Stokes五阶波公式

合集下载

第七章 波浪理论及其计算原理

第七章 波浪理论及其计算原理

第七章 波浪理论及其计算原理在自然界中;常可以观察到水面上各式各样的波动,这就是常讲的波浪运动,它造成海洋结构的疲劳破坏,也影响船的航行和停泊的安全。

波浪的动力作用也常引起近岸浅水地带的水底泥沙运动,致使岸滩崩塌,建筑物前水底发生淘刷,港口和航道发生淤积,水深减小,影响船舶的通航和停泊。

为了海洋结构物、驾驶船舶和船舶停靠码头的安全,必须对波浪理论有所了解。

一般讲,平衡水面因受外力干扰而变成不平衡状态,但表面张力、重力等作用力则使不平衡状态又趋于平衡,但由于惯性的作用。

这种平衡始终难以达到,于是,水体的自由表面出现周期性的有规律的起伏波动,而波动部位的水质点则作周期性的往复振荡运动。

这就是波浪现象的特性。

波浪可按所受外界的干扰不同进行分类。

由风力引起的波浪叫风成波。

由太阳、月亮以及其它天体引起的波浪叫潮汐波。

由水底地震引起的波浪叫地震水波由船舶航行引起的波浪叫船行波。

其中对海洋结构安全影响最大的是风成波。

风成波是在水表面上的波动,也称表面波。

风是产生波动的外界因素,而波动的内在因素是重力。

因此,从受力的来看;称为重力波。

视波浪的形式及运动的情况,波浪有各种类型。

它们可高可低,可长司短。

波可是静止的一一驻波(即两个同样波的相向运动所产生的波,也可以是移动的——推进波以一定的速度将波形不变地向一个方向传播的波),可以是单独的波,也可以是一个接一个的一系列波所组成的波群。

§7-1 液体波动理论一、流体力学基础1、速度场 描述海水质点的速度随空间位置和时间的变化规律的一个矢量。

),,,(t z y x V V =它的三个分量为:x 方向的量:),,,(t z y x u u =y 方向的量:),,,(t z y x v v =z 方向的量:),,,(t z y x w w =2、速度势 对于作无旋运动的液体,存在一个函数,它能反映出速度的变化,但仅仅是反映速度大小的变化,这个函数称为速度v的势函数,简称速度势: ),,,(t z y x φφ=3、速度与速度势的关系x u ∂∂=φ, y v ∂∂=φ, zw ∂∂=φ 二、海水运动的基本假设1、海水无粘性,只有重力是唯一的外力;2、液体自由液面上的压力为常数;3、液体波动振幅相对于波长为无限小;4、液体作无旋运动。

波浪载荷计算书

波浪载荷计算书

共 19 页平台波浪力计算书二、平台基本数据和环境条件平台主尺度:长57.75 m,宽34.5 m,型深5 m桩腿尺度:Φ2.3*45 m桩腿间距:横向28.5 m 纵向44.55 m基线距海底:28.5 m设计水深:d = 20 m最大天文潮高:d t= 4 m最大波高:H = 6.5 m波浪周期:T = 7.0 ~ 13.0S最大流速:U = 1.5 m/S最大风速:V = 41.15 m/S作业工况波高:H1= 4 m作业工况风速:V1 = 25.8 m/S迁航波高:H C = 4 m迁航航速:V C = 4 knot迁航时桩腿在基线下:0.75m (Min.)图1 荷载方向三、自存工况(一)波浪荷载和海流荷载1.计算原理因为桩腿的直径和波长之比小于0.2,桩腿所受的波浪与海流荷载按Morison公式进行计算,单根桩腿单位长度所受的波流力为:F W=F D+F I (1)=C d×ρ×D×| U|×U/2+C m×ρ×π×D2/4×a=C d×ρ×D×( | u+v| )×( u+v )/2+C m×ρ×π×D2/4×a式中: F W =波流力,N。

