高中数学分段函数的几个问题-新人教版
高中数学必修一(人教版)《3.1.2 第二课时 分段函数》课件

题型一 分段函数求值问题
【学透用活】
[典例 1]
已知函数 f(x)=xx+ 2+12,x,x≤--2<2x,<2, 2x-1,x≥2.
(1)求 f(-5),f(- 3),ff-52的值; (2)若 f(a)=3,求实数 a 的值; (3)若 f(x)>2x,求 x 的取值范围.
[解] (1)由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞,-2], 知 f(-5)=-5+1=-4,
【课堂思维激活】 一、综合性——强调融会贯通 1.下面是解“已知实数 a≠0,函数 f(x)=2-x+x-a,2ax,<x1≥,1. 若 f(1-a)=f(1+
a),求 a 的值”的过程:
解:由 f(1-a)=f(1+a),得 2(1-a)+a=-(1+a)-2a,即 2-a=-1- 3a,∴a=-32. 上述解题过程是否正确?请说明理由.
[解] 如图,过点 A,D 分别作 AG⊥BC,DH⊥BC, 垂足分别是 G,H.
因为四边形 ABCD 是等腰梯形,底角为 45°,AB= 2 2 cm,所以 BG=AG=DH=HC=2 cm.又 BC=7 cm,所以 AD=GH=3 cm.
①当点 F 在 BG 上,即 x∈[0,2]时,y=12x2; ②当点 F 在 GH 上,即 x∈(2,5]时,y=x+x2-2×2=2x-2;
(2)问:该企业选择哪家俱乐部比较合算?为什么?
解:(1)由题意得 f(x)=6x,x∈[12,30], g(x)=920x, +1520≤ ,x2≤ 0<20x, ≤30. (2)①当 12≤x≤20 时,令 6x=90,解得 x=15. 即当 12≤x<15 时,f(x)<g(x);当 x=15 时,f(x)=g(x);当 15<x≤20 时,f(x) >g(x). ②当 20<x≤30 时,f(x)>g(x). 综上,当 12≤x<15 时,选 A 俱乐部合算;当 x=15 时,两家俱乐部一样合算; 当 15<x≤30 时,选 B 俱乐部合算.
分段函数相关问题盘点

厂 ( m) > 2 , 求m的取 值 范 围。
解 析由 题 可 撇 > 2 等 价 于 1 【 m l o > g o 。 f m < 0 , ÷ m > 2 = l o g  ̄ - 1, 或 ( _ ’ 2 _ l 0 g 2 4
甫 , 、 篮 工
,
‘
.
. 0 < m < { 或 m < _ 4 ’ 即 m ∈ ( - - - , 一 4 ) U ( 0 , _ 1 _ ) 。
点评 求 分段 函数 解 析式 时 , 应 根 据 已知 条 件将 定 义 域划 分 为若 干 个 不 同 的区 间 , 分 别求 出 函数在 各 区 间 的解 析式 。
五、 分 段 函数 奇 偶 性 的判 断
例 5判 断 函 数 厂 ( ) : f ( 一 ) ( < o ) 的 奇 偶 性 。
+ 1 ( 。 < 0 ) ,
a
ቤተ መጻሕፍቲ ባይዱ
・ ・ ・
口
( ) 等 价 于 { 2 2 ÷ 或 { n + - = + , ‘ ・ ・ 口 = 或 = 一 。
,
f a > O , f 0 ,
f l o g L x ( x > O ) ,
例3 设 函数 ) = {
解 ) 或 』 I , . . 一 3 。 r 上 +l =-2.
拓展 在本例中“ ) 1 ) = 0 ” 改为“ ( 。 ) ( 】 ” , 则求口 的值。
a
解 析。 《 【 a + 1 ( n < U ) . ‘ . \ a
2 7 ( a > O ) ,
 ̄x < O U - , j , 一 x > O , . ・ . - 厂 ( 一 ) = 一 ( 1 - x ) = - f ( x ) ( x < O ) ,
分段函数-(新教材)人教A版高中数学必修第一册全文课件

分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
第 分三 段章 函数-3【.1新.2教材第】2课人时教分A版段高函中数数-【学新必教修材第】一人册教优A秀版课(2件01-9p) pt 高中数 学必修 第一册 课件(共 74张PP T) 第 分三 段章 函数-3【.1新.2教材第】2课人时教分A版段高函中数数-【学新必教修材第】一人册教优A秀版课(2件01-9p) pt 高中数 学必修 第一册 课件(共 74张PP T)
分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
第 分三 段章 函数-3【.1新.2教材第】2课人时教分A版段高函中数数-【学新必教修材第】一人册教优A秀版课(2件01-9p) pt 高中数 学必修 第一册 课件(共 74张PP T) 第 分三 段章 函数-3【.1新.2教材第】2课人时教分A版段高函中数数-【学新必教修材第】一人册教优A秀版课(2件01-9p) pt 高中数 学必修 第一册 课件(共 74张PP T)
分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt 分段函数-【新教材】人教A版高中数 学必修 第一册 优秀课 件-ppt
2020版新教材高中数学第三章函数3.1.1.4分段函数课件新人教B版必修1

2.已知函数f(x)的图像如图所示,则f(x)的解析式是 ________.
