2018-2019学年广东省中山市城东教学共进联盟七年级(上)期中数学试卷

合集下载

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、填空题(本大题共有12小题,每小题2分,共24分)1.(2分)﹣3的相反数是.2.(2分)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.3.(2分)单项式﹣的次数是.4.(2分)某市某楼盘房屋销售均价为每平方米10500元,该数用科学记数法表示为.5.(2分)用代数式表示“比a的3倍大5的数”.6.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.7.(2分)若﹣3x m y2与5x3y n是同类项,则n﹣m=.8.(2分)绝对值不大于3的所有负整数的和是.9.(2分)已知x2﹣2y+2=0,则代数式2x2﹣4y﹣1的值是.10.(2分)如果|a﹣1|+(b+2)2=0,则(a+b)2018的值是.11.(2分)有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.12.(2分)在我国的民俗中常将十二生肖用于记年,顺序排列为子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪,今年(2018年)是“戌狗”年,2050年是“”年.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.(3分)下列一组数:﹣8,2.7,,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中无理数有()个A.0 B.1 C.2 D.314.(3分)下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.15.(3分)下列各式计算正确的是()A.6a﹣5a=1 B.a+a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b16.(3分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2 B.﹣2 C.0 D.317.(3分)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(24分)(1)计算:﹣3﹣(﹣4)+7;(2)计算:﹣81÷×÷(﹣16);(3)计算:(﹣﹣)×(﹣24);(4)计算:﹣14﹣(﹣2)2+6×(﹣);(5)化简:3x2+5x﹣5x2+3x;(6)化简:6(m2﹣n)﹣3(n+2m2).19.(6分)画出数轴(取0.5cm为一个单位长度),用数轴上的点表示下列各数,并用“<”将它们从小到大排列.﹣2,+3.5,﹣1,1,0按照从小到大的顺序排列为.20.(6分)现定义某种新运算:对于任意两个有理数a、b,有a*b=a2﹣2b+1,例如:2*3=22﹣2×3+1=﹣1.(1)计算:3*(﹣2)的值;(2)试化简:x*(x2+1).21.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂住的多项式;(2)当a=﹣1,b=3时求所捂住的多项式的值.22.(6分)我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)已知|a﹣3|=7,则有理数a=;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=.23.(6分)某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?24.(7分)操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是,所以面积为;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示;(3)你有什么发现,请用数学式子表达;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.25.(6分)我们把形如(n是正整数,n≥2)的分数叫做单位分数,如、、…,任何一个单位分数都可以拆成两个不同的单位分数之和,如=+、=+、=+…观察上述式子的规律,回答下面的问题:(1)把写成两个单位分数之和:=;(2)把(n是正整数,n≥2)写成两个单位分数之和:=;(3)计算:+++…+.26.(7分)阅读理解:我们把分一条线段为两条相等线段的点称为线段的中点.如图1所示,则称点M为线段AB的中点.问题解决:(1)如图2所示,点A、B、C、D、E在数轴上的对应的数分别为﹣2、﹣1、0、1、2,则图2中,线段AC的中点是点,点C是线段和线段的中点,线段AB的中点对应的数是,线段BE的中点对应的数是;(2)如图3,点E、F对应的数分别是e、f,则线段EF的中点对应的数为(用含e、f的代数式表示).27.(7分)小明根据市自来水公司的居民用水收费标准,制定了水费计算数值转换机的示意图.(用水量单位:m3,水费单位:元)(1)根据转换机程序计算下列各户月应缴纳水费(2)当x>15时,用含x的代数式表示水费;(3)小丽家10月份水费是70元,小丽家10月份用水m3.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共24分)1.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.3.