反张状态,称为去大脑僵直。

神经生物学实验讲义

神经生物学实验讲义

实验一鼠脑灌注固定和取材一、原理固定是用人为的方法尽可能使组织细胞的形态结构和化学成分保持生活状态,防止组织细胞的溶解和腐败,并保持其原来的细微结构及原位保持生物活性物质的活性;能使细胞内蛋白质、脂肪、糖、等各种成分沉淀而凝固,尽量保持它原有的结构;使细胞内的成分产生不同的折射率,造成光学上的差异,使得原本在生活情况下看不清楚的结构,变得清晰可见;使得组织细胞各部经媒染作用容易染色;经过固定,使组织硬化,以利于以后切片时切薄片。

体循环:左心室→升主动脉→主动脉的各级分支→毛细血管→各级静脉→上下腔静脉→右心房,完成体循环的整个循环。

二、实验步骤1、正常Sprague-Dawley大鼠,150~250g,或昆明小鼠,20g左右,雌雄不拘;2、动物麻醉后,用左手持镊子夹起腹部皮肤,右手持剪刀自胸骨剑突下腹部剪一小口,由此沿腹中线和胸骨剑突中线向上将皮肤剪至下颌,分离皮下组织,将皮肤翻向两侧,再沿腹中线和胸骨中线向上剪开胸骨,沿膈肌向两侧剪开,并用止血钳将胸骨和胸部的皮肤钳紧,将止血钳翻向外侧以充分暴露心脏,小心用镊子将心包膜打开;3、将灌注针(大鼠12#,小鼠7#)插入左心室并送至升主动脉内,用止血钳把灌注针固定在心脏上,打开灌注泵开关,同时剪开右心耳,使血液排出。

先快速灌注0.9%NaCl(大鼠80-120ml,小鼠30ml),至肝脏逐渐变白色或右心耳流出清亮液体为止,再灌注4℃预冷的固定液(大鼠200ml,小鼠50ml,根据动物体重定量),其中前1/3量快速灌注,后2/3量慢灌注,共在30分钟内灌注完;4、固定液进入血管后,大鼠四肢和尾巴开始抽动,表明灌注液进入大鼠大脑,待抽动完全停止,全身组织器官变硬后即可停止灌注;5、断头后,剥离颅骨、剪断脑神经、离断脑于脊髓,取出整脑。

6、后固定(post-fixed):剥出鼠脑后,切取含目的区域的脑段,放入相同固定液4~12h,4℃。

附4%多聚甲醛的配制:40g多聚甲醛用0.1mol/L PB(pH7.4)溶解后定容至1L,过滤后置于4℃保存。

神经生物学实验指导书

神经生物学实验指导书

神经生物学实验指导书实验一脑内重要神经核团和神经生物学研究方法简介Methods for neuroscience research and nuclei in brain1.实验目的理解神经核团的概念,理解重要的神经核团;掌握脑立体定位图谱的使用方法;了解神经生物学研究的常用方法。

2.实验器材、试剂及实验材料手术刀、毛剪、注射器,1%戊巴比妥钠(Pentobarbital Sodium)、依文氏蓝(Evans Blue),大鼠。

3.实验步骤3.1脑的大致结构和重要神经核团脑膜至外由内分别有:硬脑膜、蛛网膜、软脑膜,其下是大脑皮层,边缘系统等结构。

重要的核团(神经内分泌相关的丘脑下部核团)有:PVN(室周核)、PeN (室旁核)、SON(视上核)、ME(正中隆起)、Hippocampus(海马)等。

下表给出几个重要核团的大致范围,值得注意的是:核团在不同截面上的位置和形状是不同的,因此具体位置应查阅图谱。

神经核团距离前囟(mm)中心线两侧(mm)距脑背侧(mm)PVN(室周核)-1.0~-4.2 0.0~0.8 5.0~5.5PeN(室旁核)0.0~-3.2 0.0~0.5 6.5~9.5SON(视上核)0.0~-1.8 1.0~2.3 8.5~8.8ME(正中隆起)-2.4~-3.4 0.0~0.5 9.5~10.0Hippocampus(海马)-1.8~-6.2 0.5~6.3 3.2~8.03.2实验内容a)戊巴比妥钠腹腔注射麻醉大鼠(40mg/kg);b)在颅骨前囟后3-5mm处打孔;c)用微量注射器吸入3μl依文氏蓝,注入大鼠背侧三脑室。

d)大鼠断头,除去颅骨,观察脑的结构。

George Paxinos and Charles Watson,The Rat Brain in Stereofaxic coordinates,Academic press,1986 4.江湾Ⅰ型脑定位仪的使用6.1脑立体定位仪的原理a)脑立体定位仪分为两大类:直线式和赤道式。