【解析】因为f(x)的图像由两条线段组成,
所以结合函数图像和一次函数解析式的求法可得
f(x)=
x 1,1 x 0, x,0 x 1.
答案:f(x)=
x 1,x [1,0), x,x [0,1]
类型三 分段函数的综合问题
角度1 范围问题
【典例】已知f(x)=
1, x 0, 1, x 0,
则不等式x+(x+2)·f(x+2)
≤5的解集是世纪金榜导学号( )
A.[-2,1] C.[2, 3]
2
B.(-∞,-2] D. ( , 3 ]
2
【思维·引】 分x+2≥0,x+2&[-4,2] D.(-4,2]
【解析】选B.因为f(x)≥-1,
x 0,
所以
1 2
x
1
1,
或
x 0, (x 1)2
1,
所以-4≤x≤0或0<x≤2,即-4≤x≤2.
2.若f(x)=
x 7, x [1,1], 2x 6, x [1, 2],
1 4
(x-2)2-1,x
0.
x 1,-1 x 0,
答案:f(x)=
1 4
(x-2)2-1,x
0
【内化·悟】 已知分段函数的函数值求自变量的值时需要注意什么? 提示:分段求,求出的自变量的值要符合相应段的定 义域.
【类题·通】 1.分段函数求函数值的方法 (1)确定要求值的自变量属于哪一段区间. (2)代入该段的解析式求值,直到求出值为止.当出现 f(f(x0))的形式时,应从内到外依次求值.
新人教版高中数学必修第一册分段函数ppt课件及课时作业

f(1)=3×1+5=8,f
f
-52=f
-52+1
=f -32=3×-32+5=12.
(2)若f(a2+2)≥a+4,求实数a的取值范围.
因为a2+2≥2, 所以f(a2+2)=2(a2+2)-1=2a2+3, 所以不等式f(a2+2)≥a+4化为2a2-a-1≥0, 解得 a≥1 或 a≤-12, 即实数 a 的取值范围是-∞,-12∪[1,+∞).
则23cc+ +dd= =46, , 解得cd==20,, 所以f(x)=2x,
x+2,x<-1,
所以 f(x)=x2,-1≤x≤2, 2x,x>2.
三
分段函数在实际问题中的应用
例3 第24届冬季奥林匹克运动会,即2022年北京冬奥会于2022年2月4日 开幕.冬奥会吉祥物“冰墩墩”早在2019年9月就正式亮相,到如今已是 “一墩难求”,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰 墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每 生产x万盒,需投入成本h(x)万元,当产量小于或等于50万盒时,h(x)= 180x+100;当产量大于50万盒时,h(x)=x2+60x+3 500,若每盒玩具手 办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完. 求 “ 冰 墩 墩 ” 玩 具 手 办 销 售 利 润 y( 万 元 ) 关 于 产 量 x( 万 盒 ) 的 函 数 关 系 式.(利润=销售总价-成本总价,销售总价=销售单价×销售量,成本总 价=固定成本+生产中投入成本)
延伸探究 1.本例条件不变,若f(a)=3,求实数a的值.
当a≤-2时,f(a)=a+1=3, 即a=2>-2,不符合题意,舍去; 当-2<a<2时,f(a)=3a+5=3, 即a=-23∈(-2,2),符合题意; 当a≥2时,f(a)=2a-1=3, 即a=2∈[2,+∞),符合题意. 综上可得,当f(a)=3时,a的值为-23 或2.
