15神经生物学研究的常用方法

15神经生物学研究的常用方法
15神经生物学研究的常用方法

1.神经生物学研究的常用方法

神经科学的发展与的研究方法的进步密切相关。总体上,神经生物学的研究

方法有六大类:形态学方法、生理学方法、电生理学方法、生物化学方法、分子

生物学方法及脑成像技术。

7.1形态学方法

神经生物学研究中常用的形态学方法有束路追踪、免疫组化和原位杂交,其

他还有受体定位、神经系统功能活动形态定位等方法。

7.1.1束路追踪法

追踪神经元之间的联系是神经解剖学研究中的重大目标,它对研究神经元的功能、神经系统的发育和成熟都具有重要意义。这种方法学的建立始于19世纪末的逆行和顺性溃变(顺行溃变指胞体或轴突损伤后的轴突终末的溃变,逆行溃变指去除靶区之后神经元胞体的溃变)研究。20世纪40年代主要手段是镀银染色法,根据变性纤维的形态变化来判断变性纤维。20世纪50年代发展了Nanta法,能遏制正常纤维的染色而仅镀染出变性纤维。但该法不易显示细纤维,1971年Kristenson等将辣根过氧化物酶(HRP)注入幼鼠的腓肠肌及舌肌结果在脊髓和延脑的相应部分运动神经元胞体内发现HRP的积累。不久LaVail正式使用HRP作为轴突逆行追踪,以后遂广泛应用于中枢神经系统的研究。HRP可被神经末梢、胞体和树突吸收,轴突损伤部分也可摄入。在胞体内,HRP的活性可持续4~5天,在溶酶体内对联苯胺呈阳性反应而显现出来。被标记的神经元可以清晰的显示胞体、树突及轴突。

除了HRP标记法,还有荧光物质标记法、毒素标记法、注射染料等方法。

7.1.2免疫组织化学

免疫组织化学术是应用抗原与抗体结合的免疫学原理,检测细胞内多肽、蛋白质及膜表面抗原和受体等大分子物质的存在与分布。这种方法特异性强,敏感度高,进展迅速,应用广泛,成为生物学和医学众多学科的重要研究手段。近年随着纯化抗原和制备单克隆抗体的广泛开展以及标记技术不断提高,免疫组织化学的进展更是日新月异,不仅用于许多基本理论的研究,并取得重大突破,而且也用于疾病的早期快速诊断等临床实际。

组织的多肽和蛋白质种类繁多,具有抗原性。分离纯化人或动物组织某种蛋白质,作为抗原注入另一种动物体内,后者即产生相应的特异性抗体(免疫球蛋白)。从被免疫动物的血清中提取出该抗体,再以荧光素、酶、铁蛋白或胶体金标记,用这种标记抗体处理组织切片或细胞,标记抗体即与细胞的相应蛋白质(抗原)发生特异性结合。常用的荧光素是异硫氰酸荧光素(FITC)和四甲基异硫氰酸罗丹明(TRITC),在荧光显微镜下可观察荧光抗体抗原复合物。常用的酶是辣根过氧化物酶(horseradish peroxidase,HRP,从辣根菜中提取的),它的底物是3,3'-二氨基、联苯胺(DAB)和H2O2,HRP使DAB氧化形成棕黄色产物,可在光镜和电镜下观察。铁蛋白和胶体金标记抗体与抗原的结合,也可在光镜和电镜下观察。

标记抗体被检抗原的结合方式有两种。一是直接法,即如上述用标记抗体与样品中的抗原直接结合。这种方法操作简便,但敏感度不及间接法。间接法是将分离的抗体(第一抗体简称一抗)再作为抗原免疫另一种动物,制备该抗体(抗原)的抗体(第二抗体简称二抗),再以标记物标记二抗。先后以一抗和标记二抗处理样品,最终形成抗原一抗-标记二抗复合物。间接法中的一个抗原分子可通过一抗与多个标记二抗相结合,因此它的敏感度较高,而且目前国内外均有多种标记二抗商品供应,使用方便。间接法中较常用的是一种称之为过氧化物酶-抗过氧化物酶复合物法(peroxidase-antiperoxidase complex

method,PAS法),该法除需一抗和二抗外,还需制备HRP标记的抗酶抗体,即以HRP作为抗原免疫动物,制成抗HRP抗体,再以HRP标记该抗体制成由3个酶分子与2个抗酶抗体组成的相当稳定的环形PAP复合物。标本先后以一抗、二抗和PAP复合物处理后,再以DAB显色,即可检测抗原的分布。此法由于细胞内的抗原通过抗体的层层放大而与多个酶分子结合,因此敏感性很强。免疫组织化学术近10年来又有新进展,如生物素-亲合素等新颖试剂的应用,为检测微量抗原、受体、抗体开辟了新途径。生物素(biotin)又称维生素H,是从卵黄和肝中提取的一种小分子物质(分子量244.31);亲合素(avidin)又称卵白素,是从卵白中提取的一种糖蛋白(分子量68kD)。每个亲合素分子有生物素结合的4个位点,二者可牢固结合成不可逆的复合物。生物素-亲合素的应用大致有三种方法。①标记亲合素-生物素法(labelled avidin- biotin method,LAB法):将亲合素与标记物(HRP)结合,一个亲合素可结合多个HRP;将生物素与抗体(一抗与二抗)结合,一个抗体分子可连接多个生物素分子,抗体的活性不受影响。细胞的抗原(或通过一抗)先与生物素化的抗体结合,继而将标记亲合素结合在抗体的生物素上,如此多层放大提高了检测抗原的敏感性。②桥连亲合素-生物素法(bridged avidin-biotin method,BAB法):先使抗原与生物素化的抗体结合,再以游离亲合素将生物素化的抗体与酶标生物素搭桥连接,也达到多层放大效果。③亲合素-生物素-过氧化物酶复合物法(avidin-biotin-peroxidase complex method,ABC法);此法是前两种方法的改进,即先按一定比例将亲合素与酶标生物素结合在一起,形成亲合素-生物素-过氧化物酶复合物(ABC复合物),标本中的抗原先后与一抗、生物素化二抗、ABC复合物结合,最终形成晶格样结构的复合体,其中网络了大量酶分子,从而大大提高了检测抗原的灵敏度。现有配制现成的ABC药盒商品供应,操作简便,是目前广泛应用的一种方法。

7.1.3原位杂交法(in situ hybridization)

原位杂交术是一种核酸分子杂交技术,它是通过检测细胞内mRNA和DNA序列片段,原位研究细胞合成某种多肽或蛋白质的基因表达。其基本原理是根据两条单链核苷酸互补碱基序列专一配对的特点,应用已知碱基序列并具有标记物的RNA或DNA片段即核酸探针(probe),与组织切片或细胞内的待测核酸(RNA或DNA片段)进行杂交,通过标记物的显示,在光镜或电镜下观察目的mRNA或DNA的存在与定位。此项技术需首先制备某种核酸探针,其种类主要有三种:①利用大肝杆菌重组带有目的基因的质粒DNA,制成互补DNA探针(cDNA);②应用限制性核酸内切酶消化制成线性DNA模板,在体外转录获得反义RNA探针(cDNA);③依照待测核酸的核苷酸序列,应用DNA合成仪合成寡聚核苷酸探针。cRNA和cDNA的常用标记物有32S、32P、3H等放射性核素和荧光素、生物素、地高辛等非放射性物质。组织学应用的原位杂交术主要是染色体原位杂交和细胞原位杂交。前者是研究遗传基因、抗原基因、受体基因、癌基因等在染色体上的定位与表达;后者是研究细胞某种蛋白质的基因转录物mRNA在胞质内的定位与表达。核酸分子杂交术有很高的敏感性和特异性,它是免疫细胞化学的基础上,进一步从分子水平探讨细胞功能的表达及其调节机制的,已成为当前神经生物学研究的重要手段。

7.2生理学方法

神经生物学研究中的生理学方法有行为学方法、神经递质释放量的测定等,其中行为学方法最为常用。

7.4.2行为学方法

行为学方法是建立在条件反射基础之上。条件反射是著名的俄国生理学家巴甫洛夫于20世纪初提出的。条件反射是动物个体生活过程中适应环境的变化,在非条件反射基础上逐渐形成的。形成条件反射的基本条件就是无关刺激与非条件刺激在时间上的结合,这个过程称为强化。要形成条件反射除需要多次强化外,还需要神经系统的正常活动。

