潮流计算问题
第九章 潮流计算中的特殊问题20110409

1.中枢点电压控制
控制节点i的电压为给定值
节点i的电压改变量: U i U iSP U i 假定系统中有 个P V节点发电机无功可调, r 当调节量为ΔUG时,节点i的电压改变量为 U i, 如何求解ΔUG ?
机端电压调节量的计算
将PV节点的修正方程增广到 快速分解法的Q V迭代方程中, 下标D表示除节点i以外的PQ节点,下标G表示PV节点, 假定 发电机机端电压变化时 负荷节点无功不变 . B DD B Di B DG ΔU D 0 B iD B DD B iG ΔUi 0 B GD B Gi B DD ΔUG ΔQG 消去节点集D对应的部分 ~ ~ B ii B iG ΔUi 0 - ~ ~ ΔQ B Gi B GG ΔUG G
可调发电机不止一台,而被控节点电压只有一个,因此,调节方程有 无穷多组解。取控制量最小的一组解, U i S iG U G 即求解下列最优化问题。 S iG LT 1 Gi T min ΔU G ΔU G 2 s.t. Ui SiGΔU G 0 建立拉格朗日函数
潮流计算中的特殊问题
实际电力系统是复杂的,一方面组成系统的元件种类和数 量繁多,使得系统异常庞大,多达几千个节点;另一方面
系统经常要受到各种外界干扰,各种故障、各种随机因素
都影响系统的正常运行。
对正常条件下的电力系统进行潮流分析本身已够复杂了, 遇到各种特殊问题,就更增加了分析的复杂性。但许多特 殊问题又是实际规划和运行部门在潮流分析中经常遇到的,
(0 QDi QDi ) [1 i
( (0 PDi0 )和QDi )是正常电压U is下的有功和无功负荷
潮流计算中的特殊问题

第四章 潮流计算中的特殊问题第一节 负荷的静态特性负荷的功率是系统频率和电压的函数。
在潮流计算中可以认为频率变化不大。
但由于发电机或输电设备的开断会引起电压较大的变化,在潮流计算中计及负荷的静态电压特性是合理的。
负荷的电压静态特性就是负荷的有功和无功功率与电压大小的关系,一般表达如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=Qi is i Qi is i Qi Di Di Pi is i Pi is i Pi Di Di c V V b V V a Q Q c V V b V V a P P 2)0(2)0( (4-1) 式中系数满足11=++=++Qi Qi Qi Pi Pi Pi c b a c b a)0(Di P 、)0(Di Q 是在设定电压is V 下的负荷值。
组成负荷的三部分被分别看做恒定阻抗部分、恒定电流部分和恒定功率部分,所以(4-1)称为负荷的ZIP 模型。
当0=Pi a 、0=Qi a 时,忽略电压的二次项。
潮流计算中计及负荷的静态电压特性的方法:1、节点功率的不平衡量计算:⎪⎪⎪⎩⎪⎪⎪⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=--=∆-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=--=∆),(),(),(),(2)0(2)0(θθθθV Q c V V b V V a Q Q V Q Q Q Q V P c V V b V V a P P V P P P P i Qi is i Qi is i Qi Di Gi i Di Gi i i Pi is i Pi is i Pi Di Gi i Di Gi i (4-2) 2、牛顿法雅可比矩阵子矩阵N 和L 的对角线元素要增加i i V P ∂∆∂和ii V Q ∂∆∂3、P-Q 分解法,Q-V 迭代的系数矩阵B ''的对角线元素也应增加i i V Q ∂∆∂,这样B ''不再是常数了。
潮流计算的相关问题(精品)

§4.5牛顿-拉夫逊法计算潮流有关问题1.比较大,破坏了牛顿法的基础,不收敛。
选择的原则。
2.--塞德尔法、PQ 分解法为一阶收敛特性。