高中数学-分段函数及题型

x高中数学-分段函数及题型【解析】4x 3 (x0)例1 •求函数f(x)x 3 (0 x 1)的最大值.x 5 (x1)【解析】当x时,fmax(x)f(0)3,当 0 x 1 时,f max (X ) f (1) 4,当 x 1 时,x 51 5 4,综上有f max (x)4 .【经典例题赏析】例2.在同一平面直角坐标系中 x 0,f( x)(x)2( 1) x 2(x0, x 0, f( x)x)2( x1)任意 x R 都有 f( x)f (x),所以f(x)为偶函数.例4 •判断函数 f(x)x 3 x (x 0)2 x的单调性.(x 0)1) f (x),当 x2x (x 1) f (x)因此,对于函数y f(x)和y g(x)的图象关于直线 y x 对称,现将y g(x)的图象沿x 轴向左平移2个单位 ,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线 (如图所示),则函数f (x)的表达式为(B. C. 2x 2 (1x 0) x 22 (0x 2) y i f k2x 2 (1 x 0) 3'/x 2 2 (0x 2)2 “7 2x 2 (1 x 2)/x 21 (2 x 4) -2 -1o12x 6 (1 x 2)x2 3 (2 x 4)例3 •判断函数f(x)x 2(x 1)x 2(x(x 0) 的奇偶性.1)(x0)答案A.)f(x)f(x)f(x)► x D. f(x)【解析】显然f(x)连续.当x 0时,f (x) 3x 21 1恒成立,所以f(x)是单调递增函数,当x 0时,在R 上是单调递增函数 例5•写岀函数 f(x) |12x| |2 x|的单调减区间.3x 1 (x2)【解析】f (x)3 x (; x 2),画图易知单调减区间为(,;]3x 1(x 2)2 x 1 (x0)例6 •设函数f(X )1,若f (x 0) 1,则x 0得取值范围是()答案Dx 2(x 0)故选A 项.A.( 1,1)B.( 1,)C.( J2)(x1)2(x 1)例7 •设函数 f(x)4 - ,x 1(x 1)范围为()A •(,2] [0,10]B(0, ) D- ( , 1) (1,)则使得f (x) 1的自变量x 的取值 (,2] [0,1]f '(x)2x 0恒成立,f (x)也是单调递增函数所以f (x)在R 上是单调递增函数或画图易知f(x)C. ( , 2] [1,10]【解析】D. [ 2,0] [1,10]2当 x 1 时,f (X )1 (x 1)x 2或x 0 , 所以x2或 0 x 1 ,当 x 1 时,f(x) 14 、、x 1 1 1 3 x 10,所以1 x 10,综上所述x 2或 0 x 10,t 20,4.某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是p t 100,该商品的日销售量 Q (件)与时间t (天)的函数关系是 Q t 40 (0 t 金额的最大值,并指岀日销售金额最大的一天是30天中的第几天?2、 针对性课堂训练x 的图象是1 .函数y 函数 A . B. C. y ig x ( 是偶函数,在区间是偶函数,在区间是奇函数,在区间是奇函数,在区间画岀函数y |x 3x 2( 4 3x 2(1 x(0, (0,,0)上单调递增 ,0)上单调递减)上单调递增 )上单调递减1| 1) 3)|2x3 1在区间[4,3)的图象0 t 25,t N, 25 t 30,t N.30, t N ),求这种商品的日销售。
高中数学第三章函数-分段函数教师用书新人教B版必修第一册

第3课时分段函数问题导学预习教材P90-P92的内容,思考以下问题:1.什么是分段函数?2.分段函数是一个函数还是多个函数?1.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.■名师点拨(1)分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.(2)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.(3)分段函数的定义域是所有自变量取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.2.分段函数的图像分段函数有几段,它的图像就由几条曲线组成.在同一直角坐标系中,根据每段的定义区间和表达式依次画出图像,要注意每段图像的端点是空心点还是实心点,组合到一起就得到整个分段函数的图像.■名师点拨在画每一段函数图像时,可以先不管定义域的限制,用虚线作出其图像,再用实线保留其在该段定义区间内的相应图像即可,即“分段作图”.3.常数函数值域只有一个元素的函数,通常称为常数函数.判断正误(正确的打“√”,错误的打“×”)(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0是分段函数.( )(3)分段函数的定义域是各段上自变量取值的并集.( ) 答案:(1)× (2)√ (3)√下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④答案:B已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0B .13 C .1D .2解析:选C.f (2)=2-1=1.函数y=⎩⎪⎨⎪⎧x 2,x >0,-2,x <0的定义域为______________,值域为______________.答案:(-∞,0)∪(0,+∞) {-2}∪(0,+∞)分段函数的定义域、值域(1)已知函数f (x )=|x |x,则其定义域为( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0)∪(0,+∞)(2)函数f (x )=⎩⎪⎨⎪⎧-x 2+1,0<x <1,0,x =0,x 2-1,-1<x <0的定义域为________,值域为________.