F D=阻力,N。

F I=惯性力,N。

ρ=海水密度。

ρ=1. 025*103 kg/m3。

C d=垂直于构件轴线的阻力系数。

按照规范规定取值为1.0。

C m =惯性力系数。

按照规范规定取值为2.0 。

D =构件的直径。

D =2.3m 。

U =垂直于构件轴线的水质点相对于构件的总速度分量,m/s 。

u =垂直于构件轴线的波浪引起的水质点相对于构件的速度分量,m/s 。

v =垂直于构件轴线的海流引起的水质点速度分量。

计算中海流的方 向取和波浪相同的方向,v = 1.5m/s 。

a =垂直于构件轴线的水质点相对于构件的加速度分量,m/s 2。

波浪理论及其计算原理

波浪理论及其计算原理
推导步骤和以前一样,可得波形方程为:
设:
忽略常数项,得四阶近似的波面方程为:
五阶近似。Skjelbreia和Hendrickson(1960)提出了Stokes波的五阶近似。为了便于工程上的计算应用,采用列表方式给出各系数。计算时只要查表,把系数代入简单的代数式即可获得波浪的各项特性参数。各计算公式如下:
(7-1)
式中: 、 、 为水质点速度在 、 、 三个坐标轴方向上的分量; 为海水的密度; 为流体所受的表面力; 为重力加速度。
用欧拉法描述流场时,可得到运动方程为:
(7-2)
二、连续方程
流体在运动时,必须遵循质量守恒定律,也就是必须满足连续方程。
今在流体内取一由闭曲面 所围成的固定几何空间,其体积为 。则在单位时间内所取空间内流体质量的增加量为:
三阶近似。取式(7-39)的前三项,得:
设:
代入上式,并除以 之后,得:
忽略方次在 以上的各项,并按 的方次排列,有:
由此可得:
代入 ,得到 的波形表达式:
为了简化上式,设:
用摄动法求解 ,令:
代入前式,得:
将上式展开,保留 的三次方以下各项,有:
于是得:
, ,
代回到 的表达式,得(到三次方)
再代回到上面的 表达式,有
(7-13)
(7-14)
不过,运动是无旋还是有旋的还不清楚,一般当作是有旋的,并引进流函数 ,则 , ,将这些代入式(7-13)和(7-14),消去 后,得:
(7-15)
令:
(7-16)
将式(7-16)代入式(7-15),得:
(7-17)
因为 ,所以 。相反,如把 代入这个关系式,得:
(7-18)
上式所表示的运动是无旋的。因此,开始时可以将速度势 引入,即 , ,得:

斯托克斯公式

斯托克斯公式

三角形的整个边界, 它的正向与这个三角形上侧
的法向量之间符合右手规则. 解 法一 按斯托克斯公式,有
z
1 n
zdx xdy y dz
Dxy O
1y
dydz dzdx dxdy
x1
x
y
z
dydz dzdx dxdy
zxy
: 平面x y z 1
dydz dzdx dxdy
PQR
其中n (cos ,cos ,cos )
旋度的定义
ij 称向量 x y
k
为向量场的旋度(rotA).
z
PQR
i jk
旋度
rotA
x y z
PQR
(R
Q
)i
(P
R
)
j
(Q
P
)k .
y z z x x y
例 计算曲线积分 zdx xdy ydz,
其中是平面x y z 1 被三坐标面所截成的
R x
dzdx
Q x
P y
dxdy
Pdx Qdy Rdz
斯托克斯公式
即有
R y
Q z
cos
P z
R x
cos
Q x
P y
cos
dS
Pdx Qdy Rdz
其中 cos ,cos ,cos 是Σ指定一侧的法向量
方向余弦.
斯托克斯公式常用形式
Pdx Qdy Rdz
(的法向量
n
(1,1,1).cos
cos
cos
1
)
3
的法向量的三个方向余弦都为正.
zdx xdy ydz
dydz dzdx dxdy 对称性

12-7 斯托克斯(stokes)公式

12-7 斯托克斯(stokes)公式

y
1
Dxy如图
3 zdx xdy ydz 2
D xy
o
1
x
E-mail: xuxin@
例 2 计算曲线积分
(y

2
z )dx ( z x )dy ( x y )dz
2 2 2 2 2
3 其中 是平面 x y z 截立方体:0 x 1 , 2 0 y 1 ,0 z 1 的表面所得的截痕,若从 ox
P P P P dzdx dxdy ( cos cos )ds y z y z
又 cos f y cos , 代入上式得
P P P P dzdx dxdy ( f y ) cosds y y z z
R Q P R Q P = ( ) cos ( ) cos ( ) cos dS y z z x x y
E-mail: xuxin@
n

右手法则

正向边界曲线
z
是有向曲面 的
n
z
解 按斯托克斯公式, 有
1
zdx xdy ydz
dydz dzdx dxdy

n
y
0
D xy
1
x
1
E-mail: xuxin@
由于的法向量的三个方向余弦都为正,
再由对称性知:
dydz dzdx dxdy 3 d
Dxy
的侧符合右手规则, 函数 P ( x , y , z ) ,Q ( x , y , z ) ,
R( x , y , z ) 在包含曲面 在内的一个空间区域内具