X Δ3.多值解••(PV节点或平衡节点的无功功率超过允许值,平衡节点的有功功率超过允许值;节点的电压过高或过低)对策:调整运行参数,PV节点、PQ节点相互转化•给定的网络结构和运行方式不合理;PV节点数目过少对策:调整运行方式,增加PV节点z问题很复杂,至今尚未很好解决二、稀疏矩阵技术1.稀疏矩阵表示法¾节点导纳矩阵:1234¾雅可比矩阵:高度稀疏的2N阶实数方阵,其形式对称但数值不对称。
其稀疏程度与节点导纳矩阵相同,可根据节点导纳矩阵形成。
2.高斯消去法3.节点的优化编号¾静态优化法:¾半动态优化法:¾动态优化法:不首先进行节点编号,而是寻找消去后出现的新支路数最少的节点,并为其编号,且立即将其消去;然后再寻找第二个消去后出现的新支路数最少的节点并为其编号,再立即将其消去……依此类推。
三、直流潮流计算¾-¾¾一种所谓N-1校核计算,即对于某一种运行方式要逐一开断系统中的线路或变压器,检查是否存在支路过载情况。
直流法计算潮流的过程1.2.在正常运行时线路两端相位差很少超过20°3.节点电压值的偏移很少超过10%,且对有功功率分布影响不大****2Re Re cos sin ij i j ij i i ij iij i j ij ij ij ij P U I U y U U U G U U G B θθ⎡⎤⎡⎤⎛⎞==−⎜⎟⎢⎥⎢⎥⎣⎦⎝⎠⎣⎦⎡⎤=−+⎣⎦&&1.0,1/2.sin ,cos 13.1ij ij ijij i j ij i j G B x U U θθθθ≈≈−≈−≈≈≈()()/ij ij i j i j ijP B x θθθθ=−−=−(cos sin )i i j ij ij ij ij j iP U U G B θθ∈=+∑解方程求出各节点的相角后,可利用前面的式子求出各支路的有功潮流。
复杂潮流计算例题

复杂潮流计算例题
潮流计算是电力系统分析中的一项重要任务,用于计算电力系统中各个节点的电压和相角。
复杂潮流计算是潮流计算的一种,其中考虑了节点电压的复数形式(包括幅值和相角)。
以下是一些复杂潮流计算的例题:
1. 简单节点电压计算:
•给定一个电力系统的节点和支路参数,计算每个节点的复数电压。
使用节点电流法或其他适当的方法。
2. 无功补偿计算:
•在一个包含无功功率不平衡的电力系统中,计算各节点的无功功率,并确定需要连接多大容量的无功补偿装置以使系统中的无功功率平衡。
3. 线路功率损耗计算:
•给定一个电力系统的节点电压和支路参数,计算每条支路上的有功功率和无功功率,然后计算系统中的总有功损耗和总无功损耗。
4. 负荷流计算:
•考虑系统中的负荷,计算每个节点的复数电压以及每个节点的有功和无功功率。
确保负荷得到满足,即节点电压在合理范围内。
5. 电压稳定性评估:
•对一个电力系统进行电压稳定性评估,计算各节点的电压幅值,并确定系统中是否存在电压稳定性问题。
可能需要考虑调整发电机的励磁系统来提高电压稳定性。
这些例题涉及了复杂潮流计算中的一些常见方面,包括节点电压计算、功率损耗计算、无功补偿和电压稳定性评估等。
在解答这些例题时,通常需要使用潮流计算的基本方程和方法,例如功率方程、节点电流法、雅可比矩阵等。
这些例题可以帮助理解电力系统的潮流行为,同时提高解决实际问题的能力。
带最优乘子的牛顿法潮流计算的基本原理与求解步骤

解:基本原理 将潮流计算问题概括为求解如下的非线性代数方程组
f i ( x) g i ( x) bi 0
(i 1,2,, n)
(1)
或 f (x) = 0 (2) T 式中:x 为待求变量组成的 n 维向量,x =[x1,x2,…,xn] ,bi 为给定的常量。 可以构造标量函数为
F ( x) f i ( x) 2 [ g i ( x) bi ]2
i 1 i 1 n n
(3) (4)
或
F ( x) [ f ( x)]T f ( x)
若式(1)表示的非线性代数方程的解存在,则以平方和形式出现的标量函数 F(x) 的最小值应该为零。 若此最小值不能变为零,则说明不存在能满足原方程组即式
* * * T (1) 的解。这样,就把原来的解代数方程组的问题转化为求 x [ x1 , x2 , xn ] ,