【解答】解:该单项式的次数为:4,故答案为:4.4.【解答】解:10500元,该数用科学记数法表示为1.05×104.故答案为:1.05×104.5.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故答案为:3a+5.6.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.7.【解答】解:∵﹣3x m y2与5x3y n是同类项,∴m=3,n=2,则n﹣m=2﹣3=﹣1.故答案为:﹣1.8.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.9.【解答】解:∵x2﹣2y+2=0,∴x2﹣2y=﹣2.∴2x2﹣4y=﹣4.∴原式=﹣4﹣1=﹣5.故答案为:﹣510.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2018=(﹣1)2018=1,故答案为:1.11.【解答】解:根据题意得:b<0<a,则a+b<0,a﹣b>0,则|a+b|﹣2|a﹣b|=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为﹣3a+b.12.【解答】解:(2050﹣2018)÷12=2…8,∴2050年是“午马”年,故答案为:午马.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.【解答】解:、0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:C.14.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选:D.15.【解答】解:A、6a﹣5a=a,故本选项错误;B、a与a2不是同类项,不能合并成一项,故本选项错误;C、﹣(a﹣b)=﹣a+b,故本选项正确;D、2(a+b)=2a+2b,故本选项错误;故选:C.16.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.17.【解答】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.【解答】解:(1)﹣3﹣(﹣4)+7=﹣3+4+7=8;(2)﹣81÷×÷(﹣16)=﹣81×××(﹣)=1;(3)(﹣﹣)×(﹣24)=﹣9+4+18=13;(4)﹣14﹣(﹣2)2+6×(﹣)=﹣1﹣4﹣2=﹣7;(5)3x2+5x﹣5x2+3x=﹣2x2+8x;(6)6(m2﹣n)﹣3(n+2m2)=6m2﹣6n﹣3n﹣6m2=﹣9n.19.【解答】解:如图所示:按照从小到大的顺序排列为﹣2<﹣1<0<1<3.5.故答案为:﹣2<﹣1<0<1<3.5.20.【解答】解:(1)根据题中的新定义得:原式=9+4+1=14;(2)根据题意得:原式=x2﹣2(x2+1)+1=﹣x2﹣1.21.【解答】解:(1)原式=(a2﹣4b2)+(a2+4ab+4b2)=2a2+4ab(2)当a=﹣1,b=3时,原式=2﹣12=﹣1022.【解答】解:(1)数轴上表示2和5两点之间的距离是:|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是:|﹣3﹣2|=5.故答案是:3;5;(2)依题意得:a﹣3=7,或a﹣3=﹣7,解得a=10或a=﹣4,故答案是:10或﹣4;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=3﹣b+b+4=7.故答案是:7.23.【解答】解:(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1,15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.24.【解答】解:(1)方案中大正方形的边长都是(a+b),所以面积为(a+b)2,故答案为:(a+b),(a+b)2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a2+ab+ab+b2=a2+2ab+b2,故答案为:(a2+2ab+b2);(3)根据大正方形的面积不变可知(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.25.【解答】解:(1)根据题意知,=+,故答案为:+.(2)根据题意知,=+,故答案为:+.(3)原式=﹣+﹣+﹣+…+﹣=﹣=.26.【解答】解:(1)线段AC的中点是点B,点C是线段BD和线段AE的中点,线段AB 的中点对应的数是﹣,线段BE的中点对应的数是;故答案为:B,BD,AE,﹣,;(2)∵点E、F对应的数分别是e、f,∴线段EF的中点对应的数为,故答案为:.27.【解答】解:(1)张大爷水费:6×3=18元;王阿姨水费:15×3=45元;小明家水费:(17﹣15)×5+15×3=55元.故答案为:18,4,55.(2)观察示意图得:当x>15时,月应缴纳水费(元)用x的代数式表示为15×3+5(x﹣15)=5x﹣30;故答案为:5x﹣30;(3)(70﹣15×3)÷5+15=25÷5+15=5+15=20(m3).答:小丽家该月用水20m3.故答案为:20;。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018-2019学年度第一学期期中考试数学试卷(含答案)