神经生物学实验

神经生物学实验

体激活后第二信使、G 蛋白、膜离子流、调控蛋白及
产生磷酸化和脱磷酸化等各种反应的酶变化;
图 2 LTP 电位示意图
⑶突触前或突触后结构的可塑性,包ห้องสมุดไป่ตู้突触前树突棘体积增大,数目增多 ,
突触界面扩大及突触后致密物质增大增厚等;
⑷非神经元修饰:如胶质细胞及胶质-神经元相互作用的变化;
⑸上述某些变化或所有变化的综合表现。
(蔡 葵)
6
实习二 大鼠海马 LTP 的实验观察
1. LTP 的基本概念
LTP(long-term potentiation, 长时程增强), 对突触前神经元进行高频强直
电刺激后导致突触后神经元产生突触传递效应增强的现象,该效应可持续一
个小时以上,其具体表现为:
①峰电位幅值增大;
②潜伏期缩短;
③兴奋性突触后电位(EPSP)幅值增大;
兔脑:兔的头部固定在脑定位仪上时,其前囟(Bregma,即冠状缝与矢 状缝的交点)比λ(人字缝与矢状缝的交点)高 1.5mm,在这种情况下,以通过 前囟的水平面作参考平面,而以在该平面下 12mm 处的水平面作为水平标准 平面(HO, 零平面),在此平面上方为 V+,在此平面下方为 V-。经过前囟并 与矢状缝垂直又与水平面垂直的面,作为额面标准平面(APO),在此平面之 前为 AP+,在此平面之后为 AP-。
单管玻璃微电极是一根尖端开口很细的硬质玻璃管,内充电解质溶液作 为电极。由于电解质溶液可以导电,利用单管玻璃微电极可以记录到中枢神 经系统神经元的电活动。用于细胞内记录的微电极,其尖端直径应小于 0.5mm,尖端的倾斜度应相当缓和,以免穿入细胞膜时造成大的伤害。这种 微电极适合于从细胞内引导电活动和测量膜电位。用于细胞外记录的微电 极,其尖端直径约在 1~5mm。一般认为尖端内径 1~4mm 的玻璃微电极适宜 于记录神经元胞体的电活动。微电极的长度应视需要而定,但插入脑组织内 的部分不宜太粗,以免插入时造成显著的损伤。制作玻璃微电极应选用熔点 高,化学稳定性高,电阻率高和膨胀系数低的硬质玻璃管。国外常用 Pyrex 玻璃管,国内一般采用 GG17 和 95 玻璃管。 3.3.2 多管玻璃微电极

《神经生物学基础技术》实验教学大纲

《神经生物学基础技术》实验教学大纲

《神经生物学基础技术》实验教学大纲课程代码:(暂空、不填)课程名称:神经生物学基础技术课程性质:必修课程类别:专业基础实验项目个数:15 面向专业:神经生物学研究生实验教材:《细胞培养》《分子生物学理论与技术》《神经生物学》一、课程学时学分课程学时:54 学分:(按教学计划的规定填写)2 实验学时:48二、实验目的、任务、教学基本要求及考核方式1、目的和任务:神经生物学基础技术是为了配合基础研究中需要操作细胞实验、分子生物学实验和形态学实验的研究生开设的一门实验基础课程。

本课程目的旨在培养学生初步掌握细胞学、分子生物学、形态学研究中所必需的基本实验操作技术。

本课程的任务是让学生牢固掌握神经生物学研究方法的基础技术,具备在细胞培养、分子生物学和形态学平台独立观察和操作的能力,学会发现问题和解决问题的基本技能,通过实验操作,培养学生观察、比较、分析、综合等科学思维能力,以及独立工作的能力和实事求是的科学作风,为从事与本专业有关的生物技术工作打下基础。

