过程控制课程设计——啤酒发酵罐温度控制系统

合集下载

啤酒发酵罐温度控制系统设计

啤酒发酵罐温度控制系统设计

内蒙古科技大学过程控制课程设计论文题目:啤酒发酵罐温度控制系统设计学生姓名:赵万里学号:1067112320专业:测控技术与仪器班级:2010-3指导教师:李忠虎教授2013年 9 月 3日摘要本文介绍了啤酒的酿造工艺,分析了啤酒发酵过程中发酵罐内酒体的温度变化特性,并结合锥形发酵罐的组成及原理,根据生产工艺要求,从而设计了啤酒发酵过程中发酵罐温度控制系统。

该设计是采用串级控制系统,通过控制流入发酵罐冷却套内液氨的流量,来达到控制发酵罐内酒体温度的目的。

设计过程中充分利用了过程控制理论和过程参数检测技术及仪表知识,完成了控制方案的选择、被控参数的选取,以及仪表的选型等内容。

关键词:啤酒发酵;温度控制;串级系统目录第一章绪论 (1)1.1 啤酒概述---------------------------------------------------- 11.2 啤酒的发酵-------------------------------------------------- 12.1 啤酒酿造工艺概述-------------------------------------------- 22.2 发酵工艺---------------------------------------------------- 22.2.1锥形发酵罐基本结构 (2)2.2.2 发酵过程中酒体的温度变化特性 (3)第三章检测控制系统设计 (5)3.1 被控对象分析------------------------------------------------ 53.2 控制方案的选择---------------------------------------------- 53.3 主、副被控参数的选取---------------------------------------- 63.4 主、副调节器调节规律的选择---------------------------------- 73.5主、副调节器正、反作用方式的选择----------------------------- 73.6 仪表选型---------------------------------------------------- 8第四章总结 (9)参考文献 (10)第一章绪论1.1 啤酒概述啤酒是以大麦芽、酒花、水为主要原料,经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。

基于PLC的啤酒发酵自动控制系统设计

基于PLC的啤酒发酵自动控制系统设计

基于PLC的啤酒发酵自动控制系统设计本文针对啤酒发酵过程中的自动控制问题,设计了一种基于PLC的啤酒发酵自动控制系统。

本文分别就控制系统的硬件选型、软件设计、控制策略和系统运行等方面进行详细介绍和分析。

1、控制系统硬件选型本系统采用三菱PLC FX2N-32MR作为控制器,配合三菱触摸屏进行操作界面设计和参数设置。

控制器和触摸屏之间通过RS232进行通信,以实现数据传输和数据显示功能。

此外,本系统还选用了温度、液位、气压和流量等传感器进行数据采集。

2、软件设计本系统主要采用ST语言进行软件编写,根据实际需求设计了三个主程序:数据采集程序、PID控制程序和触摸屏控制程序。

其中,数据采集程序主要负责对传感器数据进行采集和处理,PID控制程序负责控制发酵罐内的温度、液位、气压和流量等参数,使其始终处于最优状态。

触摸屏控制程序则是用户与系统之间的交互平台,通过触摸屏可以进行参数设置和操作控制等功能。

3、控制策略本系统采用经典的PID控制算法进行参数控制。

具体而言,对于发酵罐的温度控制,系统通过温度传感器对温度进行实时监测,并将监测到的温度值与设定的目标温度进行比较,以计算出误差值。

接着,根据PID控制算法的控制策略,对比例、积分和微分三个参数进行计算,并通过控制电路将控制信号传输到加热器或冷却器上,以实现对温度的有效控制。

4、系统运行通过对系统进行实验测试,可以发现本系统具有运行可靠、控制精确、响应速度快等优点。

在实际应用中,只需设置不同的控制参数就可以实现针对不同类型啤酒的发酵控制,可广泛应用于啤酒生产企业中。

综上所述,本文基于PLC的啤酒发酵自动控制系统设计已经基本实现,具有较高的设计实用性和研究价值。

发酵罐温度控制系统讲解

发酵罐温度控制系统讲解

题目:发酵罐温度控制系统设计课程设计(论文)任务及评语院(系):教研室:Array注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算摘要本题要设计的是温度控制系统,发酵是放热反应的过程。