2018-2019学年度第一学期期中考试数学试卷(含答案)

第 1 页 (共3 页)学校:_____________ 班级:_____________ 姓名:_____________ 学号:_____________2018-2019学年度第一学期期中试卷七年级 数学一、选择题(本大题共10小题,每小题3分,共30分) 1. 3-的相反数是( )A .3B .3-C .13D .13-2.下列运算正确的是 ( )A.134-=--B.0)5(5=--C.3)7(10-=-+D.5)4(45-=----3. 如下图所示,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点4.有理数a ,b 在数轴上的位置如图所示,下列各式不正确的是( )A .a+b <0B .a ﹣b <0C .ab <0D .<05.下列选项中,正确的是 ( )A .xy y x 743=+ B.3322=-y y C.022=-ab ab D.x x x =-2315166.下列说法正确的是 ( )A.13 πx 2的系数是13 B.12 xy 2的系数为12 x C.-5x 2的系数为5 D.-x 2的系数为-1 7.下列各组中,能合并的是( )A .x 与yB .2a 2b 与2ab 2C .abc 与acD .2mn 与﹣3mn8.若233mxy -与42n x y 是同类项,那么m n -= ( )A.0B.1C.-1D.-29.下列代数式①1-,②232a -,③y x 261,④π2ab -,⑤c ab ,⑥b a +3,⑦0,⑧21-x 中,单项式的个数有( )A .5个B .6个C .7个D .8个 10.已知a 2+3a=1,则代数式2a 2+6a ﹣1的值为 .A.0B.1C.-1D.a二、填空题(本大题共8小题,每小题3分,共24分.)11.如果收入100元记作+100元,那么支出300元可记作 元. 12.比较大小:;-|-2| -(-3)(用“>或=或<”填空).13.1.9583≈ (精确到百分位);9600000用科学计数法表示为 . 14.若|x+3|+(y ﹣2)2=0,则x y= . 15.比a 的2倍大1的数,列式为 .16.若﹣2xy m 和x n y 2的和是单项式,那么(n ﹣m )2017= .17.的相反数 ,倒数是 ,绝对值是 .18.对于有理数a ,b 定义一种新运算“⊙”,规定a ⊙b=|a+b|+|a ﹣b|, 则2⊙(﹣3)= .三、解答题(本大题共8小题,共66分.解答时写出必要的文字说明、证明过程或演算步骤.) 19.(4分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:20. 计算:( 本题共12分,每小题3分)(1)()7836----(2)4)2(2)1(32÷-+⨯-(3) 377(1)4812--×87(- (4)()563722+⨯--⨯-211-.212,20,325.3----+,,)(,第 2 页 (共 3 页)学校:_____________ 班级:_____________ 姓名:_____________ 学号:_____________21. 化简:( 本题共16分,每小题4分)(1) (3a-2)-3(a-5) (2) -3x 2y+2x 2y+3xy 2-2xy 2(3)2m+(m+n)-2(m+n) (4)(4a 2b-5ab 2)+[-2(3a 2b-4ab 2)]22.先化简再求值(本题共10分,每小题5分).(1) -2(x 2-3x)+(x+2x 2),其中 x=-2(2)(2a 2-2b 2)-3(a 2b 2+a 2)+3(a 2b 2+b 2),其中,a=-1,b=223.(5分)已知A=2x 2-1,B=3-2x 2,求A-2B 的值.24.(5分)若m,n 互为相反数,a,b 互为倒数,c 的绝对值是1,求2009c+ab-(m+n).25.(6分)一只小虫从某点P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P .(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.(8分)观察下列等式: 把以上三个等式两边分别相加得:41313121211431321211-+-+-=⨯+⨯+⨯(1)猜想并写出: = . (2)规律应用:计算:(3)拓展提高:计算:200820061...861641421⨯++⨯+⨯+⨯)1(1+n n 4213012011216121+++++,4131431,3121321,211211-=⨯-=⨯-=⨯第 3 页 (共3 页)学校:_____________ 班级:_____________ 姓名:_____________ 学号:_____________2018-2019学年度第一学期期中试卷七年级 数学一、选择ADCBC,DDCAB 二、填空11. -300,12.< < 13.1.96 14. 9,15.2a+1,16.-1 17.2332211,-,18.6 三、解答题:19. 5.32122023〈〈-+〈〈-〈--)( 20. (1)4 (2)0 (3)31-(4)-521. (1)13(2)22xy x +-(3)m-n (4)2232ab b a +- 22. (1)化简:7x, -14(2)化简:22b a +-,3 23. 762-x24. 2010或-201825. (1)+5-3+10-8-6+12-10=0 所以能回到原点.(3)541012681035=-+++-+-+++-++ 54÷0.5=10826. (1)111+-n n(2)76 (3)40161003。

2018-2019学年度第一学期七年级期中联考数学科答案和参考评分标准

2018-2019学年度第一学期七年级期中联考数学科答案和参考评分标准
2017-2018学年度第一学期
第一部分(共36分)
1. C2. D3. A4. B5. D6. D
7. D8. D9. B10. C11. B12. B
第二部分(各3分,共12分)
13. 14. 15. 16.
【解析】 时, ,
时, ,
时, ,
时, ,
依此类推,三角形的边上有 枚棋子时,S=3n—3
22. (8分)解:因为10>8>0>—3>—5
所以第3的计为0分,小明的90分计为0分
其余的分数分别是90+10=100分,90+8=98分,90-3=87分,90-5=85分
平均分是:
23.(10分)(1) ,
, , 都是负数或其中一个为负数,另两个为正数, ……1分
①当 , , 都是负数,即 , , 时,
第三部分
17.(各5分,共10分)
(1) (2)
18.(6分)
当 时,
19.(6分)(1) 第二组人数: 人.
(2) 第三组人数: 人.
(3) 第四组人数: (人).
(4) 时,第四组有 人(答案不唯一).
20.(6分) 克,
答:抽样检测的 袋食品的平均质量是 克.(列式4分+正确结论2分)
21. 三视图如下:(每个2分共6分)
则 ; ……3分
② , , 有一个为负数,另两个为正数时,
设 , , ,
则 . ……5分
因此 的值为 或 . ……6分
(2) , ,且 ,
, , ……8分
则. ……10分