2、教学基本要求:1)学生在实验前对实验做好预习工作,了解实验目的。

2)在学生实验前指导教师集中学生进行演示与讲授,介绍实验目的、原理、步骤、操作要领及注意事项。

3)根据实验的内容进行实验分组,要求各实验小组在规定时间独立完成实验操作并考核。

4)实验中指导教师要随时检查学生实验情况,解答学生实验中的疑问,帮助学生分析问题,解决问题。

5)实验结束后,指导教师根据学生每次实验的操作情况及操作水平考核,评定学生的实验操作成绩。

3、考核方式:通过实验操作考核评定学生的实验成绩。

成绩构成为:实验操作(100%)三、实验项目一览表说明:在“实验要求”栏标明该实验项目是“必修”还是“选修”;在“实验类型”栏标明该实验项目是“演示性”、“验证性”、“设计性”还是“综合性”实验;在“备注”栏标明完成该实验项目所需的主要仪器设备名称。

本大纲主笔人:吴红审核人:神经科学系。

神经生物学实验报告-跳台

神经生物学实验报告-跳台

神经生物学实验-跳台实验一、实验目的了解跳台实验的原理以及意义,掌握跳台实验的操作方法二、实验原理学习与记忆是脑的高级活动之一。

人和动物的内部心理过程无法直接观察,但可以根据可观察到的刺激反应来推测脑内发生的过程。

对脑内记忆过程的研究可以从动物学习或执行某项任务后间隔一定时间,测量它们的操作成绩或反应时间来衡量这些行为。

学习和记忆实验方法的基础是条件反射,常用的方法包括跳台法、避暗法、穿梭箱、爬杆法、迷宫等。

在跳台实验装置中,底部的金属丝是通电的,这样小鼠在触电后就会产生活动,当它跳上平台后便不会被电到。

但鼠类又具有不喜狭小空间的天性,这样的天性会驱使它离开狭小的空间再次跳下平台并受到电击。

如此,通过对小鼠跳台次数和台上时间的测试便能探讨小鼠的记忆能力。

跳台实验的基本流程包括3个步骤:训练:先将小白鼠放入反应箱内适应环境3min,然后立即通1~1.5V交流电。

动物受到电击,其正常反应是跳回平台以躲避伤害性刺激。

多数动物可能再次或多次跳下平台,受到电击后又迅速跳回平台。

如此训练5min,并记录小鼠第一次跳下平台的潜伏期和受到电击的次数或称“错误次数”作为学习成绩。

记忆测试:先将小白鼠放至平台,按“开始”键,进行记录。

实验停止后,按“打印”键,打印实验结果。

记录受电击的动物数,第一次跳下平台的潜伏期和5min内的错误总数。

如果5min时小鼠未跳下平台,错误次数记录为0次,潜伏期记为300s。

三、实验动物与器材昆明种小鼠(18-22g),跳台实验箱(广州飞迪生物科技有限公司),数据线,画面分割器,电脑四、实验操作1. 双击左键“动物行为学分析系统”2. 进入系统之后,点击“跳台实验视频分析系统”3. 点击自己的实验账号进入系统,在这里选择root 账号,默认密码为空4. 在左侧边栏右击“我的实验”,然后在打开的实验信息栏中填写所需信息,例如输入实验名称“1”5. 填写完毕后,在左侧侧边栏单击“我的实验”树状栏打开刚才建立的实验名称“1”,右击实验名称,单击“添加动物”,然后填写动物的相关信息,例如动物名称“1”,分组为1。

