第9章压杆稳定(12)
合集下载
材料力学第9章 压杆稳定

第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为
材料力学_压杆稳定

π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学 第九章 压杆稳定

cr s p
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
压杆稳定

一、稳定平衡与不稳定平衡 :
1. 不稳定平衡
4
2. 稳定平衡
5
3. 稳定平衡和不稳定平衡
6
§9.2 两端铰支细长压杆的临界压力
假定压力已达到临界值,杆已经处于微弯状态,如图,
从挠曲线入手,求临界力。 P
xL
P P
xM
y
① 弯矩: M(x,y)Py
② 挠曲线近似微分方程:
yMP y EI EI
31
当压杆在各个弯曲平面内 的约束情况都相同时,应 尽量使其截面对任一形心 主轴的惯性矩都相等,这 样可使压杆在各个弯曲平 面内都具有相同的稳定性( 称为等稳定性设计)。
保国寺大殿的拼 柱形式
1056年建,“双筒体”结构,塔身平面 为八角形。经历了1305年的八级地震。32
[例7 ] 图示立柱,L=6m,由两根10号槽钢组成,材料为A3
b
Pcry
2E L22
I
y
=0.7,
bh3 I z 12 ,
Pcrz(0.27EL1I)z 2
③压杆的临界力 P crmP icn r,y(P cr)z
17
[例4] 求下列细长压杆的临界力。已知:L=0.5m , E=200GPa。
解:图(a)
P
P
Im in51 1 02 30 1 1 0 24.1 1 70 9m 4
令:k 2 P
x
Px
EI
M0
yk2yk2 M
yccoksx dsPiknx M
P
ydco k x scsiknx
M0 P
M0 边界条件为:
P
x 0 ,y y 0 ;x L ,y y 0
第九章 压杆稳定

外,最小根是
s in k l = 0
kl = 2π
4π 2 EI Fcr = k 2 EI = 2 l
21
图示结构中四根压杆的材料、截面形状、横截面面积均相同, 图示结构中四根压杆的材料、截面形状、横截面面积均相同, 排序出在纸平面内失稳的先后顺序。 排序出在纸平面内失稳的先后顺序。
22
§9-4 欧拉公式的应用范围•经验公式 欧拉公式的应用范围•
8
2.弹性压杆的稳定性 2.弹性压杆的稳定性 稳定平衡状态 F < F —稳定平衡状态 cr
F = F —临界平衡状态 临界平衡状态 cr
不稳定平衡状态 F > F —不稳定平衡状态 cr
关键
确定压杆的临界力 确定压杆的临界力 Fcr
临界状态 稳 定 平 衡 对应的
过 度
不 稳 定 平 衡
压力
临界压力: 临界压力:
将以上边界条件代入(a)式和 将以上边界条件代入 式和 (b) 式,得
B+
A sin kl + B cos kl +
由以上四个方程得出 满足以上两式的根, 满足以上两式的根,除
Me =0 F
Me =0 F
Ak = 0
Ak cos kl − Bk sin kl = 0
cos kl − 1 = 0
kl = 0
实际上,其承载能力并不取决轴向压缩的抗压强度, 实际上,其承载能力并不取决轴向压缩的抗压强度,而是 与受压时变弯有关.当加的轴向压力达到40N时 与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然 40N 发明显的弯曲变形,丧失了承载能力. 发明显的弯曲变形,丧失了承载能力.
1
① 强度 构件的承载能力 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 工程中有些构件具有足够的强度、刚度, 可靠地工作. 可靠地工作.
s in k l = 0
kl = 2π
4π 2 EI Fcr = k 2 EI = 2 l
21
图示结构中四根压杆的材料、截面形状、横截面面积均相同, 图示结构中四根压杆的材料、截面形状、横截面面积均相同, 排序出在纸平面内失稳的先后顺序。 排序出在纸平面内失稳的先后顺序。
22
§9-4 欧拉公式的应用范围•经验公式 欧拉公式的应用范围•
8
2.弹性压杆的稳定性 2.弹性压杆的稳定性 稳定平衡状态 F < F —稳定平衡状态 cr
F = F —临界平衡状态 临界平衡状态 cr
不稳定平衡状态 F > F —不稳定平衡状态 cr
关键
确定压杆的临界力 确定压杆的临界力 Fcr
临界状态 稳 定 平 衡 对应的
过 度
不 稳 定 平 衡
压力
临界压力: 临界压力:
将以上边界条件代入(a)式和 将以上边界条件代入 式和 (b) 式,得
B+
A sin kl + B cos kl +
由以上四个方程得出 满足以上两式的根, 满足以上两式的根,除
Me =0 F
Me =0 F
Ak = 0
Ak cos kl − Bk sin kl = 0
cos kl − 1 = 0
kl = 0
实际上,其承载能力并不取决轴向压缩的抗压强度, 实际上,其承载能力并不取决轴向压缩的抗压强度,而是 与受压时变弯有关.当加的轴向压力达到40N时 与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然 40N 发明显的弯曲变形,丧失了承载能力. 发明显的弯曲变形,丧失了承载能力.
1
① 强度 构件的承载能力 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 工程中有些构件具有足够的强度、刚度, 可靠地工作. 可靠地工作.
材料力学:第九章 压杆稳定问题