2018-2019学年七年级上期中考试数学试卷(有答案)

2018-2019学年七年级上期中考试数学试卷(有答案)

2018-2019学年七年级上期中考试数学试卷(有答案)2018-2019学年七年级上期中考试数学试卷(有答案)篇一一、选择题(本大题共16 个小题,1-10 题,每小题3 分11-16 小题,每小题2 分,共42 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程是二元一次方程的是( )2. 用两块相同的三角板按如图所示的方式作平行线AB 和CD,能解释其中的道理的依据是( )A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,内错角相等3. 下列命题中是假命题的是( )A. 同旁内角互补,两直线平行B. 垂线段最短C. 在同一平面内,过一点有且只有一条直线与已知直线垂直D. 两条直线被第三条直线所截,内错角相等5. 下列运算中,能用平方差公式计算的是( )A. (-a+b) (a-b)B. (a-b) (-b+a) C. (3a-b) (3b+a) D. (b+2a) (2a-b)6. 点A、B、C 为直线l 上三点,点P 为直线l 外一点,且PA=3cm,PB=4cm,PC=5cm,则点P 到直线l 的距离为( )A. 2cmB. 3cmC. 小于3cmD. 不大于3cm8. 如图,下列条件①∠1=∠2;②∠3=∠4;③∠B=∠3;④∠1+∠ACE=180°,其中,能判定AD∥BE 的条件有( )A. 4 B. 3 C. 2 D. 111. 如图,把一张长方形纸条ABCD 沿EF 折叠,若∠1=56°,则∠FGE 应为( )二、填空题(本题共有3 个小题,1 7-1 8 每小题3 分,1 9 小题4 分,满分 1 0 分)17.阅读理解:引人新数i ,新数i 满足分配律,结合律,交换律,已知:18.如右图所示,直线AB,CD 相交于点O,若∠BOD=40°,OA 平分∠COE,则∠COE= 。

广东省中山市七年级上学期数学期中考试试卷

广东省中山市七年级上学期数学期中考试试卷

广东省中山市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·峨眉山模拟) 的相反数数是()A .B .C .D .2. (2分)在实数2,0,, 1.5中,其中是负数的是()A . 2B . 0C .D . 1.53. (2分)下列说法中正确的是()A . -a一定表示负数B . 两数比较,绝对值大的反而小C . 互为相反数的两个数对应的点一定在原点两侧D . 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零4. (2分)(2016·孝义模拟) 下列说法正确的是()①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③1.61×104精确到百分位;④a+5一定比a大;⑤(-2)4与-24相等.A . 2个B . 3个C . 4个D . 5个5. (2分)已知∣x+1∣+(x-y+3)2=0,那么(x+y)2的值是()A . 0B . 1C . 9D . 46. (2分)下列计算错误的是()A . 1.9°=6840″B . 90′=1.5°C . 32.15°=32°15′D . 2700″=45′7. (2分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,则下列结论:①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有多少个?()A . 1B . 2C . 3D . 48. (2分)如图所示,从A地到达B地,最短的路线是()A . A→C→E→BB . A→F→E→BC . A→D→E→BD . A→C→G→E→B9. (2分) (2019七上·秀英期中) 最大的负整数的2019次幂与绝对值最小的数的2020次幂的和是()A . -1B . 0C . 1D . 210. (2分)根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A . 3B . 3n(n+1)C . 6D . 6n(n+1)二、填空题 (共10题;共10分)11. (1分)如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记________米.12. (1分)已知和互为相反数,求x+4y的平方根________。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