巴甫洛夫及其学派所研究的条件反射,称为经典性条件反射。另一种条件反射叫操作性(工具性)条件反射,美国心理学家斯金纳(B.F.skinner)把一只饿鼠放入实验箱内,当它偶然踩在杠杆上时,即喂食以强化这一动作,经多次重复,鼠即会自动踩杠杆而得食。在此基础上还可以进一步训练动物只对某一个待定信号,如灯光、铃声出现后,做出踩杠杆的动作,才给以食物强化,这类必须通过自己某种活动(操作)才能得到强化所形成的条件反射,称为操作性条件反射或工具性条件反射。操作性条件反射和经典性条件反射的基本原理是相同的,它们都以强化和神经系统的正常活动为基本条件,但它们之间也有不同之处。在形成操作性条件反射过程中,动物可以自由地活动,它通过主动操作来达到一定的目的;但在形成经典性条件反射时,动物往往被束缚着,是被动地接受刺激。另外,在操作性条件反射中强化只同反应(操作)有关,并出现在反应之后;而在经典性条件反射中,强化是同刺激有关,而且出现在反应之前。

7.4.2电生理学的方法

电生理学的方法包括胞外记录、胞内记录、脑内电刺激、电压钳、膜片钳、脑电图等技术。

电生理学发源于1791年。电流计的发明和应用于电生理学,初步满足了记录生物电活动的变化量小而变化速度快的特点。1922年Erlanger和Gasser用了电子管放大器和阴极射线示线器,才彻底满足了记录生物电活动的基本特点。从此神经生理学得以迅猛发展。20世纪40年代以来,英国剑桥大学Hodgkin学派利用微电极技术,而且选用了理想的实验标本枪乌贼的巨轴突,在修正了Bernstein膜学说的基础上,建立了动作电位的钠学说,阐明了神经冲动的传导理论。约在同一时期,Forbes和Renshaw等运用微电极开始了研究中枢神经系统神经元活动的工作。Hodgkin等人为精确测量神经活动中的离子运动,发展了电压钳实验技术。电压钳把单一的跨膜离子流从众多的离子流中分离出来,通过离子流的测定来分析离子通道开放及关闭的动力学变化。双微电极电压钳技术是把两根尖端小于0.5μm的玻璃电极插入细胞内分别作为电位记录电极和电流注入电极。电位记录电极引出的膜电位经电压钳仪的前置放大器放大后,输入至电压钳仪的运算放大器的负输入端,而人为控制的指令电位输入其整输入端,两者的不断进行比较,将差值送入驱动放大电路,两者的任何差异都会被放大电路放大,并通过电流注入电极将相反方向的电流注入细胞,是膜电位钳制在指令电位水平。此时,注入细胞的电流值与标本兴奋时的跨膜电流值大小相等,方向相反。

在此基础上, Neher又发展了膜片钳技术。它是将尖端直径仅为1μm的玻璃电极吸附到细胞膜表面上,对微电极内施加负压,微电极与细胞膜形成10GΩ的高阻封接,可记录膜上的pA级的离子通道电流,为从分子水平了解生物膜离子单通道的开、关动力学,通透性和选择性提供了直接手段。为此Neher获得1991年诺贝尔医学或生理学奖。在电生理技术中脑电图和诱发电位的描记反映了脑细胞群体活动的总和性电位,在临床诊断方面具有重要价值。神经系统的电生理方法,对神经科学的理论发展起着重要作用。

7.3生物化学的方法

经典的生物化学方法包括离心、电泳、层析、质谱等。由于生物化学方法与药理学、免疫学等其他学科相结合,又发展了放射免疫(Radioimmunoassay,RIA)、放射受体和免疫印迹等方面。离心法是各种制备、鉴定方法的起始步骤,几乎没有一个实验没有离心法,也几

乎没有一个实验仅用离心法就能完成。各种层析法是用来制备、鉴定和分离物质的主要手段,通常需将几种不同的层析法交替使用,才能达到预期的结果。由于HPLC和FPLC的使用,使分离的效率和分辨率大大提高。RIA是用来检测生物体内低含量物质(如神经介质、激素)的重要手段,也是对抗体进行检验的重要手段。RIA主要用来分析研究受体的特性,也可用于测定某一受体的配体的含量及分析比较各种配体的作用强度。免疫印迹法结合了电泳及KIA的优点,是鉴定蛋白质及肽类分子的理想方法。

7.4分子生物学的方法

分子生物学技术同神经生物学结合产生了分子神经生物学,分子生物学技术在神经生物学中的应用有基因的分子克隆及表达、聚合酶链反应(Polymerase Chain Reaction,PCR)、遗传连锁分析、反向遗传学等。

7.4.2PCR

PCR是利用耐高温的DNA聚合酶体外快速扩增DNA的技术。通过PCR可以简便、快速地从微量生物材料中获得大量特定的核酸,并具有很高的灵敏度和特异性,可用于微量核酸样品的检测。PCR技术原理是将欲扩增的DNA做模板,以和模板正链和负链互补的两种寡聚核苷酸做引物,经过模板DNA的变性、模板与引物结合复性及在DNA聚合酶作用下发生引物链延伸反应的三步循环来扩增两引物间的DNA片段。每一循环的DNA产物经变性后又成为下一个循环的模板DNA。这样,目的DNA的数量将以2n指数形式累积,短时间内的30个循环,DNA量就可达到原来的上百万倍。

7.4.2神经与精神性遗传疾病的基因定位、分离克隆与突变检测

基因定位是基于基因的连锁分析和关联分析。在家系中,位于同一染色体上的两个位点(致病基因和遗传坐标)在减数分裂的过程中会发生交换和重组。重组率越高,两个位点在一起传给后代的机会就越少,反之,越高。通过用覆盖密度适当的遗传图中的遗传坐标在家系中进行连锁分析,以此找到与某以作标紧密连锁的致病基因,从而确定该基因在染色体上的粗略位置。常用的遗传坐标有RFLP、小卫星坐标、微卫星坐标及单核苷酸多态坐标等。关联分析是在可能的候选致病基因附近选择遗传坐标等位片段多态性,在正常人和病人之间进行比较,得到某一坐标等位片段和引起疾病基因关联的相对危险度。

基因的分离与克隆的基本原理是在克隆有人基因组的Y AC(或BAC或cosmid等文库中找到对应于基因定位的染色体区域,通过STS是载有该区域片段的文库按正确方向排列成重叠群。寻找到存在这些片段上的基因,再用合适的限制性内切酶进行切割分离,并克隆到按设计要求的载体上。

7.5影像技术在神经生物学研究中的应用

7.5.1计算机断层扫描术(CT)

CT技术的关键是X光源,X光检测器和计算机系统。位于头颅一侧的X光源发出一束平行的X光束,X光束透过头颅后由位于头颅另一侧的X光检测器接收。X光源和X光检测器可围绕头颅作180度旋转,在每个旋转角度上都可以得到一组放射密度测量数据。计算机把成千上万的不同位点的放射密度换算成相应的衰减系数,然后根据每一个位点的衰减系数大小用不同的黑白亮度来显示。CT可清楚地显示颅骨、脑组织和脑脊液,但不能用于检测大脑的功能。

编辑本段CT扫描仪的发展历程

自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X 射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学和医学奖。而今,CT已广泛运用于医疗诊断上。

编辑本段CT扫描仪的工作程序

CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。

7.5.2正电子发射计算机断层扫描(Positron Emission Tomography,PET)

正电子发射计算机断层扫描(Positron Emission Tomography,PET)是核医学发展的一项新技术,代表了当代最先进的无创伤性高品质影像诊断的新技术,是高水平核医学诊断

的标志,也是现代医学必不可少的高技术。

PET的独特作用是以代谢显像和定量分析为基础,应用组成人体主要元素的短命核素如11C、13N、15O、18F等正电子核素为示踪剂,不仅可快速获得多层面断层影象、三维定量

结果以及三维全身扫描,而且还可以从分子水平动态观察到代谢物或药物在人体内的生理生化变化,用以研究人体生理、生化、化学递质、受体乃至基因改变。PET可以说是同位素发射计算机辅助断层(ECT)的一种。

正电子发射是放射性元素衰变的方式之一。这类核素在自发地从不稳定状态向基态衰变过程中,从核内释放出与普通电子一样但电荷相反的粒子,即正电子。正电子是一种反物质,从核内放出后很快于环境中自由电子碰撞湮灭,转化为一对方向相反、能量为511kev的γ光子。如果在这对光子飞行方向上对置一对探测器,便可以几乎在同时接受到这两个光子,并可推定光子发源(即正电子发射)点在两控头间连线上。通过环绕360°排列的多组配对探头,经探头对间符合线路检验判定每只探头信号时间耦合性,排除其它来源射线的干扰,得到探头对连线上的一维信息,再用滤波反投射方式,将信号按探头对的空间位置向中心点反投射,便可形成与探头组连线轴平行的断层面正电子发射示踪剂分布图像。这种探测方式一次只反映一个层面的信息,与CT探测方式很接近,实用中常用多层排列的探头对,配合层间符合线路,以利探测并重建更多层面的图像。