神经生物学实验指导

神经生物学实验指导

实验9-3 脊髓背根与腹根的机能【目的要求】1.学习暴露脊髓和分离脊神经背、腹根的方法。

2.了解背根和腹根的不同机能。

【基本原理】脊神经的背根是由传入神经纤维组成,具有传入机能;腹根由传出神经纤维组成,具有传出机能。

若切断背根,则相应部位的刺激不能传入中枢;若切断腹根,不能传出冲动,则其所支配的效应器也不再发生反应。

【动物与器材】蟾蜍或蛙、常用手术器械、金冠剪、弯头金冠剪、刺激器或多用仪、小型弯头露丝电极、蛙板、蛙腿夹、滴管、棉花、红色和白色细丝线、任氏液。

【方法与步骤】1.将蟾蜍或蛙毁脑后腹位固定于蛙板上。

沿背部中线剪开皮肤,向前开口至耳后腺水平,向后开口至尾杆骨中段。

用剪刀小心剪去脊椎两侧的纵行肌肉及椎间肌肉,暴露椎骨。

2.用金冠剪横向剪断环椎,然后将弯头金冠剪小心伸入椎管,自前至后逐节剪断两侧椎弓(图9-3),移去骨片,暴露全部脊髓(勿损伤脊髓)。

3.用眼科镊轻轻挑开脊髓表面的银灰色或黑色脊膜,再用任氏液冲洗马尾部,小心识别第7~10对脊神经背根和腹根(图9-4)。

用玻璃分针分离一侧第9对脊神经的背、腹根(背根近椎间孔处有淡黄色、半个小米粒大小的脊神经节),将背根穿两条白色丝线,腹根穿两条红色丝线备用。

放松两后肢即可进行实验观察。

(1)提起白丝线,轻轻用刺激电极钩起背根,打开刺激器,用较弱的单脉冲刺激背根(只引起同侧后肢抖动),记录结果。

(2)用同样的方法刺激腹根,记录结果。

(3)将两条白线双结扎背根后从中间剪断神经,分别刺激其中枢端和外周端(刺激强度不变),记录结果。

(4)用同样的方法结扎并剪断腹根,重复刺激背根中枢端,记录结果。

(5)分别刺激腹根中枢端和外周端,记录结果。

【思考题】根据实验结果,说明背根和腹根的机能。

(赵静)生理学实验第二版P148-149实验9-4 损伤小白鼠一侧小脑的效应【目的要求】一侧小脑损伤后的动物,躯体运动表现异常,通过对异常运动的观察,了解小脑的运动机能。

【基本原理】小脑具有维持身体平衡,调节肌紧张和协调肌肉运动等机能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经生物学实验指导书实验一脑内重要神经核团和神经生物学研究方法简介Methods for neuroscience research and nuclei in brain1.实验目的理解神经核团的概念,理解重要的神经核团;掌握脑立体定位图谱的使用方法;了解神经生物学研究的常用方法。

2.实验器材、试剂及实验材料手术刀、毛剪、注射器,1%戊巴比妥钠(Pentobarbital Sodium)、依文氏蓝(Evans Blue),大鼠。

3.实验步骤3.1脑的大致结构和重要神经核团脑膜至外由内分别有:硬脑膜、蛛网膜、软脑膜,其下是大脑皮层,边缘系统等结构。

重要的核团(神经内分泌相关的丘脑下部核团)有:PVN(室周核)、PeN (室旁核)、SON(视上核)、ME(正中隆起)、Hippocampus(海马)等。

下表给出几个重要核团的大致范围,值得注意的是:核团在不同截面上的位置和形状是不同的,因此具体位置应查阅图谱。

神经核团距离前囟(mm)中心线两侧(mm)距脑背侧(mm)PVN(室周核)-1.0~-4.2 0.0~0.8 5.0~5.5PeN(室旁核)0.0~-3.2 0.0~0.5 6.5~9.5SON(视上核)0.0~-1.8 1.0~2.3 8.5~8.8ME(正中隆起)-2.4~-3.4 0.0~0.5 9.5~10.0Hippocampus(海马)-1.8~-6.2 0.5~6.3 3.2~8.03.2实验内容a)戊巴比妥钠腹腔注射麻醉大鼠(40mg/kg);b)在颅骨前囟后3-5mm处打孔;c)用微量注射器吸入3μl依文氏蓝,注入大鼠背侧三脑室。

d)大鼠断头,除去颅骨,观察脑的结构。

George Paxinos and Charles Watson,The Rat Brain in Stereofaxic coordinates,Academic press,1986 4.江湾Ⅰ型脑定位仪的使用6.1脑立体定位仪的原理a)脑立体定位仪分为两大类:直线式和赤道式。