【解析】 (1)要使f (x )有意义,需x ≠0, 故定义域为(-∞,0)∪(0,+∞).(2)由已知得,f (x )的定义域为{x |0<x <1}∪{0}∪{x |-1<x <0}={x |-1<x <1},即(-1,1),又0<x <1时,0<-x 2+1<1,-1<x <0时,-1<x 2-1<0,x =0时,f (x )=0,故值域为(-1,0)∪{0}∪(0,1)=(-1,1).【答案】 (1)D (2)(-1,1) (-1,1)(1)分段函数定义域、值域的求法①分段函数的定义域是各段函数定义域的并集; ②分段函数的值域是各段函数值域的并集.(2)绝对值函数的定义域、值域通常要转化为分段函数来解决.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,则函数的定义域为________,值域为________.解析:由已知得,f (x )的定义域为[-1,1]∪(1,+∞)∪(-∞,-1)=R ,又x ∈[-1,1]时,x 2∈[0,1],故函数的值域为[0,1].答案:R [0,1]分段函数的求值问题已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.试求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值.【解】 由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-2 3.因为f ⎝ ⎛⎭⎪⎫-52=-52+1=-32, -2<-32<2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32 =⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32 =94-3=-34.(变问法)本例条件不变,若f (a )=3,求实数a 的值. 解:①当a ≤-2时,f (a )=a +1, 所以a +1=3,所以a =2>-2不合题意,舍去. ②当-2<a <2时,a 2+2a =3, 即a 2+2a -3=0, 所以(a -1)(a +3)=0, 所以a =1或a =-3.因为1∈(-2,2),-3∉(-2,2), 所以a =1符合题意. ③当a ≥2时,2a -1=3, 所以a =2符合题意.综合①②③知,当f (a )=3时,a =1或a =2.(1)分段函数求函数值的方法①确定要求值的自变量属于哪一段区间;②代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.(2)已知函数值求字母取值的步骤 ①先对字母的取值范围分类讨论; ②然后代入到不同的解析式中; ③通过解方程求出字母的值;④检验所求的值是否在所讨论的区间内.1.已知函数f (x )=⎩⎪⎨⎪⎧x -2,x <2,f (x -1),x ≥2,则f (2)=( )A .-1B .0C .1D .2解析:选A.f (2)=f (2-1)=f (1)=1-2=-1.2.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.若f (x )>2,求x 的取值范围.解:当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0; 当x <-2时,f (x )=-x -2, 由f (x )>2,得-x -2>2, 解得x <-4,故x <-4. 综上可得:x >0或x <-4.分段函数的图像及应用角度一分段函数图像的识别(2019·济南检测)函数y=x2|x|的图像的大致形状是( )【解析】 因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图像为选项A.【答案】 A角度二 分段函数图像的画法分别作出下列分段函数的图像,并写出定义域及值域.(1)y =⎩⎪⎨⎪⎧1x ,0<x <1,x ,x ≥1.(2)y =⎩⎪⎨⎪⎧3,x <-2,-3x ,-2≤x <2,-3,x ≥2.【解】 各函数对应图像如图所示:由图像知,(1)的定义域是(0,+∞),值域是[1,+∞);(2)的定义域是(-∞,+∞),值域是(-6,6].角度三分段函数图像的应用某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)关于用电量x(度)的函数图像是一条折线(如图所示),根据图像解下列问题:(1)求y 关于x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应交费多少元?若该用户某月交费105元,则该用户该月用了多少度电?【解】 (1)当0≤x ≤100时,设函数关系式为y =kx . 将x =100,y =65代入, 得k =0.65,所以y =0.65x .当x >100时,设函数关系式为y =ax +b . 将x =100,y =65和x =130,y =89代入,得⎩⎪⎨⎪⎧100a +b =65,130a +b =89,解得⎩⎪⎨⎪⎧a =0.8,b =-15. 所以y =0.8x -15.综上可得y =⎩⎪⎨⎪⎧0.65x ,0≤x ≤100,0.8x -15,x >100.(2)由(1)知电力公司采取的收费标准为:用户月用电量不超过100度时,每度电0.65元;超过100度时,超出的部分,每度电0.80元.(3)当x =62时,y =62×0.65=40.3(元); 当y =105时,因为0.65×100=65<105,故x >100, 所以105=0.8x -15,x =150.即若用户月用电62度时,则用户应交费40.3元;若用户月交费105元,则该用户该月用了150度电.分段函数图像的画法(1)对含有绝对值的函数,要作出其图像,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图像.(2)作分段函数的图像时,分别作出各段的图像,在作每一段图像时,先不管定义域的限制,作出其图像,再保留定义域内的一段图像即可,作图时要特别注意接点处点的虚实,保证不重不漏.