在临床中,当由正电子放射性核素所标记的示踪剂(显像剂)注入血流后,到达全身,聚集在特定的器官或某一部位,通过对应的探头,采用符合线路技术,探测器从360°方向检测不同部位的光子,记录释放出光子的时间、位置数量及方向。显像装置绕人体旋转,多角度采集,信息经计算机贮存,再通过影像重建原理获得人体各部位横断、冠状断面和矢状断面影像。PET显像仪的结构与X线、CT或SPECT基本相似,由探头、数据处理系统、图像显示及检查床组成。

大多数PET使用放射性2-18氟-2-D-脱氧葡萄糖(FDG)作为示踪剂,这种类型的葡萄糖与普通葡萄糖化学性质相似,可在人体中产生有标记的代谢物,并且在人体中存留时间较长,便于测量。正常脑组织、心肌组织、肾脏及膀胱组织由于高糖代谢的需要因而对FDG摄取较多。其它一些组织如肝脏、肌肉和肠壁由于其糖代谢水平低,则对FDG的摄取量较少,显示出的FDG活性水平也较低。其它用于PET研究的示踪剂如[15O]H2O可用来测量局部脑组织、心脏或肾脏的血流量,18F-DOPA、18F-UDR可用于评价受体的部位、密度及活动水平等。FDG PET中病人所接受的放射线剂量与CT基本相似。

正常范围

PET

PET特别适用于在没有形态学改变之前,早期诊断疾病,发现亚临床病变以及评价治疗效果。目前,PET在肿瘤、冠心病和脑部疾病这三大类疾病的诊疗中尤其显示出重

要的价值。

检查介绍

PET中文译名为“派特”,是一种非创伤性的用于探测体内放射性核分布的影像技术。其全称中的“正电子”

临床意义

传统的医学影像技术显示的是疾病引起的解剖和结构变化,而PET显示的则是人体的功能变化。换言之,如果人体的解剖结构没有发生改变,传统的影像技术对于疾病的诊断是无能为力的。实际上,疾病的发生都伴随着生化过程的功能改变,这些改变往往要早于解剖结构的改变;还有一些疾病如早老性痴呆、帕金森氏病等本身就没有明显的结构改变,传统的医学影像就无法显示这些功能方面的变化了。PET 能得天独厚地显示功能性的改变,因而对疾病的更早期发现、诊断具有优势;此外,PET还能进行三维立体动态及全身显像,可发现其它检查所不能发现的问题,防止了“—叶障目,不见泰山”,弥补了传统医学影像的不足。

基本原理

PET是利用发射正电子的同位素作为标记物,将其引入脑内某一局部地区参与已知的生化代谢过程,利用现代化计算机断层扫描技术将标记物所参与的特定代谢过程的代谢率以立体成像的形式表达出来,可测定到组织对葡萄糖的利用和脑的局部血流量(灵敏度高达皮摩尔)。

7.5.3磁共振成像(Magnetic rexonance imaging, MRI)

磁共振成像从原理的发现到目前临床各种先进成像技术的应用,是基于科学家们对原子结构的不断认识。1924年Pauli发现电子除对原子核绕行外,还可高速自旋,有角动量和磁矩。1946年美国哈佛大学的Percell及斯坦福大学的Bloch分别独立地发现磁共振现象并接收到核子自旋的电信号,同时将该原理最早用于生物实验,在物理学、化学方面作出了较大的贡献。1952年荣获诺贝尔物理奖。磁共振成像的设想出自Damadian。1971年发现了组织的良、恶性细胞的MR信号有所不同。1972年P. C. Lauterbur用共轭摄影法产生一幅试管的MR图象。1974年作出第一幅动物的肝脏图象。

核子的自旋和磁矩的存在,使其能够在强大的磁场中旋进。Radi测出不同核子的角动量和磁矩。不同核子在同一磁场中其磁矩和角动量各不相同。同一核子在不同场强的磁场中,其振荡频率也不相同。

磁共振是共振现象的一种,是指原子核在进动中吸收外界能量产生的一种能量跃迁现象。这种跃迁只能出现在相邻两个能量级之间。所谓外界能量是指一个激励电磁场(射频磁场),它的磁矢量在某一个平面上旋转,因此,除其旋转频率正好与原子核回转频率相同外,其自旋方向必须和核磁矩相同,原子核才会吸收到能量,这是磁共振现象的必要条件。

磁共振成像技术的发展产生了许多成像技术方法,但总的设计思想是如何用磁场值来标记受检体中共振核子的空间位置。发生共振的频率与它所在的位置的磁场强度成正比。如果能使空间各点的磁场值互不相同,各处的共振频率也就不同,把共振吸收强度的频率分布显示出来,实际就是共振核子的分布,即核磁共振自旋密度图象。但不可能使同一时刻的三维空间中各点具有不同的磁场值,所以需设计突出各特定点信息的方案。要达到此目的,首先可对观测的对象进行空间编码,把研究对象简化为由n x,n y,n z个小体积(体素)的组成,然后采用依次测量每个体素或由体素排列的线或面的信息量,再根据个体素的编码与空间位置的一一对应关系实现图象重建。由于成像的灵敏度、分辨率、成像时间和信噪比(S/N)等要求不同,产生了多种成像方法,归纳起来可分为两大类:一是投影重建法;二是非投影重建法,包括线扫描成像法和直接傅立叶变换(fourier transform)成像法。

Step of stereotaxic surgery

a)The stereotaxic instrument is fixed.

b)To achieve the flat skull position, the incisor bar was adjusted above interaural zero.(according to the instruction of brain maps).

c)Mice were anesthetized with sodium pentobarbital (40 mg/kg body weight, i.p.) for stereotaxic surgery. Compared to a rat, the skull of a mouse is paper thin. The airways run through the centerline directly between the two ears. Thus, it is very easy to strangle a mouse with even lightly applied ear bars. If ear bars are used on a mouse, the surgeon must be very watchful to see that they are in firmly enough to hold the head stable, and that the animal continues to be able to breath through the entire procedure. To avoid this, most researchers working on mice use a nose only holder, and not ear bars. This, however, introduces serious instability, particularly if the surgery is back toward the brainstem, as the leverage to move increases the further back the work is being done. Instability means reduced accuracy, and more animals needed. An alternative is the Cunningham head holder for mice (or neonatal rats, where a similar situation applies) that employs light, small plastic ear bars that allow the surgeon to feel the pressure of application better than with the heavy stainless steel ear bars commonly used. These allow ear bars to be used successfully on adult mice.

d)Stainless-steel guide cannulas are implanted into nucleus according to brain maps. Guide cannulas were fixed to the skull with three screws and dental cement.

Notes

Earbar zero vs. Bregma

Ear bar zero is the point at which the ear bars meet in the center of the stereotaxic instrument when no animal is installed. Bregma is a naturally occurring point on the skull where four skull plates meet in development. Bregma is where an AP and an anterior ML suture line cross. It’s position relative to brain landmarks has been shown to be quite constant in the rat. Lamda is a similar point located more caudally over brainstem, where a second ML suture line crosses the midline suture. An atlas of stereotaxic coordinates must employ an agreed-upon reference frame. Early atlases used ear bar zero, and the tooth bar 5 mm below the ear center, as the zero reference point and plane. It was noticed that this tilted older rats heads less than younger rats, and that most of the brain was far away from the zero point where the ear bars met. A few published studies

found greater accuracy using bregma and skull flat (bregma and lamda at the same vertical coordinate) as the frame of reference, and the bregma/skull flat reference coordinate system is used in virtually all stereotaxic atlases available today. ( the users’ guide of https://www.360docs.net/doc/4d10707242.html,)