2019学年广东省等七年级上学期期中联考数学试卷【含答案及解析】

2019学年广东省等七年级上学期期中联考数学试卷【含答案及解析】
示这个数为(
)
A.
1.68 X104m
B.16.
8X103m C
.0.
168X104m
D.1.68X103m
5.
在,‘’,
・,
,=:=二中,
负数的个数有(
)
A.
个B
.个
C.
、个
D
.个
6.
一个数加上-二■等于;
,则这个数是(
)
A.
1TB
.7
C.
-17
D.
-7
7.下列算式中,积为负数的是()
A.上
B.I■'
A — B .-C .-D .-
4444
15. 在数轴上表示a、b两个实数的点的位置如下图所示,则化简:|a—b|
结果为()
a0bபைடு நூலகம்
A. 2aB.2b C.2a-2b D.-2b
二、填空题
16.如果上升3米记作+3米,那么下降3米记作米.
23
17•比较大小(填“〉”或“V”):0-0.01,--;
)4
0
(4)
33
+4)-(3x—5)
(本题5分)已知…___,_一「「 一. _,求亠上「
(本题5分)先化简,再求值::二 | 一--其中:■--
35.(本题6分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,
不足的记为负数,记录结果如下:+8, —3,+12, —7, —10, —3, —8,+1,0,+
12.
35D
.12.34
11.若方程(m-1)x+2 = 0表示关于x的一元一次方程,则m的取值范围是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广东省中山市城东教学共进联盟七年级(上)期中数学试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣5的相反数是()A.﹣5B.﹣C.5D.2.(3分)在代数式,2πx2y,,﹣5,a中,单项式的个数是()A.2个B.3个C.4个D.5个3.(3分)下列方程为一元一次方程的是()A.y+3=0B.x+2y=3C.x2=2x D.+y=24.(3分)下列计算正确的是()A.(﹣3)2=6B.﹣3﹣3=0C.﹣3×2=﹣6D.(﹣2)2=﹣4 5.(3分)下列各式计算正确的是()A.3ab﹣2ab=ab B.5y2﹣4y2=1C.2a+3b=5ab D.3+x=3x6.(3分)根据最新数据统计,2018年中山市常住人口已达到3260000人.将3260000用科学记数法表示,下列选项正确的是()A.3.26×105B.3.26×106C.32.6×105D.0.326×107 7.(3分)多项式4x2﹣2xy2的次数、一次项系数分别为()A.6,3B.3,3C.3,D.3,﹣8.(3分)下列数是方程的解的是()A.B.C.D.9.(3分)下列等式变形中不正确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=y D.若mx=my,则x=y10.(3分)如图,有理数a,b,c在数轴上的位置如下,试化简:|a+c|﹣|b﹣a|+|b+c|=()A.﹣2a+2b﹣2c B.﹣2a﹣2c C.﹣2a+b+2c D.2a+2c二、填空题(每小题4分,共24分)11.(4分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作.12.(4分)将6.267用四舍五入法取近似数,精确到0.01,其结果是13.(4分)单项式的系数是,次数是.14.(4分)若单项式﹣3x4a y与是同类项,则a=b=.15.(4分)已知(m﹣3)2+|n+2|=0,则n m+mn=.16.(4分)观察如图并填表:梯形个数123…n图形周长5a8a11a…三、解答题(每小题6分,共18分)17.(6分)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)18.(6分)()÷()+(﹣2)2×(﹣7)19.(6分)(4x2y﹣3xy2)﹣(1+6x2y﹣3xy2)三、解答题(每小题7分,共21分)20.(7分)先化简,再求值:2(2x﹣3y)﹣3(3x+2y+1)﹣5,其中x=﹣2,y=0.5.21.(7分)已知a,b互为相反数,m,n互为倒数,x的绝对值为2,求﹣2mn﹣x的值.22.(7分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆,(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)五、解答题(每小题9分,共27分)23.(9分)已知代数式A=﹣6x2y+4xy2﹣5,B=﹣3x2y+2xy2﹣3.(1)求A﹣B的值,其中x=1,y=﹣2.(2)请问A﹣2B的值与x,y的取值是否有关系,试说明理由.24.(9分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+12﹣10+16﹣9(1)根据记录的数据可知该厂星期六生产自行车_辆;(2)根据记录的数据可知该厂本周实际生产自行车辆;(3)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?25.(9分)数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b.如图:已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】.