从而使 F ( x * ) min 的问题。这里记使 F ( x) min 的 x 为 x*。 牛顿法计算过程中的迭代公式为:
x ( k 1) x ( k ) ( k ) x ( k )
(10) 其中
f ( x) [ f1 ( x), f 2 ( x),, f n ( x)]T
为使表达式简明起见,定义如下三个向量 a [a1 , a 2 , , a n ]T y s y ( x ( 0) ) b [b1 , b2 ,, bn ]T J ( x ( 0) )x c [c1 , c 2 , , c n ]T y (x) 于是式(10)可简化成
上述就是带最优乘子的牛顿法潮流计算的基本原理。 求解步骤 (1) 确定一个初始估算值 x ( 0) ; (2) 置迭代次数 k=0; (3) 从 x ( k ) 出发,计算雅可比矩阵;利用常规牛顿潮流算法每次迭代所求出的修 正向量 x ( k ) J ( x ( k ) ) 1 f ( x ( k ) ) 作为搜索方向;根据式(11)、 (15) 和(16)求出最 优步长因子 ( k ) ,由此得到下一个迭代点,即 x ( k 1) x ( k ) ( k ) x ( k ) ; (4) 校验 F ( x ( k 1) < 是否成立, 如成立, 则 x ( k 1) 就是要求的解; 否则, 令 k k 1, 转向步骤(3),重复循环计算。
潮流计算中的特殊问题

Vti fd
sin
Q
Vt It
sin
xad xs
Vti fd
cos
Vt2 xs
消去角度,有
P2
Q
Vt 2 xs
xad xs
Vti fd
2
i fd i fd max
Q
0,
Vt 2 xs
xad xs
Vti fd max
P
发电机无功输出的转子导体末端过热限制
欠励时电枢电流 产生的磁通和励 磁电流产生的磁 通同向叠加,造 成转子导体末端 过热(Kundur)
与kT相关的雅可比矩阵元素表达式 (直角坐标)
Pp
K T
KT
ep
eqG pq
f q B pq
f p eq B pq f qG pq
2
e
2 p
f
2 p
G pq
KT
Q p
KT
KT
f p eqG pq f q B pq
e p eq B pq f qG pq
2
e
2 p
f
2 p
B pq
Pq
KT
KT
eq e pG pq f p B pq
f q e p B pq f pG pq
KT
KT
f q e pG pq f p B pq
eq e p B pq f pG pq
K
T
直流潮流——应用场合
只关心有功潮ቤተ መጻሕፍቲ ባይዱ分布 不关心节点电压情况 对计算速度要求高
kT),节点q除已知P、Q外,还已知V,故称PQV 节点 潮流计算电压变量少一个 潮流计算多了一个变压器变比的变量 方程和变量个数仍相等,可求解
简单电力系统分析潮流计算

简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。
其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。
本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。
潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。
通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。
潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。
对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。
这是一种不断迭代的过程,直到系统达到平衡状态。
潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。
其中,高斯-赛德尔迭代法是最常用的一种方法。
高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。