绞),I 应取最小的形心主惯矩,得到直杆的
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
09 第9章 压杆稳定

P
An
4 稳定性校核步骤:
•计算柔度 •判断压杆类型并计算临界应力或临界压力 •稳定性校核
【例9.3】 千斤顶如图9.6所示,丝杠长度,螺纹内径,材料为
45钢,最大起重重量为F=80kN,规定的稳定安全因数[nst]=4,
试校核丝杠的稳定性。 解:(1) 计算柔度。
丝杠可以简化为下端固定,上端自由的压 杆,因此长度因数取μ=2。
稳定失效:压杆丧失稳定性而破坏,具有突发性
逐渐成为构件或结构安全工作的控制条件
称为临界压力
稳定 平衡
Pcr
不稳定 平衡
§9.2 细长压杆的临界载荷的计算及欧拉公式
9.2.1 两端铰支细长压杆的临界载荷的计算
Pcr
y
Pcr
x
M (x) Pcr w M M (x) EIw''
EIw'' Pcr w 0
解: (1) 计算截面的极惯性矩
I min
0.05 0.033 12
m4
11.25 108 m 4
(2) 两端为铰支约束,则代入欧拉公式得
Pcr
2EI l2
2
9 109
11.25 108 1
N
10kN
所以,当杆的轴向压力达到10kN时, 此杆就会丧失稳定。
9.3 欧拉公式的适用范围·经验公式
记:2
a
s
b
a s
b
2 1 ——直线公式的适用范围
——这种压杆称为中柔度杆或中长杆
2 的压杆 ——小柔度杆或短粗杆
不存在失稳问题,应考虑强度问题
cr s
经验公式中,抛物线公式的表达式为
An
4 稳定性校核步骤:
•计算柔度 •判断压杆类型并计算临界应力或临界压力 •稳定性校核
【例9.3】 千斤顶如图9.6所示,丝杠长度,螺纹内径,材料为
45钢,最大起重重量为F=80kN,规定的稳定安全因数[nst]=4,
试校核丝杠的稳定性。 解:(1) 计算柔度。
丝杠可以简化为下端固定,上端自由的压 杆,因此长度因数取μ=2。
稳定失效:压杆丧失稳定性而破坏,具有突发性
逐渐成为构件或结构安全工作的控制条件
称为临界压力
稳定 平衡
Pcr
不稳定 平衡
§9.2 细长压杆的临界载荷的计算及欧拉公式
9.2.1 两端铰支细长压杆的临界载荷的计算
Pcr
y
Pcr
x
M (x) Pcr w M M (x) EIw''
EIw'' Pcr w 0
解: (1) 计算截面的极惯性矩
I min
0.05 0.033 12
m4
11.25 108 m 4
(2) 两端为铰支约束,则代入欧拉公式得
Pcr
2EI l2
2
9 109
11.25 108 1
N
10kN
所以,当杆的轴向压力达到10kN时, 此杆就会丧失稳定。
9.3 欧拉公式的适用范围·经验公式
记:2
a
s
b
a s
b
2 1 ——直线公式的适用范围
——这种压杆称为中柔度杆或中长杆
2 的压杆 ——小柔度杆或短粗杆
不存在失稳问题,应考虑强度问题
cr s
经验公式中,抛物线公式的表达式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
目录
压杆的平衡
增大杆上压力Fp
如果扰动除去后不能恢复 到直线平衡形态,则称原 来的直线平衡形态是不稳 定的。
此时,压杆上对应的压力Fp称
为压杆的临界载荷,或临界力。
用Fcr 表示
7
目录
压杆的平衡
压杆当压力超过一定限度时就会 发生弯曲现象。由直线状态的平衡, 过渡到曲线状态的平衡。 ——称为丧失稳定,简称为失稳。
第九章 压杆稳定
1
目录
第九章 压杆稳定
§9.1 压杆稳定性的概念 §9.2 细长中心受压直杆临界力的欧拉公式 §9.3 不同杆端约束下细长压杆临界力的欧
拉公式,压杆的长度因数 §9.4 欧拉公式的应用范围,临界应力总图 §9.5 实际压杆的稳定因数 §9.6 压杆的稳定计算,压杆的合理截面
目录
2
目录
(2)线弹性,小变形;
(3)两端为铰支座。
16
目录
例题 9-1
已知:两端铰支细长压杆,横截面直径 d=50mm,材料为Q235钢,弹性模量 E=200GPa,σs=235MPa。试确定其临界 力。
解: 截面惯性矩
I π d 4 π 0.05 30710-9m4 64 64
临界力
2 EI π2 200109 307109
Fcr l 2
1.52
269103 N 269kN
17
目录
§9.3 不同杆端约束下细长压杆临界力的欧拉公式, 压杆的长度因数
一端固定 一端自由
18
目录
2 EI
Fcr (0.5l)2
两端铰支
两端固定
(其中一端 轴向可动)
19
2 EI
Fcr (2l )2
2 EI
Fcr (0.7l)2