(1)点A运动2秒后所在位置的点表示的数为;点B运动3秒后所在位置的点表示的数为;(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)它们按上述方式运动,A、B两点经过多少秒后相距2个单位长度?2018-2019学年广东省中山市城东教学共进联盟七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣5的相反数是()A.﹣5B.﹣C.5D.【考点】14:相反数.【分析】根据相反数的定义解答.【解答】解:只有符号不同的两个数称为互为相反数,则﹣5的相反数为5,故选:C.【点评】本题考查了相反数的定义,只有符号不同的两个数互为相反数,a的相反数是﹣a.2.(3分)在代数式,2πx2y,,﹣5,a中,单项式的个数是()A.2个B.3个C.4个D.5个【考点】42:单项式.【专题】1:常规题型.【分析】单项式就是数与字母的乘积,以及单独的数与单独的字母都是单项式,根据定义即可判断.【解答】解:是单项式的有:2πx2y、﹣5、a,共有3个.故选:B.【点评】本题主要考查了单项式的定义,根据定义可以得到:单项式中不含加号,等号,不等号.理解定义是关键.3.(3分)下列方程为一元一次方程的是()A.y+3=0B.x+2y=3C.x2=2x D.+y=2【考点】84:一元一次方程的定义.【专题】67:推理能力.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(3分)下列计算正确的是()A.(﹣3)2=6B.﹣3﹣3=0C.﹣3×2=﹣6D.(﹣2)2=﹣4【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣6,不符合题意;C、原式=﹣6,符合题意;D、原式=4,不符合题意,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.(3分)下列各式计算正确的是()A.3ab﹣2ab=ab B.5y2﹣4y2=1C.2a+3b=5ab D.3+x=3x【考点】35:合并同类项.【专题】11:计算题.【分析】根据合并同类项的法则即可求出答案.【解答】解:(B)原式=y2,故B错误;(C)原式=2a+3b,故C错误;(D)原式=3+x,故D错误;故选:A.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.6.(3分)根据最新数据统计,2018年中山市常住人口已达到3260000人.将3260000用科学记数法表示,下列选项正确的是()A.3.26×105B.3.26×106C.32.6×105D.0.326×107【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3260000用科学记数法表示为:3.26×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)多项式4x2﹣2xy2的次数、一次项系数分别为()A.6,3B.3,3C.3,D.3,﹣【考点】43:多项式.【专题】512:整式.【分析】直接利用多项式的次数确定方法和一次项系数的确定方法分析即可.【解答】解:多项式4x2﹣2xy2的次数、一次项系数分别为:3,﹣.故选:D.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.8.(3分)下列数是方程的解的是()A.B.C.D.【考点】85:一元一次方程的解.【专题】11:计算题;521:一次方程(组)及应用.【分析】将各选项中x的值代入方程左边计算,判断左边的值与右边是否相等即可得.【解答】解:A.当x=时,×+=≠,即左边≠右边,x=不是此方程的解;B.当x=时,×+=≠,即左边≠右边,x=不是此方程的解;C.当x=时,×+=≠,即左边≠右边,x=不是此方程的解;D.当x=时,左边=×+==右边,x=是此方程的解;故选:D.【点评】本题主要考查一元一次方程的解,解题的关键是掌握方程的解的定义.9.(3分)下列等式变形中不正确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=y D.若mx=my,则x=y【考点】83:等式的性质.【分析】根据等式的两边加或都减同一个数,结果仍是等式;根据等式两边都成一或除以同一个不为0的数,结果仍是等式.【解答】解:A、等式两边都加5,故A正确;B、等式两边都乘以a,故B正确;C、两边都除以﹣3,故C正确;D、m=0时,故D错误;故选:D.【点评】本题考查了等式的性质,等式的两边加或都减同一个数,结果仍是等式;等式两边都成一或除以同一个不为0的数,结果仍是等式.10.(3分)如图,有理数a,b,c在数轴上的位置如下,试化简:|a+c|﹣|b﹣a|+|b+c|=()A.﹣2a+2b﹣2c B.﹣2a﹣2c C.﹣2a+b+2c D.2a+2c【考点】13:数轴;15:绝对值.【专题】31:数形结合;512:整式.【分析】先由图表判断a、b、c的正负,再根据加减法法则判断a+c、b﹣a、b+c的正负,最后化简得结果.【解答】解:由有理数a,b,c在数轴上的位置可知:c<b<0<a,|c|>|b|>|a|,∴a+c<0,b﹣a<0,b+c<0,∴|a+c|﹣|b﹣a|+|b+c|=﹣(a+c)﹣(a﹣b)+(﹣b﹣c)=﹣a﹣c﹣a+b﹣b﹣c=﹣2a﹣2c.