具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算
油田自出井管网的潮流模拟分析是油田开发运行中的重要工作,是保
证油田系统安全运行的基础性工作。
牛顿-拉夫逊法是一种经典的油田自
出井管网的潮流模拟计算方法。
本文介绍了牛顿-拉夫逊法的概念,原理,特点,以及利用牛顿-拉夫逊法求解油田自出井管网潮流问题的基本方法
和步骤。
一、牛顿-拉夫逊方法的概念
牛顿-拉夫逊法也叫牛顿-拉夫逊潮流计算法,它是一种迭代法,用于
求解牛顿-拉夫逊方程,即求解由牛顿-拉夫逊节点组成的网络中流动矢量
的幅值和相位角。
牛顿-拉夫逊方程是以节点电压和电流矢量以及节点内
的电阻和电感量建立的方程组,是油田自出井管网潮流模拟计算的基础方
程组。
牛顿-拉夫逊方程是一组非线性方程,其解依赖节点网络结构,因
此实施计算时需要迭代求解,因此被称为牛顿-拉夫逊迭代法或牛顿-拉夫
逊方法。
二、牛顿-拉夫逊方法原理
牛顿-拉夫逊方法是一种迭代法,它采用迭代新旧节点电压矢量的比
例来求解油田自出井管网潮流模拟问题,算法充分利用了网络的放大、收敛、稳定特性,每一次迭代,都可以有效地拿到更新的节点电压矢量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潮流计算的定义(课后题)各种潮流计算模型和算法的特点、适用范围以及相互之间的区别和联系(课后题)影响潮流收敛性的因素,以及如何改善潮流计算的收敛性(课后题)通过功率方程说明为什么潮流计算的数学模型是非线性的应该采用什么样的数学方法求解(03A、05A)电力系统的潮流计算有哪些常规算法有哪些扩展算法(05B)潮流计算的目的是什么其数学模型是什么有何特点(06B)简要说明潮流计算的概念、模型及计算方法。
(07B)高斯赛德尔迭代法和牛顿拉夫逊迭代法是常规的潮流计算方法,请介绍一下最优潮流(OPF)算法的原理及其应用。
(04电科院)潮流计算的目的:常规潮流计算的目的是在已知电力网络参数和各节点的注入量的条件下,求解各节点电压。
目的1:1.在电网规划阶段,通过潮流计算,合理规划电源容量和接入点,合理规划网架,选择无功补偿方案,满足规划水平年的大小方式下潮流交换控制、调峰、调相、调压的要求。
2.在编制年运行方式,在预计复合增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中的薄弱环节,供调度人员异常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。
3.正常检修及特殊运行方式下的潮流计算,用于日常运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。
4.预想事故、设备退出运行对静态安全分析的影响及做出预想的运行方式调整方案。
目的2:A.检查电力系统各元件是否过负荷;B.检查电力系统各节点的电压是否满足电压质量的要求;C.根据对各种运行方式的潮流分布计算,可以正确的选择系统接线方式,合理调整负荷,以保证电力系统安全、可靠地运行,向用户供给高质量的电能;D. 根据功率分布,可以选择电力系统的电气设备和导线截面积,可以为电力系统继电保护整定计算提供必要的数据等; E. 为电力系统扩建和规划提供依据;F. 为调压计算、经济运行计算、短路计算等提供必要的数据。
数学模型:数学模型为:潮流计算所用的电力网络系由变压器、输电线路、电容器、电抗器等静止线性元件所构成,并用集中参数表示的串联或并联等值支路来模拟。
普遍采用节点法,I YU =来建立潮流计算的数学模型。
在实际工程中,节点注入量不是电流,而是节点功率,因此节点电压方程要进行修改:*,(1,2,...,)i iiP jQ I i n U -==,进一步得到**1,(1,2,...,)ni iij j j iP jQ Y U i n U =-==∑,上式为电压的非线性隐函数,无法直接求解,必须通过一定的算法求近似解。
这是潮流计算问题最基本的方程式,是一个以节点电压U •为变量的非线性代数方程组,采用节点功率作为节点注入量是造成方程组呈非线性的根本原因。