b)直线式脑立体定位仪的设计原则c)利用动物颅骨表面的某些解剖标志同脑表面及深部某一结构的相对恒定关系,从外部确定脑深部各结构的位置。

d)用立体空间直角坐标,以mm为单位,描述脑深部某结构所在的空间位置。

e)用一坚固的金属主框,加上杆、夹组成准确而对称的头夹。

用一组有三维立体滑尺的电极移动架来导向,电极可准确地插入脑内某一指定结构。

6.2使用方法a)装上耳杆、上颌固定器、电极移动架,调整主框架至水平,测试两耳杆中心接触处是否在正中处。

b)装上架假电极,用假电极测定耳杆中心的高度,然后将电极移到门齿板上缘,调整门齿板比耳间线低5mm(该调整须根据图谱定,要与图谱中的方法保持一致)。

c)戊巴比妥钠腹腔注射麻醉小鼠(40mg/kg),将其固定在定位仪上。

d)按图谱确定核团的位置,在颅骨相应位置打孔。

e)按图谱在相应核团埋管。

5.神经生物学研究的常用方法神经科学的发展与的研究方法的进步密切相关。

总体上,神经生物学的研究方法有六大类:形态学方法、生理学方法、电生理学方法、生物化学方法、分子生物学方法及脑成像技术。

7.1形态学方法神经生物学研究中常用的形态学方法有束路追踪、免疫组化和原位杂交,其他还有受体定位、神经系统功能活动形态定位等方法。

7.1.1束路追踪法追踪神经元之间的联系是神经解剖学研究中的重大目标,它对研究神经元的功能、神经系统的发育和成熟都具有重要意义。

这种方法学的建立始于19世纪末的逆行和顺性溃变(顺行溃变指胞体或轴突损伤后的轴突终末的溃变,逆行溃变指去除靶区之后神经元胞体的溃变)研究。

20世纪40年代主要手段是镀银染色法,根据变性纤维的形态变化来判断变性纤维。

20世纪50年代发展了Nanta法,能遏制正常纤维的染色而仅镀染出变性纤维。

但该法不易显示细纤维,1971年Kristenson等将辣根过氧化物酶(HRP)注入幼鼠的腓肠肌及舌肌结果在脊髓和延脑的相应部分运动神经元胞体内发现HRP 的积累。

不久LaVail正式使用HRP作为轴突逆行追踪,以后遂广泛应用于中枢神经系统的研究。

HRP 可被神经末梢、胞体和树突吸收,轴突损伤部分也可摄入。

在胞体内,HRP的活性可持续4~5天,在溶酶体内对联苯胺呈阳性反应而显现出来。

被标记的神经元可以清晰的显示胞体、树突及轴突。

除了HRP标记法,还有荧光物质标记法、毒素标记法、注射染料等方法。

7.1.2免疫组织化学,检测细胞内多肽、蛋白质及膜表面抗原和受体等大分免疫组织化学术是应用抗原与抗体结合的免疫学原理子物质的存在与分布。

这种方法特异性强,敏感度高,进展迅速,应用广泛,成为生物学和医学众多学科的重要研究手段。

近年随着纯化抗原和制备单克隆抗体的广泛开展以及标记技术不断提高,免疫组织化学的进展更是日新月异,不仅用于许多基本理论的研究,并取得重大突破,而且也用于疾病的早期快速诊断等临床实际。

组织的多肽和蛋白质种类繁多,具有抗原性。

分离纯化人或动物组织某种蛋白质,作为抗原注入另一种动物体内,后者即产生相应的特异性抗体(免疫球蛋白)。

从被免疫动物的血清中提取出该抗体,再以荧光素、酶、铁蛋白或胶体金标记,用这种标记抗体处理组织切片或细胞,标记抗体即与细胞的相应蛋白质(抗原)发生特异性结合。

常用的荧光素是异硫氰酸荧光素(FITC)和四甲基异硫氰酸罗丹明(TRITC),在荧光显微镜下可观察荧光抗体抗原复合物。

常用的酶是辣根过氧化物酶(horseradish peroxidase,HRP,从辣根菜中提取的),它的底物是3,3'-二氨基、联苯胺(DAB)和H2O2,HRP使DAB氧化形成棕黄色产物,可在光镜和电镜下观察。

铁蛋白和胶体金标记抗体与抗原的结合,也可在光镜和电镜下观察。

标记抗体被检抗原的结合方式有两种。

一是直接法,即如上述用标记抗体与样品中的抗原直接结合。

这种方法操作简便,但敏感度不及间接法。

间接法是将分离的抗体(第一抗体简称一抗)再作为抗原免疫另一种动物,制备该抗体(抗原)的抗体(第二抗体简称二抗),再以标记物标记二抗。

先后以一抗和标记二抗处理样品,最终形成抗原一抗-标记二抗复合物。

间接法中的一个抗原分子可通过一抗与多个标记二抗相结合,因此它的敏感度较高,而且目前国内外均有多种标记二抗商品供应,使用方便。

间接法中较常用的是一种称之为过氧化物酶-抗过氧化物酶复合物法(peroxidase-antiperoxidase complex method,PAS法),该法除需一抗和二抗外,还需制备HRP标记的抗酶抗体,即以HRP作为抗原免疫动物,制成抗HRP抗体,再以HRP标记该抗体制成由3个酶分子与2个抗酶抗体组成的相当稳定的环形PAP复合物。