随着反应的进行,罐内的温度会逐渐升高。

而温度对发酵过程具有多方面的影响。

因此,对发酵过程中的温度进行检测和控制就显得十分重要。

本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。

本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。

关键词:温度控制;PID控制器;V/I转换;比较机构目录第1章绪论 (1)第2章课程设计的方案 (2)2.1 概述 (2)2.2 系统组成总体结构 (2)2.3 传感器选择 (2)第3章电路设计 (4)3.1 传感器电路 (4)3.2 比较机构电路 (7)3.3 PID调节器并联实现电路 (7)3.4 V/I转换电路 (8)3.5 直流稳压电源电路 (9)第4章仿真与分析 (10)4.1 传感器电路仿真 (10)4.2 PID控制器电路 (11)4.3 V/I转换电路 (12)第5章课程设计总结 (14)参考文献 (15)附录Ⅰ (16)附录Ⅱ (18)附录Ⅲ (20)第1章绪论在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。

本次课设要求设计发酵罐的温度控制系统。

发酵是放热反应的过程。

随着反应的进行,罐内的温度会逐渐升高。

而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。

啤酒发酵过程温度控制的设计

啤酒发酵过程温度控制的设计

X X X X 学院《啤酒发酵过程温度控制的设计》大作业报告专业计算机科学与技术学号姓名日期2015.12.301、作业内容及任务麦汁发酵过程是一个复杂的生物化学过程,通常在锥形发酵罐中进行。

目前的处理方法多是在麦汁发酵期间,在二十多天的发酵期间,根据酵母的活动能力,生长繁殖快慢,确定发酵曲线。

要使酵母的繁殖和衰减、麦汁中糖度的消耗等达到最佳状态,必须严格控制各阶段的温度,使其在给定的温度曲线的±0.5℃范围内。

发酵期间锥形发酵罐控制上、中、下三部分的温度,温度曲线见下图。

图1 发酵过程温度工艺曲线通过啤酒发酵过程,掌握相关步骤。

考查动手能力和对所学知识的掌握程度,以及查阅资料和收集信息能力。

使设计者熟悉本设计的相关知识及培养解决设计过程中可能遇到问题的能力。

图2 发酵罐的测控点分布及管线图2、对作业的认知或解读麦汁发酵过程是啤酒生产中的一个重要环节。

过去。

啤酒发酵过程采用传统的手工操作控制,生产效率低,劳动强度大,不易于管理;啤酒质量差,产量低,酒损多。

有些啤酒生产厂家采用常规的仪表调节系统,虽然给企业带来一些益处,但也不利于现代化管理和机动灵活地修改工艺参数。

采用计算机对啤酒发酵过程进行自动控制和现代化管理,很好地解决以上问题,获得了巨大的经济效益和社会效益。

图3 计算机控制系统原理图3、系统结构模型框图T1T30图3 啤酒发酵过程计算机控制系统硬件框图4、系统硬件元器件选型WZP-231铂热电阻、RTTB-EKT 温度变送器进行温度测量和变送、I/V 变换板、A/D板、电容式液位变送器及电动调节阀等5、硬件设计(1)模拟量输入通道设计本系统检测30个温度(T1~T30)、10个压力(p1~p10)、10个液位(H1~H10)。

对于温度,我们选用WZP-231铂热电阻30支和RTTB-EKT温度变送器30只进行温度测量和变送,即将-20~+50℃变换成4~20mA DC信号变换成1~5V DC信号,最后把1~5V DC信号送至32路12位光电隔离A/D板IPC5488,从而实现温度的数据采集。

任务书:啤酒发酵温度控制系统设计 电子信息工程

任务书:啤酒发酵温度控制系统设计 电子信息工程

xx大学毕业设计(论文)任务书信息科学与工程学院电子信息工程专业091 班xx 同学:现给你下达毕业设计(论文)任务如下,要求你在预定时间内,完成此项任务。

一、毕业设计(论文)题目啤酒发酵温度控制系统设计二、毕业设计(论文)背景啤酒发酵温度的控制是决定产品品质的关键因素, 所以, 必须对生产过程中的温度进行严格的控制。