已知函数f (x )=|x |-x2+1(-2<x ≤2).(1)利用绝对值及分段函数知识,将函数解析式写成分段函数; (2)在坐标系中画出该函数的图像,并写出函数的值域. 解:(1)①当0≤x ≤2时,f (x )=x -x2+1=1.②当-2<x <0时,f (x )=-x -x2+1=-x +1.故f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,-x +1,-2<x <0.(2)函数f (x )的图像如图所示:由图可知,函数f (x )的值域为[1,3).1.函数f (x )=y =⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .{y |0≤y ≤2或y =3}解析:选D.值域为[0,2]∪{2}∪{3}={y |0≤y ≤2或y =3}.2.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是 ( )A .-2B .2或-52C .2或-2D .2或-2或-52解析:选A.当x ≤0时,x 2+1=5,x =-2.当x >0时,-2x <0,不合题意.故x =-2. 3.函数y =x +|x |x的图像是( )解析:选C.对于y =x +|x |x ,当x >0时,y =x +1;当x <0时,y =x -1.即y =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,故其图像应为C.4.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4, 所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4.所以x 0=4.[A 基础达标]1.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图像可以近似地刻画出这列火车的速度变化情况的是( )解析:选B.根据题意,知这列火车从静止开始匀加速行驶,所以排除A ,D.然后匀速行驶一段时间后又停止了一段时间,排除C ,故选B.2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D.f (3)=23,f (f (3))=f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=49+1=139.3.(2019·广东深圳中学期中考试)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,x 2,0<x ≤3,若f (x )=3,则x 的值是( )A. 3 B .9C .-1或1D .-3或 3解析:选A.依题意,若x ≤0,则x +2=3,解得x =1,不合题意,舍去.若0<x ≤3,则x 2=3,解得x =-3(舍去)或x = 3.故选A.4.函数f (x )=x 2-2|x |的图像是( )解析:选C.f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0,分段画出,应选C.5.已知函数f (x )的图像是两条线段(如图所示,不含端点),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13等于 ( ) A .-13B.13 C .-23D.23解析:选B.由题图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,所以f ⎝ ⎛⎭⎪⎫13=13-1=-23,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=-23+1=13.6.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f (f (n +5)),n <10,则f (8)=________.解析:因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.答案:77.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2-ax ,x ≥1,若f (f (0))=a ,则实数a =________.解析:依题意知f (0)=3×0+2=2,则f (f (0))=f (2)=22-2a =a ,求得a =43.答案:438.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月交水费16m 元,则该职工这个月实际用水量为________立方米.解析:该单位职工每月应交水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13.答案:139.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图像;(2)若f (x )≥14,求x 的取值范围;(3)求f (x )的值域.解:(1)利用描点法,作出f (x )的图像,如图所示.(2)由于f ⎝ ⎛⎭⎪⎫±12=14,结合此函数图像可知,使f (x )≥14的x 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞. (3)由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1.所以f (x )的值域为[0,1]. 10.已知函数f (x )=⎩⎪⎨⎪⎧x +4,x ≤0,x 2-2x ,0<x ≤4,-x +2,x >4.(1)求f (f (f (5)))的值;(2)画出函数f (x )的图像.解:(1)因为5>4,所以f (5)=-5+2=-3.因为-3<0,所以f (f (5))=f (-3)=-3+4=1.