标本先后以一抗、二抗和PAP复合物处理后,再以DAB显色,即可检测抗原的分布。

此法由于细胞内的抗原通过抗体的层层放大而与多个酶分子结合,因此敏感性很强。

免疫组织化学术近10年来又有新进展,如生物素-亲合素等新颖试剂的应用,为检测微量抗原、受体、抗体开辟了新途径。

生物素(biotin)又称维生素H,是从卵黄和肝中提取的一种小分子物质(分子量244.31);亲合素(avidin)又称卵白素,是从卵白中提取的一种糖蛋白(分子量68kD)。

每个亲合素分子有生物素结合的4个位点,二者可牢固结合成不可逆的复合物。

生物素-亲合素的应用大致有三种方法。

①标记亲合素-生物素法(labelled avidin- biotin method,LAB法):将亲合素与标记物(HRP)结合,一个亲合素可结合多个HRP;将生物素与抗体(一抗与二抗)结合,一个抗体分子可连接多个生物素分子,抗体的活性不受影响。

细胞的抗原(或通过一抗)先与生物素化的抗体结合,继而将标记亲合素结合在抗体的生物素上,如此多层放大提高了检测抗原的敏感性。

②桥连亲合素-生物素法(bridged avidin-biotin method,BAB法):先使抗原与生物素化的抗体结合,再以游离亲合素将生物素化的抗体与酶标生物素搭桥连接,也达到多层放大效果。

③亲合素-生物素-过氧化物酶复合物法(avidin-biotin-peroxidase complex method,ABC 法);此法是前两种方法的改进,即先按一定比例将亲合素与酶标生物素结合在一起,形成亲合素-生物素-过氧化物酶复合物(ABC复合物),标本中的抗原先后与一抗、生物素化二抗、ABC复合物结合,最终形成晶格样结构的复合体,其中网络了大量酶分子,从而大大提高了检测抗原的灵敏度。

现有配制现成的ABC药盒商品供应,操作简便,是目前广泛应用的一种方法。

7.1.3原位杂交法(in situ hybridization)原位杂交术是一种核酸分子杂交技术,它是通过检测细胞内mRNA和DNA序列片段,原位研究细胞合成某种多肽或蛋白质的基因表达。

其基本原理是根据两条单链核苷酸互补碱基序列专一配对的特点,应用已知碱基序列并具有标记物的RNA或DNA片段即核酸探针(probe),与组织切片或细胞内的待测核酸(RNA或DNA片段)进行杂交,通过标记物的显示,在光镜或电镜下观察目的mRNA或DNA的存在与定位。

此项技术需首先制备某种核酸探针,其种类主要有三种:①利用大肝杆菌重组带有目的基因的质粒DNA,制成互补DNA探针(cDNA);②应用限制性核酸内切酶消化制成线性DNA模板,在体外转录获得反义RNA探针(cDNA);③依照待测核酸的核苷酸序列,应用DNA合成仪合成寡聚核苷酸探针。

cRNA和cDNA的常用标记物有32S、32P、3H等放射性核素和荧光素、生物素、地高辛等非放射性物质。

组织学应用的原位杂交术主要是染色体原位杂交和细胞原位杂交。

前者是研究遗传基因、抗原基因、受体基因、癌基因等在染色体上的定位与表达;后者是研究细胞某种蛋白质的基因转录物mRNA在胞质内的定位与表达。

核酸分子杂交术有很高的敏感性和特异性,它是免疫细胞化学的基础上,进一步从分子水平探讨细胞功能的表达及其调节机制的,已成为当前神经生物学研究的重要手段。

7.2生理学方法神经生物学研究中的生理学方法有行为学方法、神经递质释放量的测定等,其中行为学方法最为常用。

7.4.2行为学方法行为学方法是建立在条件反射基础之上。

条件反射是著名的俄国生理学家巴甫洛夫于20世纪初提出的。

条件反射是动物个体生活过程中适应环境的变化,在非条件反射基础上逐渐形成的。

形成条件反射的基本条件就是无关刺激与非条件刺激在时间上的结合,这个过程称为强化。

要形成条件反射除需要多次强化外,还需要神经系统的正常活动。

巴甫洛夫及其学派所研究的条件反射,称为经典性条件反射。

另一种条件反射叫操作性(工具性)条件反射,美国心理学家斯金纳(B.F.skinner)把一只饿鼠放入实验箱内,当它偶然踩在杠杆上时,即喂食以强化这一动作,经多次重复,鼠即会自动踩杠杆而得食。

相关文档
最新文档