啤酒发酵是一个具有时变性、非线性的复杂生化反应过程, 使用冷却酒精水通过热交换器间接降温的方法控制发酵温度。

传统的手动控制不仅控制质量不稳定, 而且操作工人的劳动强度也很大, 人力资源浪费问题十分严重, 为此我们使用以51单片机为核心的控制系统,来控制啤酒发酵温度。

采用单片机对温度进行实时控制, 并采取相应的软硬件抗干扰措施,使控制系统不仅具有方便、灵活的优点,而且可以大幅度提高被控温度的技术指标,从而可以显著提高啤酒产品的品质。

三、毕业设计(论文)目标、研究内容和技术要求目标:完成基于单片机的啤酒发酵温度自动控制系统设计和控制器硬件实现。

内容:1. 了解啤酒发酵过程的温度分段控制工艺;2. 进行基于单片机的啤酒发酵温度自动控制系统设计;3. 利用STC单片机完成发酵温度控制器的硬件演示电路设计和LabVIEW远程控制界面设计。

技术要求:1. 实现发酵罐内温度的实时采样监测(精度0.1◦C)和现场液晶显示;2. 根据啤酒发酵各阶段的工艺要求,制定相应的温度设定值变化曲线;3. 手动输入各阶段发酵温度的设定值作为控制参量,并将“设定值”和“阶段”液晶显示;4. 比较设定温度和实际温度大小,显示“开/关冷却阀”,用发光二极管颜色区分两种状态。

四、课题所涉及主要参考资料[1] 邓荣. 基于单片机的啤酒发酵温度控制系统[J]. 工业控制计算机, 2008, 21(1): 58-58.[2] 向艳. C语言程序设计. [M]. 北京:电子工业出版社, 2008.[3] 徐爱钧.单片机原理应用教程-基于Proteus虚拟仿真[M]. 北京:电子工业出版社,2009.[4] 邓荣. 基于AT89S52单片机的啤酒发酵温度控制系统[J]. 国外电子测量技术, 2007, 26(11):59-61.[5] 丁元杰. 单片微机原理及应用(第3版)[M]. 北京: 机械工业出版社, 2007.五、进度安排周次工作内容预定目标13年1周查阅资料选题确定毕业设计题目13年2-3周收集相关资料并翻译基本完成外文资料的翻译13年4周下达任务书、撰写文献综述完成文献综述的撰写13年5周制定进度表、框图理解论文论证的基本思想13年6-7周研究啤酒发酵温度控制工艺掌握啤酒发酵的相关知识13年8-9周研究温度控制模块完成51单片机对温度控制模块的设计13年10-11周实现51单片机对各模块控制的整合完成51单片机对发酵温度控制的仿真13年12周对发酵温度控制流程形成论文思路并撰写论文草稿基本完成13年13周论文的修改、排版形成论文正文13年14-15周论文答辩资料收集完成资料收集,准备答辩13年16周论文答辩论文答辩六、毕业设计时间:2013 年 2 月25 日 2013 年 6 月14 日七、本毕业设计必须完成的内容1.调查研究、查阅文献和搜集资料。

发酵罐温度控制系统课程设计

发酵罐温度控制系统课程设计

专业课程设计报告题目:发酵罐温度控制课程:MATLAB学生姓名:任晨曦学生学号:1714010117年级:17级专业:自动化班级:1班指导教师:贾文晶机械与电气工程学院制2020年5月目录1、概述 (3)1.1温度对发酵的影响 (3)1.2发酵对温度的控制要求 (3)2、设计任务与要求 (4)2.1设计任务 (4)2.2设计要求 (4)3、控制方案设计 (5)3.1控制系统的选择 (5)3.2控制参数的选择 (5)3.3控制系统的方框图 (5)3.4调节规律的选择 (6)3.5调节器作用方式的选择 (7)4、simulink建模及仿真实验 (7)4.1Matlab简介 (7)4.2控制系统simulink建模 (7)4.2.1发酵罐温度数学模型的建立 (7)4.2.2执行器与温度检测变送器建立 (8)4.2.3主、副回路控制器建模 (8)4.3系统simulink仿真结果 (9)4.4系统优化及稳定性分析 (10)5、总结与体会 (10)六、参考文献 (11)1、概述1.1温度对发酵的影响微生物的生长繁殖及合成代谢产物都需要在合适的温度下才能进行。