2.思考题

《生物学研究的基本方法_》教案

第2章探索生命 第1节生物学研究的基本方法 一、教材分析 生物学是一门自然科学,研究的是一些科学事实。在各种科学事实间建立合理的联系,寻找事实产生的原因,提出解释事实的各种假说和理论。生物科学的发展就是人类不断研究的过程,研究过程要用到不同的方法,要让学生不断学会研究方法很重要,所以,通过这节课的学习,让学生初步学会简单的生物学研究方法,提高学生的能力,为以后学习生物学打好基础,也为社会进步带来新的希望。 二、教学目标 知识与技能目标:能说出实验法的基本步骤。 过程与方法目标:通过提出假设和设计实验方案,尝试科学探究的一般方法;通过材料获取和处理信息,培养学生收集材料的能力和分析处理信息的能力。 情感态度与价值观目标:在讨论中,体验用实验法进行科学探究的过程,逐渐形成严谨、实事求是的科学态度;在小组活动中,学会交流与表达,学会与他人合作。 三、教学重难点 教学重点:实验法研究的一般步骤 教学难点:在教师的指导下,以小组为单位,学生自己进行分析、处理、归纳信息,设计实验方案。 教法:通过媒体展示,提高课堂容量、拓宽学生知识面,同时采用观察、思考、阅读、探究方法等相结合。 教具:多媒体课件 四、教学过程 内容设计意图 导入教师 活动我们现在学的生物教材是属于生物学,生物学是一门不断研究 的学科,也是一门自然科学,既然是一门自然学科,那么在研 究的过程中就要遵循自然规律,要遵循自然规律进行研究,就 应该首先掌握研究的基本方法,引入课题 激发学生的兴趣引入主题 一、 生物学研究的基本方法教师 活动 提问:同生们平时在生活中遇到问题是怎么解决的, 用到哪些方法? 联系生活实际激发学生的求知 欲 学生 活动 思考、结合生活实际回答问题培养学生的语言表达能力 教师 活动 多媒体展示:科学家们的研究的基本方法:观察、 调查、分类、实验等,引出实验法最重要 整体感知,培养学生的观察能 力 二、过度 思考 既然实验法是最重要的,那么实验法研究的基本步骤是什么 呢? 设置悬念引入思考 教师 活动 引出:本节课要以“实验法研究的示例:响尾蛇是如何跟踪它 放走的猎物”为例来了解实验法研究的基本步骤 多媒体展示:不同种响尾蛇的图片和有关响尾蛇的文字介绍 感知认识 学生 活动 认真观察、阅读信息,加强对响尾蛇的了解 感知认识,拓展学生的视野教师 活动 展示图片:播放响尾蛇捕捉老鼠的视频,并对视频内容作解释 直观形象,激发学生兴趣 学生 活动 认真观察、迅速获取信息培养学生的观察能力和获取信 息的能力 教师 活动 提问学生:通过观察录像,叫学生说出自己感兴趣的问题 引导学生发现问题 学生 活动 学生主动起来说出自己感兴趣的问题落实学生自主学习,培养学生 的创新能力 教师对学生提出的问题作出客观评价,指出在众多问题中,本节课统一学生的思想,引导学生共 - 1 -

细胞生物学常用研究方法

Southern杂交: 是体外分析特异DNA序列的方法,操作时先用限制性内切酶将核DNA或线粒体DNA切成DNA片段,经凝胶电泳分离后,转移到醋酸纤维薄膜上,再用探针杂交,通过放射自显影,即可辨认出与探针互补的特殊核苷序列。 将RNA转移到薄膜上,用探针杂交,则称为Northern杂交。 RNAi技术: 是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。 Southern杂交一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量]。 扫描电镜技术:是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与样品表面结构有关,次级电子由探测器收集,信号经放大用来调制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。 细胞显微分光光度计:用来描述薄膜、涂层厚度超过1微米的物件的光学性能的显微技术。 免疫荧光技术:将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。 电镜超薄切片技术:超薄切片是为电镜观察提供极薄的切片样品的专门技术。用当代较好的超薄切片机,大多数生物材料,如果固定、包埋处理得合适,可以切成50-100微米的超薄切片。 Northern印迹杂交(Northern blot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。 放射自显影技术:放射自显影技术是利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。放射自显影技术(radioautography;autoradiography)用于研究标记化合物在机体、组织和细胞中的分布、定位、排出以及合成、更新、作用机理、作用部位等等。其原理是将放射性同位素(如14C和3H)标记的化合物导入生物体内,经过一段时间后,将标本制成切片或涂片,涂上卤化银乳胶,经一定时间的放射性曝光,组织中的放射性即可使乳胶感光。 核磁共振技术:可以直接研究溶液和活细胞中相对分子质量较小(20,000 道尔顿以下)的蛋白质、核酸以及其它分子的结构,而不损伤细胞。 DNA序列分析:在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信

生物学的基本研究方法

生物学的基本研究方法 一、基础知识: (1)、_________和_______是科学探究基本方法。也是我们学习生物学的基本方法。 (2)、实践可以给研究者提供现象、数据等资料,是检验_______、形成科学理论的实践基础。 实验的一般规程是:1. ________________________ 2、_____________________________ 3、________________________ 4、________________________________ 5、_________________________________________ (3)正确使用显微镜的步骤是:1. ________________________ 2、_____________________________ 3、________________________4、_________________________5、____________________________ 在显微镜下观察到的物像是________像。 (4)科学探究的基本过程是;1. _____________ 2、_____________3、______________ 4、________________________ 5、___________________ 6、__________________________ 实验中单一变量原则:变量是______________________,在一个实验中,除了要研究的变量以外,其余的变量都应__________,并控制在__________状态。 (5)什么叫对照实验?_________________________________________ _________________________________________ _________________________________________ (6)收集资料和分析资料有什么好处? _________________________________________ _________________________________________ (7)测量 在测量中如何提高数据的可靠性?_________________________________________ (8)调查:调查是科学探究的常用方法。 完成一项调查需要做好哪几个方面工作?________________________________ ________________________________________________________________ (9)综合起来科学探究的方法概括起来有: 1、2、3、 4 二、探究训练 1、使用显微镜对光的程序是() ①选遮光器上较大的光圈对准通光孔②转动转换器,使低倍物镜对准通光孔,③左眼注视目 镜,右眼睁开④转动反光镜,使光线通过通光孔反射到镜筒内 A、①→②→③→④ B、②→①→③→④ C、③→④→②→① D、③→②→①→④ 2、小明在用显微镜进行观察时看到了一个小黑点,移动载玻片和物镜,小黑点不动,由此可判断小 黑点可能在( ) A 目镜上 B 物镜上 C 载玻片上 D 反光镜上 3、当显微镜的目镜为10X、物镜为10X时,在视野直径范围内看到一行相连的8个细胞。若目镜 不变,物镜换成40X时,则在视野中可看到这行细胞中的() A.2个B.4个C.16个D.32个 4、小强在显微镜下观察到了洋葱表皮细胞后,兴奋地向同学描述,并把显微镜轻轻挪动给同组同学,

最新生物学常见模式生物资料

模式生物 生物学家通过对选定的生物物种进行科学研究,用于揭示某种具有普遍规律的生命现象。此时,这种被选定的生物物种就是模式生物。比如:孟德尔在揭示生物界遗传规律时选用豌豆作为实验材料,而摩尔根选用果蝇作为实验材料,在他们的研究中,豌豆和果蝇就是研究生物体遗传规律的模式生物。由于进化的原因,许多生命活动的基本方式在地球上的各种生物物种中是保守的,这是模式生物研究策略能够成功的基本基础。选择什么样的生物作为模式生物首先依赖于研究者要解决什么科学问题,然后寻找能最有利于解决这个问题的物种。19世纪末20世纪初,人们就发现,如果把关注的焦点集中在相对简单的生物上则发育现象的难题可以得到部分解答。因为这些生物更容易被观察和实验操作,因此,除了在遗传学研究外,模式生物研究策略在发育生物学中获得了非常广泛的应用,一些物种被大家公认为优良的模式生物,如线虫、果蝇、非洲爪蟾、蝾螈、小鼠等。 随着人类基因组计划的完成和后基因组研究时代的到来,模式生物研究策略得到了更加的重视;基因的结构和功能可以在其它合适的生物中去研究,同样人类的生理和病理过程也可以选择合适的生物来模拟。 目前在人口与健康领域应用最广的模式生物包括,噬菌体、大肠杆菌、酿酒酵母、秀丽隐杆线虫、海胆、果蝇、斑马鱼、爪蟾和小鼠。在植物学研究中比较常用的有,拟南芥、水稻等。随着生命科学研究的发展,还会有新的物种被人们用来作为模式生物。但它们会有一些基本共同点: 1)有利于回答研究者关注的问题,能够代表生物界的某一大类群; 2)对人体和环境无害,容易获得并易于在实验室内饲养和繁殖; 3)世代短、子代多、遗传背景清楚; 4)容易进行实验操作,特别是具有遗传操作的手段和表型分析的方法。 背景 早在20世纪最初的20年中,甚至更早到19世纪,人们就发现,如果把关注的焦点集中在相对简单的生物上则发育的现象难题可以得到部分解答。因为这些生物的细胞数量更少,分布相对单一,变化也较好观察。由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共通规律是可能的。尤其是当在有不同发育特点的生物中发现共同形态形成和变化特征时,发育的普