因为0<1<4,所以f (f (f (5)))=f (1)=12-2×1=-1,即f (f (f (5)))=-1.(2)图像如图所示.[B 能力提升]11.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是( ) A .{x |x ≤1}B .{x |x ≤2}C .{x |0≤x ≤1}D .{x |x <0}解析:选A.当x ≥0时,f (x )=1, xf (x )+x ≤2⇔x ≤1,所以0≤x ≤1;当x <0时,f (x )=0,xf (x )+x ≤2⇔x ≤2,所以x <0.综上,x ≤1.12.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1, 若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a ,解得a =-34. 答案:-3413.如图,△OAB 是边长为4的正三角形,记△OAB 位于直线x =t (0<t <6)左侧的图形的面积为f (t ),求函数f (t )的解析式.解:当0<t ≤2时,f (t )=12×t ×3t =3t 22; 当2<t ≤4时,f (t )=12×4×23-12(4-t )×3(4-t )=-32t 2+43t -43; 当4<t <6时,f (t )=12×4×23=4 3. 所以函数f (t )的解析式为 f (t )=⎩⎪⎨⎪⎧3t 22,0<t ≤2,-32t 2+43t -43,2<t ≤4,43,4<t <6. 14.设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A ,且f (f (x 0))∈A ,求x 0的取值范围.解:因为x 0∈A ,所以0≤x 0<12, 且f (x 0)=x 0+12, 又12≤x 0+12<1, 所以 x 0+12∈B ,所以f (f (x 0))=2⎝ ⎛⎭⎪⎫1-x 0-12=2⎝ ⎛⎭⎪⎫12-x 0, 又f (f (x 0))∈A ,所以0≤2⎝ ⎛⎭⎪⎫12-x 0<12, 解得14<x 0≤12,又0≤x 0<12, 所以14<x 0<12. [C 拓展探究]15.讨论方程x 2-4|x |+5=m 的实根的个数.解:将方程x 2-4|x |+5=m 的实根个数问题转化为函数y =x 2-4|x |+5的图像与直线y =m 的交点个数问题.作出函数y =x 2-4|x |+5=⎩⎪⎨⎪⎧x 2-4x +5,x ≥0,x 2+4x +5,x <0的图像,如图所示.由图像可以看出:①当m <1时,直线y =m 与该图像无交点,此时方程无解;②当m =1时,直线y =m 与该图像有2个交点,此时方程有2个实根;③当1<m <5时,直线y =m 与该图像有4个交点,此时方程有4个实根; ④当m =5时,直线y =m 与该图像有3个交点,此时方程有3个实根;⑤当m >5时,直线y =m 与该图像有2个交点,此时方程有2个实根.。
分段函数的几个常见问题1

探究分段函数的几个常见问题河南正阳高级中学 吕玉光分段函数在教材中是以例题的形式出现的,并未作深入说明.学生对此认识比较肤浅,理解上有些吃力,由于它在理解和掌握函数的定义、函数的性质等知识的考察上有较好的作用,时常在高考试题中“闪亮”登场,本文就分段函数的有关问题整理、归纳如下:1.分段函数的含义所谓“分段函数”,习惯上指在定义域的不同部分,有不同的对应法则的函数.对它应有以下两点基本认识:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 2.分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 解析:作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-. 3.分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f . 解析:因为311222()|1|2f =--=-,所以312223214[()]()1()13f f f =-==+-. 4.分段函数的最值例3. 求函数23(0)3(01)5(1)x x y x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最小值解析:(方法1) 先求每个分段区间上的最值,后比较求值.当0x ≤时,()23,y f x x ==+此时显然有max (0)3;y f == 当01x <≤时,()3,y f x x ==+此时max (1)4;y f ==当1x >时,y =()5,y f x x ==-+此时y 无最大值.比较可得当x =1时,max 4.y =11o 322-1y x-1(方法2)利用函数的单调性由函数解析式可知,()f x 在(,0)x ∈-∞上是单调递增的,在(0,1)x ∈上也是递增的,而在(1,)x ∈+∞上是递减的,由()f x 的连续性可知()f x 当x =1时有最大值4 (方法3)利用图像,数形结合求得 作函数y =()f x 的图像(图1), 显然当x =1时max 4y =.说明:分段函数的最值常用以上三种方法求得. 5.分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 解析:当[2,0]x ∈-时,121y x =+,将其图象沿x 轴向右平移2个单位,再沿y 轴向下平移1个单位,得解析式为1122(2)111y x x =-+-=-, 所以()22([1,0])f x x x =+∈-,当[0,1]x ∈时,21y x =+,将其图象沿x 轴向右平移2个单位,再沿y 轴向下平移1个单位,得解析式2(2)1124y x x =-+-=-,所以 12()2([0,2])f x x x =+∈, 综上可得Y4 3 2 10 1 2 3 4 5 x-12131o-2y x222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A . 6.分段函数的奇偶性例5.