波浪力学第三章_有限振幅波理论

波浪力学第三章_有限振幅波理论

•Stokes波是用有限个简单的频率成比例的余弦波来逼近具有单一周期的规则的有限振幅波。

{3.1.1 STOKES 波理论的分析方法
尽管假定每一个Φn 都满足自由表面条件,但处理其平方及乘积非
线性项仍是一个困难问题。

自由表面总是在静水面附近。

将Φ在自由表面z=η处用Taylor级数展开为
将上式代入自由表面边界条件,可得
η
ηϕηηϕ
==∂∂∂∂+∂∂=∂∂z z x x t z 0)(21=η+ϕ∇⋅ϕ∇+∂ϕ∂η
=η=g t z z
)
(2cos )cos(21t kx a t kx a ωωη−+−=
{3.1.2 STOKES 二阶波
三、水质点的运动轨迹
净位移
波生流
kd
d z k c k H kd
d z k c L H U 2022202
2sinh )(2cosh 8sinh )(2cosh 21+=+⎟⎠⎞⎜⎝⎛=π
波剖面:公式(3.98)
c
H
d
c
H
d
3.4 几种波浪理论的适用范围 纵、横坐标
破碎界限
深水、极浅水界限
椭圆余弦波、
Stokes波界限。

波浪理论——精选推荐

波浪理论——精选推荐

波浪理论波浪理论⽬前被⼴泛应⽤的波浪理论的研究经历了从规则波到随机波的过渡,规则波理论的特点是将海浪运动看成确定的函数形式,通过流体⼒学分析研究各种情况下波浪的动⼒学性质和运动规律。

规则波理论的研究始于19世纪,⾄今为⽌,经历了由线性理论向⾮线性理论及湍流理论发展的过程。

其理论主要包括微幅波理论(Airy理论)、Stokes波理论、椭圆余弦波理论、孤⽴波理论等。

微幅波理论是应⽤势函数来研究波浪运动的⼀种线性波浪理论,是波浪理论中最基本、最重要的内容,也是近海⼯程中应⽤的最⼴泛的部分。

1887年英国流体⼒学家Stokes提出了Stokes波理论,在近海⼯程计算中,⼈们常采⽤⾼阶Stokes波应⽤于最⼤波的计算公式。

Stokes波没有考虑⽔深变化对结果的影响,只适⽤于⼀般⽔深的情况。

在浅⽔情况下,⽤Stokes波理论达不到所要求的精度,如果采⽤能反映决定波动性质的主要因素的椭圆余弦波理论描述波浪运动,可以获得较满意的结果。

椭圆余弦波理论最早是在1895年由Korteweg等提出的,其后由Keulegan等进⼀步研究并使之适⽤于⼯程实践。

各种波浪理论的⽐较⽬前虽有许多⼈对各种波浪理论的适⽤范围进⾏过研究,但由于采⽤的判据各不相同,得出的结果也差别较⼤,波浪理论的适⽤范围依然只能定性分析。

现在只能确定椭圆余弦波⼀般⽤于浅⽔区,孤⽴波⼀般适⽤于近岸浅⽔区且周期波的波峰能量占全波能量的90%以上的情况,微幅波⼀般适⽤于深⽔区,⽽对于有限⽔深区,情况则较为复杂,多种波浪理论的适⽤范围在此交叉,需要依照实际⼯况进⾏分析才能选取合适的波浪理论。

1. 波浪理论的选⽤⽬前,常⽤的波浪理论主要有艾利波(Airy)理论(⼜称线性波理论或正弦波理论)、斯托克斯(Stokes)⾼阶波理论、椭圆余弦波理论、孤⽴波理论。

各波浪理论都是通过假设与简化得到的,基于不同的假设与简化,理论计算结果有别,也各有适⽤范围。

为了确定各种波浪理论的适⽤范围,不少研究者进⾏了理论分析或试验观测。

高等数学11.7斯托克斯(stokes)公式

高等数学11.7斯托克斯(stokes)公式

Pdx Qdy Rdz

P P dzdx dxdy y z
P P f y ) cos dS P161 ( y z
P P f y )dxdy ( z y z
n
P P 即 dzdx dxdy z y
有一阶连续偏导数, 则有公式 Q P R Q P R )dxdy ( )dydz ( )dzdx ( x y y z z x
Pdx Qdy Rdz

斯托克斯公式
一、斯托克斯公式 R Q P R Q P ) dydz ( ) dzdx ( ) dxdy ( y z z x x y Pdx Qdy Rdz 斯托克斯公式



cos cos cos ds Pdx Qdy Rdz x y z P Q R 其中n {cos , cos , cos }

一、斯托克斯公式
R Q P R Q P )dxdy ( )dydz ( )dzdx ( y z z x x y
:
f ( x, y )

R R o D dydz dzdx R ( x , y , z ) dz C x y x R Q P R Q P ( )dydz ( )dzdx ( )dxdy y z z x x y
Pdx Qdy Rdz

思路
曲面积分
P P dxdy dzdx y z
1
二重积分
2
曲线积分
P P ( cos cos )dS z y
z f ( x , y ) 法向量为: ( f x , f y , 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档