故选:B.【点评】本题考查了有理数的加减法法则、绝对值的化简及整式的加减.确定a+c、b﹣a、b+c的正负是解决本题的关键.二、填空题(每小题4分,共24分)11.(4分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作﹣6%.【考点】11:正数和负数;1O:数学常识.【专题】511:实数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么“减少6%”可以记作﹣6%.【解答】解:根据正数和负数的定义可知,“减少6%”可以记作﹣6%.故答案为:﹣6%.【点评】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.(4分)将6.267用四舍五入法取近似数,精确到0.01,其结果是 6.27【考点】1H:近似数和有效数字.【专题】511:实数.【分析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,找出0.01位上的数字,再通过四舍五入即可得出答案.【解答】解:将6.267用四舍五入法取近似数,精确到0.01,其结果是6.27;故答案为6.27.【点评】此题考查了近似数与有效数字,用到的知识点是四舍五入法取近似值,关键是看精确到哪一位.13.(4分)单项式的系数是﹣,次数是3.【考点】42:单项式.【专题】11:计算题.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.(4分)若单项式﹣3x4a y与是同类项,则a=2b=﹣3.【考点】34:同类项;98:解二元一次方程组.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得:a=2,b=﹣3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.15.(4分)已知(m﹣3)2+|n+2|=0,则n m+mn=﹣14.【考点】16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣3=0,n+2=0,解得m=3,n=﹣2,所以,n m+mn=(﹣2)3+3×(﹣2)=﹣8﹣6=﹣14.故答案为:﹣14.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察如图并填表:梯形个数123…n图形周长5a8a11a…(3n+2)a【考点】38:规律型:图形的变化类.【分析】观察图形可知,每增加1个梯形,则周长增加梯形的一个上底与下底的和,然后写出n个梯形时的图形的周长即可.【解答】解:梯形个数为1,图形周长为5a,梯形个数为2,图形周长为8a,8a=5a+3a,梯形个数为3,图形周长为11a,11a=8a+3a,梯形个数为4,图形周长为:11a+3a=14a,梯形个数为5,图形周长为:14a+3a=17a,…,依此类推,梯形个数为n,图形周长为:(3n+2)a,故答案为:(3n+2)a.【点评】本题考查了图形变化规律,根据图形以及表格数据,判断出每增加1个梯形,则周长增加梯形的一个上底与下底的和,即3a,是解题的关键.三、解答题(每小题6分,共18分)17.(6分)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)【考点】1B:有理数的加减混合运算.【专题】11:计算题.【分析】先去括号,再把负数相加,然后再正负相加即可.【解答】解:原式=﹣3﹣4﹣11+19=﹣18+19=1.【点评】本题考查了有理数的加减混合运算,解题的关键是先去括号.18.(6分)()÷()+(﹣2)2×(﹣7)【考点】1G:有理数的混合运算.【专题】11:计算题.【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.依此计算即可求解.【解答】解:()÷()+(﹣2)2×(﹣7)==,=﹣1﹣28=﹣29.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(6分)(4x2y﹣3xy2)﹣(1+6x2y﹣3xy2)【考点】44:整式的加减.【专题】512:整式.【分析】去括号,再合并同类项即可.【解答】解:原式=4x2y﹣3xy2﹣1﹣6x2y+3xy2,=﹣2x2y﹣1,【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.三、解答题(每小题7分,共21分)20.(7分)先化简,再求值:2(2x﹣3y)﹣3(3x+2y+1)﹣5,其中x=﹣2,y=0.5.【考点】45:整式的加减—化简求值.【专题】11:计算题;512:整式.【分析】根据去括号法则、合并同类项的法则化简,代入计算即可.【解答】解:原式=4x﹣6y﹣9x﹣6y﹣3﹣5=﹣5x﹣12y﹣8,当x=﹣2,y=0.5时,原式=﹣5×(﹣2)﹣12×1.5﹣8=10﹣6﹣8=﹣4.【点评】本题考查的是整式的化简求值,掌握整式的加减运算法则是解题的关键.21.(7分)已知a,b互为相反数,m,n互为倒数,x的绝对值为2,求﹣2mn﹣x的值.