对于每个节点,要确定其运行状态,需要四个变量,P Q U θ、、、,n 个节点共4n 个运行变量需要确定,如果将节点电压方程式的实部和虚部拆开,形成2n 个实数方程,在潮流计算前,必须先确定2n 个变量作为已知量。
这样潮流方程就可解。
根据节点电压表示方式的不同(i i i U e jf =+,j i i i U U e δ=),可以得到直角坐标系和极坐标系下的潮流方程。
()()()()111101,2,,0nni i ij j ij j i ij j ij j j j n ni i ij j ij j i ij j ij j j j P e G e B f f G f B e i n Q f G e B f e G f B e ====⎫---+=⎪⎪=⎬⎪--++=⎪⎭∑∑∑∑直角坐标系下功率方程:()n i i j ij i j ij i j j 1ni i j ij i j ij i j j 1P U U G cos()B sin()01,2,,Q U U B cos()G sin()0i n δδδδδδδδ==⎫⎡⎤--+-=⎪⎣⎦⎪=⎬⎪⎡⎤+---=⎣⎦⎪⎭∑∑极坐标系下功率方程:()常规算法有:高斯-赛德尔法、牛顿-拉夫逊法、快速解耦法扩展算法有:保留非线性潮流算法、最小化潮流算法、最优潮流、直流潮流法、随机潮流法、三相潮流高斯-赛德尔法:高斯-赛德尔法的迭代格式为:(1)()*()*11[](2,3,...,)k k ni i iij j k j ii j ii P jQ U Y U i n Y U +•=≠-=-=∑, 收敛判据为:(1)()maxk k iiU Uε•+-<优点:原理简单,程序设计容易。
导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
缺点:收敛速度很慢,算法收敛所需的迭代次数与所计算网络的节点数目有密切关系,在系统病态的情况下,收敛困难。
1) 重负荷节点; 2) 负电抗支路 ; 3) 较长辐射型线路; 4) 长短线路接在同一节点上; 5) 且长短线路的比值很大;牛顿-拉夫逊法:该算法实际上是非线性方程或非线性方程组的多次线性逼近。
牛顿法的迭代格式为:'()()()(1)()()()()k k k k k k f x x f x xx x +⎧∆=-⎪⎨=+∆⎪⎩修正方程有极坐标形式和直角坐标形式:/P HN Q M L U U θ∆∆⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥∆∆⎣⎦⎣⎦⎣⎦和2P HN e Q M L f R S U ⎡⎤∆⎡⎤∆⎡⎤⎢⎥⎢⎥∆=-⎢⎥⎢⎥⎢⎥∆⎣⎦⎢⎥⎢⎥∆⎣⎦⎣⎦修正方程的特点:1) 在PV 节点所占比例不大时,两者方程的数目都接近2(1)n -。
2) 雅可比矩阵的元素都是节点电压的函数,每次迭代,雅可比矩阵都需要重新形成。
3) 按节点序号顺序而构成的分块雅可比矩阵将和节点导纳矩阵具有同样的稀疏结构,是一个高度稀疏的矩阵。
4) 雅可比矩阵不是对称矩阵。
牛顿法的核心就是反复形成并求解修正方程式。
提高牛顿法性能: 采用稀疏技术,排零存储,排零运算。
求解过程边形成、边消元、边存储。
节点编号优化,采用半动态法。
(静态法:按节点静态连接支路的多少顺序编号;半动态法:按节点动态连接支路的多少顺序编号;动态法:按节点动态增加支路的多少顺序编号;) 牛顿法的性能和特点:1) 平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅与节点数成正比。
2) 对初值很敏感,有时需要其他算法为其提供初值。
如果初值选择不当,可能根本不收敛或收敛到一个无法运行的解点上。
3) 对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。
但幅度不能太小。
4) 对以节点导纳矩阵为基础的G-S 法呈病态的系统,N-L 法一般都能可靠收敛。