欧拉公式
Fcr
2EI
l2
由公式可知:压杆越细、越长,临界力越低,压
杆越容易失稳。
在工程实际中,我们希望提高压杆的临界力,从 而提高压杆的承载能力。
15
目录
§9.2 细长中心受压直杆临界力的欧拉公式
wy
Fcr
欧拉公式
Fcr
2EI
l2
的适用条件:
(1)理想压杆(轴线为直线,压力与轴线重合,
材料均匀);
此外,欧拉公式是从符合胡克定律的挠曲 线近似微分方程导出的,所以,上述临界载荷 公式,只有在微弯状态下压杆仍处于弹性状态 时才是成立的。
22
例题 9-2
求:下列细长压杆的临界力。
FP
图(a)
I min
50 103 12
1012
4.17 109m4
10
Fcr
2 Imin E (1l ) 2
2 4.17 200 (0.7 0.5)2
直线平衡 微弯状态下的
曲线平衡 压杆保持微小弯曲 平衡的最小压力即 为临界力。
11
§9.2 细长中心受压直杆临界力的欧拉公式
wy
Fcr
弯矩 M = -Fcry 挠曲线近似微分方程
d 2w dx2
M ( x) EI
Fcrw EI
令 k 2 Fcr EI
w k 2w 0
通解:
w Asin kx Bcoskx
24
§9.4 欧拉公式的应用范围,临界应力总图
一、欧拉公式的应用范围 临界应力 柔度
π 2 EI
σcr
Fcr A
(l ) 2
A
π 2 EI
l 2 A
I i2A
i I A —截面的惯性半径
25
引入符号
λ μl i
—柔度(长细比)
σcr
Fcr A
π 2 EI
l 2 A
2E 2
柔 度—影响压杆承载能力的综合指标。
注意: 柔度越大,临界应力越小,压杆越容易失稳。
26
欧拉公式的适用范围
cr
2E 2
p
p—比例极限
或 2E p
如令 p
2E p
欧拉公式的适用范围可表示为
λ λP
(细长杆 大柔度杆)
27
问题的回答
λ μl i
设 材料Q235钢,d=50mm. l=0.5m p 100
d 4
i
一端自由 一端固定
一端铰支 一端固定
20
各种支承压杆临界压力的通用公式
2EI Fcr (l)2
欧拉公式普遍形式
长度系数(长度因数) l 相当长度
1.0
0.5
2.0
0.7
21
应当指出: 上边所列的杆端约束情况,是典型的理想
约束,实际上,工程实际中的杆端约束情况是 复杂的,应该根据实际情况作具体分析,看其 与哪种理想情况接近,从而定出近乎实际的长 度系数,也可按设计手册或规范的规定选取。
13
目录
§9.2 细长中心受压直杆临界力的欧拉公式
wy
Fcr
由 kl = nπ 可得, k n
l
k2
Fcr EI
n2 2
l2
所以
Fcr
n2 2 EI
l2
(n=0,1,2,…)
当 n =1时,得临界载荷
2EI
Fcr l 2
—— 欧拉公式
14
目录
§9.2 细长中心受压直杆临界力的欧拉公式
wy
Fcr
§9.1 压杆稳定性的概念
不稳定平衡
微小扰动就使小球远 离原来的平衡位置.
稳定平衡
微小扰动使小球离开原 来的平衡位置,但扰动撤销 后小球回复到平衡位置.
3
目录
工程实例
4
目录
压杆的稳定性试验
5
目录
压杆的平衡
※ 稳定性是指构件保持其原有平 衡状态的能力。
如果扰动除去后,能 够恢复到直线平衡形态, 则原来的直线平衡形态 是稳定的。
由于构件失稳后將丧失继续承 受原设计载荷的能力,其后果往往 是很严重的。因此在设计受压构件 时,必须保证其有足够的稳定性。
8
目录
其它失稳现象
9
结论:
对压杆,压力小于临界力, 压杆稳定; 压力大于临界力, 压杆失稳。
因此,确定压杆失稳与否关键 是临界载荷的确定。
确定临界载荷的平衡方法
10
§9.2 细长中心受压直杆临界力的欧拉公式
67.14kN
FP
50
图(b)
L L
图(a)
Imin Iz 3.89108 m4
Fcr
2 Imin E (2l)2
2
0.389 200 (2 0.5)2
76.8kN
z
y
(4545 6) 等边角钢
图(b)23
目录
材料和直 径均相同
?问题的提出
❖ 能不能应 用欧拉公式计 算四根压杆的 临界载荷?
I A
64
d 2
d 4
4
1 0.7 0.5 2.0
(a) 200 p (b) 196 p (c) 180 p (d) 160 p
12
目录
§9.2 细长中心受压直杆临界力的欧拉公式
w Asin kx Bcoskx
wy
Fcr
边界条件
(1) x = 0,w = 0 , (2) x = l, w =0 ,
得 B =0 Asinkl =0
若 A = 0,则 w ≡ 0,压杆恒为直杆,与原题意不符。
所以, sinkl = 0, kl = nπ ( n = 0,1,2,…)