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.解析:当0x >时,0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==当0x <,0x ->,22()()(1)(1)()f x x x x x f x -=---=-+= 因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数. 7.分段函数的单调性例6.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.解析:显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立,()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例7.写出函数()|12||2|f x x x =++-的单调减区间.解析:121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-. 8.解分段函数的方程例8.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为解析:若142x -=, 则222x --=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求. yx52o -12529.解分段函数的不等式例9.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞解析1:首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.解析2:因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例10.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃解析:当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.点评: 以上分段函数性质的考查中,不难得到一种解题的重要途径,若能画出其大致图像,定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解,使问题得到大大简化,效果明显.xy1-11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分段函数的几个问题分段函数在教材中是以例题的形式出现的,并未作深入说明。
学生对此认识比较肤浅,本文就分段函数的有关问题整理、归纳如下:1、 分段函数的含义 所谓“分段函数”,习惯上指在定义域的不同部分,有不同的对应法则的函数。
对它应有以下两点基本认识:(1) 分段函数是一个函数,不要把它误认为是几个函数;(2) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
[来源:学_科_网Z_X_X_K]2、 求分段函数的函数值例1已知函数132(0)()1)log (1)xx f x x x x ⎧<=≤≤>⎪⎩,求{[()]}f f f a (a <0)的值。
[来源:]分析 求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应法则求值。
()f x 是分段函数,要求{[()]}f f f a ,需要确定[()]f f a 的取值范围,为此又需确定()f a 的取值范围,然后根据所在定义域代入相应的解析式,逐步求解。
解 ∵a <0, ∴()2af a =, ∵0<2a<1,∴[()]f f a =(2)af =3,∵3>1,∴{[()]}f f f a=f=13log =-21,3、 求分段函数的解析式[来源:学科网]例2 已知奇函数()f x (x R ∈),当x >0时,()f x =x (5-x )+1.求()f x 在R 上的表达式。
解 ∵()f x 是定义域在R 上的奇函数, ∴(0)f =0.[来源:学科网ZXXK] 又当x <0时,-x >0,故有()f x -=-x [5-(-x )]+1=-x (5+x )+1。
[来源:学科网ZXXK]再由()f x 是奇函数,()f x =-()f x =x (5+x )-1.∴(5)1(0)()0(0)(5)1(0)x x x f x x x x x -+>⎧⎪==⎨⎪+-<⎩[来源:Z§xx§] 例3求函数()f x =2x +(2-6a )x +32a (0≤x ≤1)的最小值。
解 ()f x =[x -(3a -1)]2-62a +6a -1 ∵0≤x ≤1,当3a -1<0时,()f x 的最小值为f(0)=32a ,当0≤3a -1≤1时,()f x 的最小值为f(3a -1)=-62a +6a -1; 当3a -1>1时,()f x 的最小值为f(1)=32a -6a +3。
因此函数()f x 的最小值可表示成关系于a 的分段函数.22213()312()661()332363()3a a g a a a a a a a ⎧<⎪⎪⎪=-+-≤≤⎨⎪⎪-+>⎪⎩4、求分段函数的最值例4 求函数23(0)3(01)5(1)x x y x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最小值[来源:Z#xx#]方法1 先求每个分段区间上的最值,后比较求值。