快速解耦法:N-L 法的J 阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N-L 法的大部分计算时间,这也是N-L 法速度不能提高的原因。
N-L 法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。
由/P H N Q M L U U δ∆∆⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥∆∆⎣⎦⎣⎦⎣⎦, 第一步假设:由于R X <<,有功无功解耦00//P HP H Q L U U Q L U U δδ∆∆⎡⎤⎡⎤⎡⎤∆=⋅∆⎧=⇒⎨⎢⎥⎢⎥⎢⎥∆∆∆=⋅∆⎩⎣⎦⎣⎦⎣⎦ 第二步假设:一般线路两端电压相角差ij δ较小(一般10~20度),且ij ij G B <<,有:ij cos 1δ≈,ij ij ij ij G sin B cos δδ<<,得到:ij i j ij H U U B =-,ij i j ij L U U B =-第三步假设:2ii i i ii H Q U B =--,2ii i i ii L Q U B =-为正常情况下节点i 的注入无功功率;此时其他节点未接地:2i ii U B 为除i 节点外其他节点接地时, 由节点i 注入的无功功率;所以2i i ii Q U B <<,得: 2ii i ii H U B =-,2ii i ii L U B =-。
修正方程缩写为:P/U B U Q/U B U δ'=-⋅⎧⎨''=-⋅⎩△△△△继续简化:1) 形成'B 时略去那些主要影响无功功率和电压幅值,而对有功功率及电压相角关系很少的因素。
这包括输电线路的充电电容以及变压器非标准变比。
2) 为了减少迭代过程中无功功率及电压幅值对有功迭代的影响,将式上式1右端的电压均置为标幺值。
3) 形成'B 时,略去串联元件的电阻。
最终表达式为:'''ΔP/U=-B ΔδΔQ/U=-B ΔU⎧⎪⎨⎪⎩算法特点:(等斜率法,从平方收敛退化为线性收敛,所以迭代次数比牛顿法多) 1) 用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量; 2) 迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间; 3) 迭代矩阵对称,可上(下)三角存储,减少内存量和计算量;基于以上原因,该算法内存需要量为N-L 法的60%,每次迭代所需时间为N-L 法的1/5。
4) 线性收敛,收敛次数多于N-L 法,但总的计算速度任能大幅度提高。
5) 对R/X 过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kV及以上的电网。
6) 由于算法的精确程度取决于ε,P-Q 分解法的近似处理只影响计算过程,并不影响结果的精度。
关于元件大R/X 比值病态问题,采用补偿法或者对算法加以改进:在于对'B 和''B 元件电阻的取舍问题:若在'B 中不计串联元件电阻,仅用其电抗值X ,而在''B 中仍用精确的电纳值B ,或者在'B 中忽略串联元件电阻而用精确的电纳值B ,而在''B 中采用元件电抗值X ,分别称其为XB 方案和BX 方案。
保留非线性潮流计算法:潮流问题其实是求解一个不含变量一次项的二次方程组,泰勒级数只要取三项就能够得到一个没有截断误差的精确展开式。
在初值(0)x 附近展开,可得到如下没有截断误差的精确展开式:(0)(0)2(0)1111()()||2!nn n i i i i j j k j j k jj k y y y y x x x x x x =====∂∂=+∆+∆∆∂∂∂∑∑∑x x x x x x写成矩阵形式:12(0)12s n x x x x ∆⎡⎤⎢⎥∆⎢⎥=++⎢⎥⎢⎥∆⎣⎦Δx Δx y y(x )J ΔH Δx ,迭代格式为:()()1()()(1)1(0)2()()1[]2k k k k k s k k n x x x +-⎡⎤∆⎢⎥∆⎢⎥=--⎢⎥⎢⎥∆⎢⎥⎣⎦Δx Δx Δx J y y(x )H Δx ,但H 的计算非常复杂和耗时,研究表明有简便的方法进行计算。