生态毒理学题目整理

《生态毒理学》试题整理 一、名词解释: 生态毒理学: 毒物: 一次污染物: 二次污染物: 持久性有机污染物: 半数致死剂量: 毒物兴奋效应: 水体富营养化: 生物放大: 生物转化: 诱变剂: 生长余力: 环境内分泌干扰物: 代谢抗性: 靶标抗性: 多样性指数: 模拟微系统试验: PFU法: 生态风险: 生态风险评估: 生态受体: 风险商值: 二、判断题: 1.Ecotoxicology是由Rachel Carson于1969年首先提出并使用这个词.() 2.二次污染物的危害程度一般比一次污染物轻。() 3.进入动物体内的外源化合物在分布过程中主要与脂蛋白结合。() 4.呼吸道是动物吸收污染物质最主要的途径。() 5.易化扩散需要消耗代谢能量。() 6.生物迁移是污染物在环境中迁移的最重要的形式。() 7.排泄是生物转运的最后一个环节。() 8.水溶性外源化合物可不经过生物转化直接排出体外。() 9.进入机体的极性物质可以不经Ⅰ相反应而直接发生Ⅱ相反应。() 10.在生物转化中,大多数外源化合物代谢产物的毒性低于母体化合物。( ) 11.所有外源化合物经过生物转化后,其生物活性都会减弱或消失。 ( ) 12.有机磷农药通过抑制乙酰胆碱脂酶而产生毒理学效应。() 13.经酶催化而形成自由基是大多数外源化合物形成自由基的方式。() 14.重金属镉离子可引起钙稳态失调。() 15.缺失、重复与易位发生在同源染色体之间,倒位发生在两对非同源染色体之间。() 16.由于排除毒物需要消耗能量,接触毒物总是引起生物呼吸率的降低。() 17.在器官形成期易于发生胚胎致畸,也可导致胚胎死亡。() 18.“反应停”事件是毒物胚胎致畸的一个典型事件。()

毒理学

毒理学 第一章绪论 ●毒理学(Toxicology):研究外源化学物对生物体损害作用及其机制的科学 ●外源化学物(xenobiotics):是在人类生活的环境中存在、可能与机体接触并进入机体, 在体内呈现一定的生物学作用的一些化学物质,又称为“外源生物活性物质” 内源化学物:是指机体内原已存在的和代谢过程中所形成的产物或中间产物 现代毒理学(Modern toxicology):是以毒物为工具,在实验医学和治疗学的基础上,发展为研究化学、物理和生物因素对机体的损害作用、生物学机制、危险度评价和危险度管理的科学 毒理学研究方法整体动物试验(in vivo) 体外试验(in vitro) 人体观察(Human Toxicology) 流行病学研究(Epidemiological Study) ●毒理学主要三大研究领域描述毒理学(Descriptive toxicology)直接研究的是毒性 鉴定(毒性实验),以期为安全性评价和危险度管理提供信息;还可为化学物的毒作用机制研究提供重要线索 机制毒理学(Mechanistic toxicology)研究化学物质对生物机体产生毒性作用的细胞、生化和分子机制。 管理毒理学(Regulatory toxicology)根据描述和机制毒理学的研究资料进行科学决策,协助政府部门制定相关法规条例和管理措施并付诸实施,以确保化学物、药品和食品等进入市场足够安全,达到保护人民群众身心健康的目的 ●毒理学方法的替代与更新(3R原则) 第一个“R”是替代试验(Replacement),即利用简单的生物系统如培养的细菌,哺乳动物和人的组织、细胞以及特殊的动物器官或非生物构建体系等方法取代动物试验 第二个“R”是减少动物的使用数量(Reduction),在保证实验质量的前提下,选择合适动物和方法,改进实验设计,减少动物用量 第三个“R”是精化和改良技术(Refinement) 《取代replacement》,尽量减轻实验过程对动物造成不必要的痛苦和伤害 第四个“R”责任(Responsibility),主要是增强人们的伦理观念,不仅对动物负责,更要对人类负责,保证各类产品进入市场后,在正常和可预见的使用条件下对消费者无伤害 第二章毒理学基本概念(Basic Toxicology Terminology) ●毒物(toxicant / poison)是指在一定条件下,以较小剂量进入机体就能干扰正常的生化过程或生理功能,引起暂时的或永久性的病理改变,甚至危及生命的化学物质 ●毒性(toxicity):是指化学物引起有害作用的固有的能力。毒性是物质一种内在的,不变的性质,取决于物质的化学结构。 毒效应:化学物对机体健康引起的有害作用称为毒效应。即毒作用 中毒(poisoning):是指生物体受到毒物作用而引起功能性或器质性改变后出现的疾病状态●毒效应谱(spectrum of toxic effect):是指机体接触外源化学物后,由于化学物的性质和剂量不同,可引起机体多种变化 ●选择性毒性(selective toxicity):是指在接触条件完全相同的情况下,化学物对某种生命物质的毒性较大,而对另一种生命物质的毒性较小或只对机体内某一组织器官发挥毒性,而对其他组织器官不具有毒作用的现象 靶器官(target organ)外源化学物可以直接发挥毒作用的器官

生态毒理学1 (1)

第一章绪论 第一节毒物与毒理学 第二节环境毒物与生态毒理效应 第三节生态毒理学的基本框架 第四节生态毒理学的研究意义与展望 第一节毒物与毒理学 一、毒物及其分类 毒物:一般是指与生命体或生命组织发生相互作用能引起生物受到严重伤害甚至导致死亡的物质;或者说,毒物是指那些以相对较小的剂量就能导致生物受害或严重的细胞功能损伤以及生态系统产生不良效应的物质。 可从衣食住行来举例说明 食盐和酒(量的问题) 毒物分类通常采用的一些方法 分类范畴 物理状态气体、液体、固体、尘 用途农药、溶剂、添加剂 化学结构芳香胺类、脂肪族类、乙二醇 一般作用大气污染物、慢性毒物、工业毒品 效应致癌物质、致突变物质、致畸物质 目标器官神经毒素、肝毒素、肾毒素 作用机制刺激剂、抑制剂、阻碍剂 毒作用潜力轻度、中度、超毒性物质 标签需要氧化剂、酸、爆炸物质 一般分类塑料、有机化学品、重金属 二毒理学及其发展 (一)古代毒理学 毒理学一词源于希腊文字“toxikon” 《淮南子》、《诸病源候论》、《外台秘要》等 公元前1500年,一个系列的8本埃及纸草文“书籍”(800多个医药和毒药处方) 一股来说,公元9~15世纪的中世纪.有关毒理学的研究,更多的是基于教条和经验,而不是实验证据 16世纪德国医生Paracelsus(1493—1541),把毒理学的研究带到了—个新的高度,强调实验的作用。 二)现代毒理学的开端和发展 意大利内科医生Ramazzini(1633-1714) 《工人的疾病》 意大利内科医生Fontana(1720-1853)进一步发展了靶器官毒性概念。 西班牙医生Orfila(1787-1853)被认为是现代毒理学的奠基人,他是系统利用实验动物的第一个科学家,并发展了在组织和体液中鉴定毒物的化学分析方法。 1930年实验毒理学的第一本杂志<>创刊,同年在美国成立了NIH 1937年引起急性肾衰竭和死亡的“磺胺事件”,促使了美国FDA的成立(Food and Drug Admistration ), 1955年,美国人Lehman和他的同事共同出版了《食品、药品和化妆品中化学物的安全性评价》 通过了许多新的法规,创办了许多新的杂志,成立了国际毒理学协会(1965)