【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:∵a,b互为相反数,m,n互为倒数,x的绝对值为2,∴a+b=0,mn=1,x=2或﹣2,∴原式=﹣2﹣x,当x=2时,原式=﹣4;当x=﹣2时,原式=0,综上所述,原式的值为﹣4或0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(7分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆,(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)【考点】32:列代数式;33:代数式求值.【分析】根据长方形与圆形的面积即可求出阴影部分的面积,然后代入a、b的值即可求出答案.【解答】解:(1)长方形的面积为:a×2b=2ab,两个半圆的面积为:π×b2=πb2,∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时,∴2ab﹣πb2=2×4×1﹣3.14×1=4.86【点评】本题考查列代数式,涉及代入求值,有理数运算等知识.五、解答题(每小题9分,共27分)23.(9分)已知代数式A=﹣6x2y+4xy2﹣5,B=﹣3x2y+2xy2﹣3.(1)求A﹣B的值,其中x=1,y=﹣2.(2)请问A﹣2B的值与x,y的取值是否有关系,试说明理由.【考点】45:整式的加减—化简求值.【专题】11:计算题;512:整式.【分析】(1)先计算A﹣B的值,再将x和y的值代入可得结果;(2)先计算A﹣2B的值,再将x和y的值代入可得结果;【解答】解:(1)A﹣B=(﹣6x2y+4xy2﹣5)﹣(﹣3x2y+2xy2﹣3),=﹣6x2y+4xy2﹣5+3x2y﹣2xy2+3,=﹣3x2y+2xy2﹣2,当x=1,y=﹣2时,原式=﹣3×12×(﹣2)+2×1×(﹣2)2﹣2,=6+8﹣2,=12;(2)A﹣2B=(﹣6x2y+4xy2﹣5)﹣2(﹣3x2y+2xy2﹣3),=﹣6x2y+4xy2﹣5+6x2y﹣4xy2+6,=1;∴其值与x,y的值无关.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.24.(9分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+12﹣10+16﹣9(1)根据记录的数据可知该厂星期六生产自行车216_辆;(2)根据记录的数据可知该厂本周实际生产自行车1408辆;(3)产量最多的一天比产量最少的一天多生产自行车26辆;(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?【考点】11:正数和负数;1B:有理数的加减混合运算.【专题】11:计算题;27:图表型.【分析】(1)用200加上增减的+16即可;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)用最多的星期六的量减去最少的星期五的量,根据有理数的减法运算计算即可;(4)根据规定列出算式,然后根据有理数的混合运算方法进行计算即可求解.【解答】解:(1)200+(+16)=216;(2)∵(+5)+(﹣2)+(﹣4)+(+12)+(﹣10)+(+16)+(﹣9),=5﹣2﹣4+12﹣10+16﹣9,=33﹣25,=8,∴1400+8=1408;(3)(+16)﹣(﹣10),=16+10,=26;(4)50×1408+8×15,=70400+120,=70520.故答案为:(1)216,(2)1408,(3)26,(4)70520.【点评】本题考查了正数与负数,有理数加减混合运算,读懂表格数据,根据题意准确列式是解题的关键.25.(9分)数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b.如图:已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】.(1)点A运动2秒后所在位置的点表示的数为﹣4;点B运动3秒后所在位置的点表示的数为2;(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)它们按上述方式运动,A、B两点经过多少秒后相距2个单位长度?【考点】13:数轴;15:绝对值;32:列代数式;8A:一元一次方程的应用.【专题】34:方程思想;521:一次方程(组)及应用.【分析】(1)根据点A,B的出发点及其运动时间、速度,即可求出点A运动2秒及点B 运动3秒后所在位置的点表示的数;(2)由两点相遇,可得出关于t的一元一次方程,解之即可得出结论;(3)分类讨论:①若A点在左边,B点在右边,由AB=2,即可得出关于t的一元一次方程,解之即可得出结论;②若A点在右边,B点在左边,由AB=2,即可得出关于t 的一元一次方程,解之即可得出结论.综上,此题得解.【解答】解:(1)﹣10+3×2=﹣4,8﹣2×3=2.故答案为:﹣4;2.(2)根据题意得:﹣10+3t=8﹣2t,解得:t=3.6,∴﹣10+3t=0.8.答:A,B两点经过3.6秒后会相遇,相遇点所表示的数是0.8.(3)分类讨论:①若A点在左边,B点在右边,则8﹣2t﹣(﹣10+3t)=2,解得:t=3.2;②若A点在右边,B点在左边,则﹣10﹣3t﹣(8﹣2t)=2,解得:t=4.答:经过3.2s或4s后A,B两点相距2个单位.【点评】本题考查了一元一次方程的应用、数轴、绝对值以及列代数式,解题的关键是:(1)根据点A,B的运动运动时间及速度找出运动后点所在的位置表示的数;(2)(3)找准等量关系,正确列出一元一次方程.。

相关文档
最新文档