当x ≤0时,y =()f x =2x +3,此时显然有y maX = (0)f =3; 当0<x ≤1时,y =()f x =x +3,此时y max =(1)f =4当x >1时,y =()f x =-x +5,此时y 无最大值.比较可得当x =1时,y max =4. 方法2 利用函数的单调性[来源:学科网ZXXK]由函数解析式可知,()f x 在x ∈(∞,0)上是单调递增的,在x ∈(0,1)上也是递增的,而在x ∈(1,+∞)上是递减的,由()f x 的连续性可知()f x 当x =1时有最大值4方法3 利用图像,数形结合求得[来源:学科网ZXXK] 作函数y =()f x 的图像(图1), 显然当x =1时y max =4.说明:分段函数的最值常用以上三种方法求得.都是“定义域”惹的祸函数三要素中,定义域是十分重要的,研究函数的性质时应首先考虑其定义域.在求解函数有关问题时,若忽视定义域,便会直接导致错解.下面我们举例分析错从何起.一、求函数解析式时例1.已知x x x f 2)1(+=+,求函数)(x f 的解析式 . 错解:令1+=x t ,则1-=t x ,2)1(-=t x ,1)1(2)1()(22-=-+-=∴t t t t f ,1)(2-=∴x x f剖析:因为x x x f 2)1(+=+隐含着定义域是0≥x ,所以由1+=x t 得1≥t ,1)(2-=∴t t f 的定义域为1≥t ,即函数)(x f 的解析式应为1)(2-=x x f (1≥x )这样才能保证转化的等价性.正解:由x x x f 2)1(+=+,令1+=x t 得1≥t ,()21-=∴t x 代入原解析式得1)(2-=t t f (1≥t ),即1)(2-=x x f (1≥x ).二、求函数最值(或值域)时例2.若,62322x y x =+求22y x +的最大值.错解:由已知有 x x y 32322+-= ①,代入22y x +得 22y x +()2932132122+--=+-=x x x ,∴当3=x 时,22y x +的最大值为29.剖析:上述错解忽视了二次函数的定义域必须是整个实数的集合,同时也未挖掘出约束条件x y x 62322=+中x 的限制条件.正解:由032322≥+-=x x y 得20≤≤x , ∴22y x +()2932132122+--=+-=x x x ,[]2,0∈x ,因函数图象的对称轴为3=x ,∴当[]2,0∈x 是函数是增函数,故当当2=x 时,22y x +的最大值为4.例3.已知函数()()32log 19f x x x =+≤≤,则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( )A .33B .22C .13D .6错解:()()22y f x f x=+⎡⎤⎣⎦=()22332log 2log x x +++=()23log 33x +-在()19x ≤≤上是增函数,故函数()()22y f x f x =+⎡⎤⎣⎦在9x =时取得最大值为33.正解:由已知所求函数()()22y f x f x=+⎡⎤⎣⎦的定义域是21919x x ≤≤⎧⎨≤≤⎩得13x ≤≤,()()22y f x f x =+⎡⎤⎣⎦=()22332log 2log x x +++=()23log 33x +-在13x ≤≤是增函数,故函数()()22y f x f x=+⎡⎤⎣⎦在3x =时取得最大值为13.例4.已知()()4232≤≤=-x x f x ,求()[]()2121x f x f y --+=的最大值和最小值.错解:由()()4232≤≤=-x x f x 得91≤≤y .∴()()91log 231≤≤+=-x x x f .∴()[]()()6log 6log log 2log 232323232121++=+++=+=--x x x x x f x f y()33log 23-+=x . ∵91≤≤x ,∴2log 03≤≤x .∴22max =y ,6min =y .剖析:∵()x f 1-中91≤≤x ,则()21x f -中912≤≤x ,即31≤≤x ,∴本题的定义域应为[]3,1.∴1log 03≤≤x .正解:(前面同上)()33log 23-+=x y ,由31≤≤x 得1log 03≤≤x .∴13max =y ,6min =y .例5.求函数3254-+-=x x y 的值域.错解:令32-=x t ,则322+=t x ,∴()1253222++=+-+=t t t t y87874122≥+⎪⎭⎫⎝⎛+=t .故所求函数的值域是⎪⎭⎫⎢⎣⎡+∞,87.剖析:经换元后,应有0≥t ,而函数122++=t t y 在[)+∞,0上是增函数,随着t 增大而无穷增大.所以当0=t 时,1min =y .故所求函数的值域是[)+∞,1.三、求反函数时例6.求函数)20(242≤≤++-=x x x y 的反函数.错解:函数)20(242≤≤++-=x x x y 的值域为[]6,2∈y ,又6)2(2+--=x y ,即 y x -=-6)2(2∴y x -±=-62,∴所求的反函数为()6262≤≤-±=x x y .剖析:上述解法中忽视了原函数的定义域 ,没有对x 进行合理取舍,从而得出了一个非函数表达式.正解:由242(02)y x x x =-++≤≤的值域为[]6,2∈y , 因y x -=-6)2(2,又02≤-x ∴y x --=-62,∴所求的反函数为()6262≤≤--=x x y .四、求函数单调区间时例7.求函数)4lg()(2x x f -=的单调递增区间.错解:令24x t -=,则t y lg =,它是增函数. 24x t -= 在]0,(-∞上为增函数,由复合函数的单调性可知,函数)4lg()(2x x f -=在]0,(-∞上为增函数,即原函数的单调增区间是]0,(-∞.剖析:判断函数的单调性,必须先求出函数的定义域,单调区间应是定义域的子区间.正解:由042>-x ,得)(x f 的定义域为)2,2(-.24x t -= 在]0,2(-上为增函数,由可复合函数的单调性可确定函数)4lg()(2x x f -=的单调增区间是]0,2(-.例8.求()23log 27.0+-=x x y 的单调区间.错解:令232+-=x x t ,t y 7.0log =,⎥⎦⎤ ⎝⎛∞-∈23,x 时,232+-=x x t 为减函数,⎪⎭⎫⎢⎣⎡+∞∈,23x 时,232+-=x x t 为增函数,又t y 7.0log =为减函数,故以复合函数单调性知原函数增区间为⎥⎦⎤ ⎝⎛∞-23,,减区间为⎪⎭⎫⎢⎣⎡+∞,23.。