现代毒理学的研究方法进展及其热点_顾祖维

文章编号:1001-0580(2005)02-0254-03中图分类号:R114文献标识码:A=继续医学教育讲座> 作者简介:顾祖维,男,1935年1月生,上海人,研究员。1954~1960年在苏联列宁格勒公共卫生医学院学习。 1979~1981年在法国进修毒理学。1987年获法国国家毒理学博士学位。1960~1992年在上海医科大学劳卫生教研组任教,曾任教研室主任。1989~1992年应邀赴美国国家职业安全与卫生研究(NI OSH)工作,兼聘为美国国家研究委员会(NR C)高级研究员。1992年10月~1998年底任上海市劳动卫生职业病防治研究所研究员。1999年1月至今任上海市疾病预防控制中心研究员。从事职业医学和遗传及分子毒理学研究。现任中国毒理学会生化与分子毒理学专业委员会委员,国家自然科学基金会同行评议专家。5卫生毒理学杂志65工业卫生与职业病65中华医疗卫生65环境与健康展望6杂志副主编;5中华劳动卫生职业病杂志65中国工业医学杂志65中国公共卫生65环境与职业医学6等杂志编委。 现代毒理学的研究方法进展及其热点 顾祖维 毒理学在20世纪下半叶有了迅猛的发展,目前已形成了诸多的毒理学分支。按研究的对象或物质可分为金属毒理学、农药毒理学等。随着生产和科学技术的发展,肯定还会不断出现新的分支112。本文对现代毒理学的研究方法进展及其热点作一介绍。 1毒理学研究方法和技术发展 毒理学研究所用的方法和技术决定于要解决的问题。毒理学随科学发展,尤其是生物学和医学的发展也随之发展。毒理学发展的历史证明,引进新的概念、新的理论、新的方法和技术,会导致新的边缘学科的形成,出现毒理学新的分支。分子毒理学的形成是一个明显的见证。在毒理学研究中只要主动引进一种新的方法或技术,就有可能开创一个新的领域,获得一批创新和领先的科研成果。例如生物芯片包括基因芯片、蛋白质芯片的应用,将取代一些耗时的DN A印迹法(Souther n blot)、蛋白质印迹法(Western blot)、R NA印迹法(No rthern blot)和点印迹法(dot blot)。毒理学研究涉及受试化学物及它们的代谢产物的定性和定量问题,需要应用分析化学的方法。色谱)质谱联用的方法已普及。 在整体动物实验中常用组织病理学检查以观察全身器官和组织病理学改变,有利于找到靶器官,对进一步的研究可提供有价值的线索。毒理病理学方法包括光镜和电镜的检查、酶组织化学及免疫组织化学,可用于揭示病变的性质和定位。近年来,也用于研究基因包括癌基因和抑癌基因的表达。经典的病理学检查往往是定性或半定量的,现今结合图像分析,可将图像的改变转化为数据,做到定量的研究。计算机体层摄影(CT)、磁共振成像(M RI)和超声检查可提供形态和功能改变的信息。 实质脏器功能主要应用血液和尿生化指标改变,多功能生化检测仪,在一次进样后可同时检测近百种指标,血液和尿液酶谱分析也常用。对脑的研究常用电生理方法,经典的有脑电图,进一步可用微电极观察特定脑区的电活动。化学物对海马回的作用揭示了大脑学习与记忆的功能,研究毒物对基底节的作用有助于了解Par kinson.s病。大脑诱发电位技术可客观地检查感觉神经系统通路的结构和功能。还常用神经递质及其代谢产物的分析12~62。我国神经行为方法在研究职业性毒物方面已广泛应用。 2当今毒理学研究的热点211一系列/组学0的形成当今毒理学面临前所未有的良好机遇和快速发展。近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列/组学0(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(ce-l lomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。其中某些学科已与毒理学产生交叉融合形成了新分支。如基因组学v毒物基因组学和环境基因组学(tox-i cog enomics or environmental genomics),蛋白质组学v毒物蛋白质组学(tox icoproteomics),代谢组学(metabonomics)v毒物代谢组学(toxicometabonmics),生物信息学(bioinformatics)或芯片生物学(in silico biolog y)v芯片毒理学(in silico toxicolo-gy)等,这此交叉分支学科已成为当前毒理学中最活跃的研究领域172。 近年来,新技术、新方法不断涌现,如包括各种生物芯片转基因和基因删除(gene knockout)技术、报告基因技术、干细胞技术、基因或蛋白质差异表达检测技术、实时定量PCR(r e-a-l time and quantitative PCR)技术、蛋白质组技术平台、代谢组技术平台、发光技术、荧光/比色、干细胞培养技术等。人体和其他生物的基因组计划、环境基因组计划、细胞凋亡和细胞胀亡(o ncosis)等细胞死亡模式、细胞信号转导通路、细胞周期调控和细胞分化机制等的研究进展,为毒理学的发展提供了理论指导。由于物种间基因的同源性,鼠的基因仅比人少300条,约1%的差异,这为从基因水平上研究毒作用的种属差异提供了可能;生物芯片技术可用于筛选毒性相关基因、揭示毒作用的基因表达谱、快速筛选毒物、筛选和检测基因多态性、检测基因突变、进行安全性评价等,从而为解决化学物的联合作用、高通量的筛选化学物、研究毒作用机制等问题18~102。我国近来报道应用基因芯片技术探讨小鼠胚胎心脏发育过程中的差异基因,结果表明,在8404个靶基因中,143个基因差异表达,其中上调基因52个,下调基因91个,分别是细胞分裂、凋亡、信号传导、基因蛋白质表达调控及某些功能尚不清楚的基因1112。 21111代谢组学代谢组学(mteabonomics)是研究机体内代谢网络系统的科学,揭示机体在正常和病理状态下代谢的全貌1122。代谢组学的技术是一种检测整个机体的代谢动力学变化的方法。这种检测仅需几滴血液,利用高频无线电波检测血液中分子磁性,通过高级计算机程序分析,检测血液、血浆和尿液,标本无须特殊的前期处理。此检测也可以有效地 作者单位:上海市疾病预防控制中心,200336

15神经生物学研究的常用方法

1.神经生物学研究的常用方法 神经科学的发展与的研究方法的进步密切相关。总体上,神经生物学的研究 方法有六大类:形态学方法、生理学方法、电生理学方法、生物化学方法、分子 生物学方法及脑成像技术。 7.1形态学方法 神经生物学研究中常用的形态学方法有束路追踪、免疫组化和原位杂交,其 他还有受体定位、神经系统功能活动形态定位等方法。 7.1.1束路追踪法 追踪神经元之间的联系是神经解剖学研究中的重大目标,它对研究神经元的功能、神经系统的发育和成熟都具有重要意义。这种方法学的建立始于19世纪末的逆行和顺性溃变(顺行溃变指胞体或轴突损伤后的轴突终末的溃变,逆行溃变指去除靶区之后神经元胞体的溃变)研究。20世纪40年代主要手段是镀银染色法,根据变性纤维的形态变化来判断变性纤维。20世纪50年代发展了Nanta法,能遏制正常纤维的染色而仅镀染出变性纤维。但该法不易显示细纤维,1971年Kristenson等将辣根过氧化物酶(HRP)注入幼鼠的腓肠肌及舌肌结果在脊髓和延脑的相应部分运动神经元胞体内发现HRP的积累。不久LaVail正式使用HRP作为轴突逆行追踪,以后遂广泛应用于中枢神经系统的研究。HRP可被神经末梢、胞体和树突吸收,轴突损伤部分也可摄入。在胞体内,HRP的活性可持续4~5天,在溶酶体内对联苯胺呈阳性反应而显现出来。被标记的神经元可以清晰的显示胞体、树突及轴突。 除了HRP标记法,还有荧光物质标记法、毒素标记法、注射染料等方法。 7.1.2免疫组织化学 免疫组织化学术是应用抗原与抗体结合的免疫学原理,检测细胞内多肽、蛋白质及膜表面抗原和受体等大分子物质的存在与分布。这种方法特异性强,敏感度高,进展迅速,应用广泛,成为生物学和医学众多学科的重要研究手段。近年随着纯化抗原和制备单克隆抗体的广泛开展以及标记技术不断提高,免疫组织化学的进展更是日新月异,不仅用于许多基本理论的研究,并取得重大突破,而且也用于疾病的早期快速诊断等临床实际。 组织的多肽和蛋白质种类繁多,具有抗原性。分离纯化人或动物组织某种蛋白质,作为抗原注入另一种动物体内,后者即产生相应的特异性抗体(免疫球蛋白)。从被免疫动物的血清中提取出该抗体,再以荧光素、酶、铁蛋白或胶体金标记,用这种标记抗体处理组织切片或细胞,标记抗体即与细胞的相应蛋白质(抗原)发生特异性结合。常用的荧光素是异硫氰酸荧光素(FITC)和四甲基异硫氰酸罗丹明(TRITC),在荧光显微镜下可观察荧光抗体抗原复合物。常用的酶是辣根过氧化物酶(horseradish peroxidase,HRP,从辣根菜中提取的),它的底物是3,3'-二氨基、联苯胺(DAB)和H2O2,HRP使DAB氧化形成棕黄色产物,可在光镜和电镜下观察。铁蛋白和胶体金标记抗体与抗原的结合,也可在光镜和电镜下观察。 标记抗体被检抗原的结合方式有两种。一是直接法,即如上述用标记抗体与样品中的抗原直接结合。这种方法操作简便,但敏感度不及间接法。间接法是将分离的抗体(第一抗体简称一抗)再作为抗原免疫另一种动物,制备该抗体(抗原)的抗体(第二抗体简称二抗),再以标记物标记二抗。先后以一抗和标记二抗处理样品,最终形成抗原一抗-标记二抗复合物。间接法中的一个抗原分子可通过一抗与多个标记二抗相结合,因此它的敏感度较高,而且目前国内外均有多种标记二抗商品供应,使用方便。间接法中较常用的是一种称之为过氧化物酶-抗过氧化物酶复合物法(peroxidase-antiperoxidase complex

七年级生物上册 生物学研究的基本方法教案 北师大版

第2章第2节生物学研究的基本方法 教学目的 1、说出实验法研究的一般步骤; 2、尝试设计简单的实验并控制实验条件; 1、根据实验数据建立一个表格并分析数据。 教学重点 实验法研究的的一般步骤 课时安排 2课时。 教学方法 观、思、读、探相结合 板书设计 第2节生物学研究的基本方法 一、生物学研究的基本方法 观察法、调查法、分类法、文献法、实验法 二、实验法的一般步骤 1、实验法示例——响尾蛇是如何追寻它放走的猎物的 2、活动“讨论实验法基本程序” 发现并提出问题——收集与问题相关的信息——作出假设——设计实验方案——实施实验并计录——分析实验现象——得出结论 三、用实验法研究影响生物分布的环境因素——活动“探究影响分布鼠妇的环境因素”教学过程 第一课时以实验法研究的示例“响尾蛇是如何追寻它放走的猎物的”为核心,探究实验法基本程序的。 复习提问:①上节课我们学习哪四位具有代表性的科学家?②他们的研究成果是什么?③他们的研究方法是什么? (回答:略。)

导入:他们的研究方法有观察法、调查法、分类法、文献法、实验法。这就是生物学研究的基本方法,而其中实验法是现代生物学研究的重要方法。那么实验法包括哪些内容呢? 阅读书P27——28,看看科学家们对提出的问题是如何分析,进行实验的,在阅读过程中注意思考这么几个问题:①这个实验要解决什么问题?②科学家们做出了什么样的假设? ③这个假设是根据什么做出的或者说在作假设前科学家都做了哪些工作?④实验中人为控制的条件是什么?⑤为什么要强调多次重复以上的实验?(同学们边回答教师边讲解,加深同学们的认识。) 结合影片,师生共同完成下表; 响尾蛇是如何追寻它放走的猎物的 着事先设 :将一只没有被响尾蛇袭击过的死老鼠,沿着事先设定的弯曲路径, 进行实验,观察到响尾蛇的头缓慢地左右移动,同时它的舌迅速

神经生物学研究概论

神经生物学研究概论 生A0921 江名 23 摘要:神经生物学是生物学中研究神经系统的解剖,生理,神经生物学。病理方面内容的一个分支。神经生物学,21世纪的明星学科。从上个世纪90年代以来,世界科研强国加快了对神经生物学研究的投入。美国于1990年推出了“脑的十年计划”,接着欧洲于1991年开始实施“EC脑十年计划”,然后日本于1996年也正式推出了名为"脑科学时代计划"的跨世纪大型研究计划,计划在未来20年内投入相当的研究经费。这些研究工作虽然至今为止并没有在神经生物学领域取得重大进展,没有解开智力形成之迷,没有解开毒品上瘾之迷,没有解开老年痴呆治疗之迷,但却在潜移默化中推动了神经科学的发展,为本世纪神经生物学的腾飞打好了基础。 关键词:神经生物学研究进展展望 1.神经生物学的概念 神经科学是专门研究神经系统的结构、功能、发育、遗传学、生物化学、生理学、药理学及病理学的一门科学。大脑的结构和功能是自然科学研究中最具有挑战性的课题。近代自然科学发展的趋势表明,21世纪的自然科学重心将在生命科学,而神经生物学和分子生物学将是21世纪生命科学研究中的两个最重要的领域,必将飞速发展。在医学这个大的学科内,神经生物学是一门在各个水平,研究人体神经系统的结构、功能、发生、发育、衰老、遗传等规律,以及疾病状态下神经系统的变化过程和机制的科学。它涉及神经解剖学、神经生理学发育神经生物学、分子神经生物学、神经药理学、神经内科学、神经外科学、精神病学等等。神经生物学的内容非常丰富,研究进展很快,作为医学生不仅要全面掌握,还要及时了解新的研究进展[1]。 2.神经生物学的主要内容 神经生物学包罗了基础神经科学的诸多学科,并非若干传统学科简单和机械地组合,在传统神经科学的基础之上成长和发展起来的一门新兴的综合性的边缘学科。神经生物学的重点研究对象便是脑,脑是高等生物最复杂的器官,同时神经元几乎是最难培养的细胞。神经生物学的材料与生物学的其它学科一样,是动物,从低等的果蝇到高等的小鼠、人。神经生物学的研究方法同样离不开核酸的分析与蛋白质的分析,分子生物学的PCR、免疫组化、western blot也是神经生物学的主要研究方法。但是由于脑的特殊性,所以神经生物学研究还需要使用一些其他的方法、电生理法便是其中的一种,电生理是用电刺激的方法来研究神经回路、神经元在特殊生理条件下的反应。膜片钳是用于测量离子通道活动的精密检测方法[1]。神经细胞、神经网络的遗传与发育研究,自1993年ZieglgansbergerW和Tolle TR提出系统生物学方法研究神经疼痛(pain)的疾病机理以来,细胞信号传导网络与基因表达调控的系统生物学已经成为神经生物

生态毒理学实验设计

姓名:刘金鑫学号:201428006037073 培养单位:地理所 生态毒理学实验设计 一.【实验题目】: 砷对两种淡水藻类的毒性作用。 二.【实验设计思想】: 砷在环境中是一种普遍存在的污染物,它来源于人为源和自然源的释放,通过一定的途径进入地表、土壤和饮用水体中。通过目前的研究已经发现进入水体的砷对水中的生物存在影响,我们有必要研究水体中砷对水生生物的毒性作用,在这些研究中要数藻类的研究较多。我准备通过使用72小时生长速率——一种抑制生物检测方法,来判定五价砷和三价砷对两种在无外来干扰的热带的淡水藻类(绿藻和单针藻)的毒性。这个实验的意义在于,看砷对藻类的毒害作用是否很强,如果藻类对于砷的耐性较强,可以指导后面的藻类用于砷污染水体修复的研究。 三.【实验目的】: 1、掌握藻类的室内无菌培养。 2、学会藻类生长速率测定的方法。 3、掌握72小时生长速率的检测方法。 4、判定砷对两种藻类的毒害作用。 四.【实验原理】: 1、藻类的选取:由于不同种类的藻对砷毒性的反应不同,有的藻对砷比较敏感,而有的对砷的耐性较好,所以我选择了一种敏感性的单

针藻和一种耐性较好的绿藻。 2、培养液的选择:为了排除自然水体和纯净水体的影响,我用人工合成的软水(内部成分以及含量都是已知的)来进行实验。 3、培养瓶的选择:为了防止砷在普通瓶体上的吸附,我选择250ml 的硼硅酸盐的锥形瓶。 4、检测前处理:将处于指数生长阶段(5-6天)的细胞通过离心(2500rpm,7min),超纯水洗涤三次确保培养液除去后,再用于生物检测。 5、培养条件:将培养瓶放在培养架上进行培养。培养架周围的环境条件:27±1℃、12:12h的光照和无光、每天用手摇晃两次锥形瓶使其进行充分的气体交换。 6、通过多功能计数仪测定结果。 7、数据分析:通过线性插值法计算72hIC50。 8、藻对砷和磷的吸收具有竞争性。 五.【实验材料】: 绿藻、单针藻、玻璃烧杯、天平、硼硅酸盐锥形瓶、镊子、酒精灯、量筒、真空过滤器、滤膜、试管、无菌操作台、吸管、多功能计数器、移液枪、PH试纸(PH5.4—9)、牛角匙、牛皮纸、棉花、纱绳、高压蒸汽灭菌锅、培养架、温度计、恒温室、冷光源、NaHCO3、CaSO4·2H2O、MgSO4、KCl、CaCO3、10%HNO3、超纯水、Na2AsO4·7H2O、NaAsO2、NaNO3、KH2PO4等。 六.【实验步骤】:

毒理学研究的新思路和新方法

1、药物毒理学研究思路的转变 1. 1 发现毒理学在药物毒理研究中的发展 最初, 药物毒理学家在药物开发中的作用仅局限于中后期参与药物的临床前毒性评价, 不能积极主动地指导和协调新药开发的前期工作, 导致许多有很好开发前景的药物由于毒性或其他安全性因素而中途夭折; 即使经过结构改造后最终进入医药市场, 也不可避免地造成人力资源的巨大浪费, 人为地拉长了新药研发周期。因此, 为了提高新药早期毒性的科学预测性, 西方各大制药公司将过去的临床前和临床安全性评价的药物毒理学早期研究模式转变为在新药发现阶段即对新化学实体进行毒理学与药理学、药效学、药动学相结合的筛选和优化的发现毒理学研究模式,通过综合分析药效学、药动学及毒理学的各项指标, 评价系列NCEs的研发前景, 从中筛选出毒性小的候选新药进行后续研究。其研究的思路是将药物毒理学研究贯穿于新药发现、临床前安全性评价、临床试验和上市后监督与跟踪的整个过程中, 这就是发现毒理学研究的产生背景。 1. 2 全程式新药安全性研究评价新模式 伴随发现毒理学在新药毒理学研究中的发展,新药毒理学研究的模式也逐步从传统的临床前评价、临床评价的两阶段模式, 向早期发现毒理学(包括体外短期毒性筛选﹑组学技术﹑生物信息学技术)、临床前评价、临床评价、上市后监督再评价的四阶段全程评价模式转变, 形成了全程式新药安全性研究评价的新模式。 2 新技术、新方法 2. 1 转基因动物技术 药物毒性作用机制尤其是慢性毒性药物作用机制异常复杂, 找出药物毒性作用的靶点尤为困难。基因敲除技术为阐明某些基因或生物大分子在药物毒性发生中的作用提供了新途径。如通过敲除胚胎干细胞中某些与胚胎正常发育、男性不育或者正常免疫功能(如生长因子、干扰素)有关的基因, 目前已成功地阐明了类视黄醇致畸、表氯醇致男性不育及5-氟-2-脱氧尿嘧啶核苷酸致骨髓抑制的机制。与传统的规范性动物致癌实验相比, 用转基因动物进行致癌性筛选的优越性显而易见。应用现有的转基因动物进行致癌性筛选, 可以缩短时间和减少费用。目前已建立的检测模型或研究模型有:过量表达癌基因的转基因动物模型, 如TG, AC 小鼠, HK-fos转基因小鼠等。基因敲除动物致癌检测模型。转基因动物用于生殖毒性研究。所有这些都是在产品研究开发的早期或中期, 用转基因动物进行致癌性筛选的优越之处。 2. 2 发现毒理学技术 发现毒理学的研究性质决定了其研究手段必须具有快速灵活、消耗样品量少、成本低、实验周期短、可同时检测大量样品等特点。目前, 在发现毒理学研究中广泛采用的技术有: 早期毒性筛选系统、毒性作用机制研究、计算机虚拟筛选和毒理组学技术等。

毒理学研究方法

(课件重点) 毒理学研究方法 1.体内试验(in vivo):也称整体动物试验,可严格控制接触条件,测定多种类型的毒作用。大鼠,小鼠,豚鼠,家兔,狗和猴等。也有鱼类,鸟类,昆虫等 2.体外试验(in vitro):利用游离器官、培养的细胞或细胞器、生物模拟系统进行毒理学研究。器官(肝、胚胎),细胞,细胞器,分子等 3.人体观察(human toxicology),事故或志愿者 4.流行病学研究(epidemiological study): 为什么有选择毒性 1.物种和细胞学的差异 (植物生长调节剂) 2.蓄积能力 3.代谢过程和速率 4.损伤的修复能力 非损害作用(non-adverse effect) 所致机体发生的一切生物学变化都是暂时的、可逆的,应在机体代偿能力范围之内,不造成机体形态、生长发育过程及寿命的改变、不降低机体维持稳态的能力和对额外应激代偿的能力、不影响机体的功能容量,如进食量、体力劳动负荷能力等涉及到解剖、生理生化和行为方面的指标,也不引起机体对其他环境有害因素的易感性增高。 损害作用(adverse effect) 所致的机体生物学改变是持久的、不可逆的,造成机体功能容量的各项指标改变、维持体内的稳态能力下降、对额外应激状态的代偿能力降低以及对其他环境有害因素的易感性增高,使机体正常形态、生长发育过程均受到影响,寿命缩短 生物膜biomembrane 定义:将细胞或细胞器与周围环境分隔开的一层半透膜。 功能:将细胞或细胞器与周围环境隔离;保持细胞或细胞器内部理化性质的稳定;选择地允许或部允许某些物质通过,主动摄入或排出一些物质 生物转运过程的机理 1、被动转运 1)简单扩散:溶液中的化学物质分子,由浓集部位向各个方向分散,直到全部分子均匀分布在溶液中。 simple diffusion:化学物质由浓度较高部位透过生物膜向浓度较低部位分散的过程。特点:化学物不与膜起反应;不消耗代谢能量;膜两侧浓度差愈大,脂溶性愈高,其简单扩散速度快; 在毒理学上,是大多数化学物透过生物膜的主要转运方式。 简单扩散的条件:膜两侧存在浓度差;外来化合物有脂溶性;是非解离状态 2)滤过 filtration: 膜孔滤过指化学物通过细胞膜上的亲水性孔道透过细胞膜的过程。亲水性孔道:由嵌入脂质双分子层中的蛋白质结构亲水性氨基酸组成,不同的细胞膜,其孔径大小不一,小肠上皮细胞4Ao ,肾小球毛细血管内皮细胞为40 Ao。 动力:渗透压梯度和液体静压。在它们的作用下,大量水及分子直径小于孔道的化学物可经膜孔道,透过生物膜,完成其生物转运过程。 2、特殊转运 1)主动转运:不溶于脂质的亲水性化合物由低浓度处透过生物膜向高浓度处移动并引起消耗能量的过程。 特点:逆浓度梯度转运;通过载体;需消耗能量;具有一定的选择性,存在竞争性抑制,可饱和; 2)易化扩散(facilitated diffusion):指某些不易溶于脂质的亲水性化合物,透过生物膜由高浓度处向低浓度处转移的过程。 其机理:化合物与膜上的蛋白质或酶构成的载体结合(与主动转运相同),只能由高向低转移,它不需消耗代谢能量。 3)膜动转运:指细胞与外界环境之间进行的某些颗粒物或大分子物质交换过程。 此过程需要耗能。 吞噬(phagocytosis)胞饮(pinocytosis)胞吐(exocytosis) 气溶胶(aerosol)指固体或/和液体微粒稳定地悬浮于气体介质中形成的分散体系,其中的

第一节常用的生物学研究方法

科学探究专题复习 成都石室蜀都中学刘玮琦 一.教学目标 1.知识目标:掌握科学探究及其基本方法。 2.能力目标:能够提出问题,作出假设,设计实验以及得出结论。 3.情感目标:体会实事求是、严谨求实的科学态度,确立关爱生命、关爱环境的情感意识。 二.教学重难点 1.教学重点:掌握科学探究的基本步骤 2.教学难点:掌握科学探究的基本步骤 三.教学准备 收集相关资料,整理科学探究相关考题。 四.教学过程 (一)复习要点: 1、尝试书面表达问题:尝试根据日常生活、资料信息发现问题、提出问题、表达问题。其中的提出问题要紧扣题目,采用一般疑问句,并应考虑是否可以开展。 2、应用已有的知识,对问题的答案提出可能的设想——即作出假设。作出假设要紧扣问题,可有正面或反面(肯定或否定)两种截然不同的假设。 3、拟定探究计划,列出所需要的材料与用具,选出控制变量,设计对照实验。⑴要使实验结果具有说服力,关键是要设置对照实验。而一组对照实验应包括一个实验组和一个对照组,凡是没有设置对照实验的实验设计都是不合理的。⑵设计对照实验时,实验组与对照组控制的变量(即实验组与对照组不同的条件)只允许一个(即注意控制单一变量),而控制的变量往往在题干或提出的问题中有体现。如要“探究光对叶绿素形成的影响”,该实验控制的变量就是光(或光照)。在控制变量的过程中,变量要相对立,而且要尖锐(如光照充足与黑暗、适温与低温、有水与无水等),对照实验中,除变量外,其它因素(条件)要完全相同(即等量原则)。⑶为排除偶然性,减少实验误差,使实验结果更真实,还要考虑设置重复实验。重复实验可进行多次实验过程;也可用多只动物、多粒种子(或多棵生长情况相同的幼苗)等进行一次实验。以上①②③三点是我们改正实验设计的有关不足之处的原理和依据。 4、描述现象,处理数据,得出结论。科学探究中的描述现象与得出结论是不相同的:描述现象是把实验组与对照组产生的现象用文字(或用表格数据统计)形式描述出来。其中的实验结果预测(或预测实验结果)和描述实验现象往往是一样的。而得出结论是必须经过有关数据的处理、有关现象分析讨论后得出的该探究活动最终的实验结论,该结论往往与假设相同或相反。 (二)经典中考题目点拨 《科学探究》专题复习 1.实验“验证绿叶在光下合成淀粉” 知识背景: (1)实验前2一3天,把盆栽的天竺葵放于暗处。(目的:消耗掉叶片中的淀粉) (2)在经过黑暗处理的实验材料上选1-2片生长 健壮的

相关文档
最新文档