温度的变化影响各种酶反应的速率和蛋白质的性质。

温度对菌体生长的酶反应和代谢产物合成的酶反应的影响往往是不同的。

温度能改变菌体合成代谢产物的方向。

并且发酵液的粘度、基质和氧气在发酵液中的溶解度和传递速率、某些机制的分解吸收速率等都受温度变化的影响,进而影响发酵动力学特性和产物的生物合成。

而温度的变化是发酵过程热能产生和散失的综合效应。

产生的因素有生物热、搅拌热,散热的因素有蒸发热、辐射热——向大气辐射的热、以及显热——水的蒸汽热和废弃因温度差异排放时所带走的热量。

1.2发酵对温度的控制要求开始可适当升高温度,以利于孢子萌发和菌体的生长繁殖,待发酵温度开始上升后,应保持在菌体的最适生长温度,到主发酵旺盛阶段,温度应控制在比最适生长温度低一些,既代谢产物合成的最适温度,到发酵后期,温度下降,此时适当升温可提高产量。

基于PLC的啤酒发酵自动控制系统设计

基于PLC的啤酒发酵自动控制系统设计

基于PLC的啤酒发酵自动控制系统设计一、引言啤酒是一种古老的饮料,经过发酵产生。

在传统的啤酒生产过程中,发酵过程需要精确的控制,以保证最终产品的质量和口感。

为了提高生产效率和产品质量,采用自动控制系统对啤酒发酵过程进行控制是非常必要的。

PLC(可编程逻辑控制器)是一种用于工业自动化控制系统的控制器,它通过编程来实现逻辑控制、定时控制、计数控制等功能。

本文将设计一种基于PLC的啤酒发酵自动控制系统,以实现对啤酒发酵过程的自动控制。

二、系统设计1. 系统架构设计本系统采用了PLC作为控制器,传感器负责采集发酵过程中的温度、压力和PH值等参数,控制执行元件包括发酵罐内的搅拌器、温度控制装置和酵母添加装置。

整个系统的架构如图1所示:PLC通过传感器采集的数据进行逻辑控制,控制发酵罐内的搅拌器、温度控制装置和酵母添加装置,从而实现对发酵过程的自动控制。

2. 系统功能设计(1)温度控制在啤酒发酵过程中,温度是一个非常重要的参数。

过高或过低的温度都会影响发酵速率和产品质量。

系统需要能够对发酵罐内的温度进行实时监测,并根据预设的温度范围进行控制。

当温度过高时,系统应该能够通过控制冷却装置来降低温度;当温度过低时,系统应该能够通过控制加热装置来提高温度。

(3)压力控制在发酵罐内,产生的二氧化碳会增加罐内的压力。

系统应该能够对罐内的压力进行实时监测,并根据预设的压力范围进行控制。

当压力过高时,系统应该能够通过释放装置来释放二氧化碳,以降低罐内的压力。

3. 系统软件设计PLC的软件设计主要包括控制逻辑设计和人机界面设计。

控制逻辑设计是将控制任务分解为各个子任务,并设计每个子任务的控制逻辑;人机界面设计是设计用于监控和操作的人机界面。

(1)控制逻辑设计控制逻辑设计首先需要确定系统的控制目标,然后根据控制目标设计各个子任务的控制逻辑,最后将各个子任务的控制逻辑组合成系统的整体控制逻辑。

对于温度控制任务,可以设计如下的控制逻辑:IF 温度 < 设定温度 - 2 THEN 打开加热装置IF 温度 > 设定温度 + 2 THEN 打开冷却装置IF 设定温度 - 2 <= 温度 <= 设定温度 + 2 THEN 关闭加热装置和冷却装置(2)人机界面设计人机界面设计主要包括监控界面和操作界面。

啤酒发酵的控制系统设计

啤酒发酵的控制系统设计

D S C 系统的管理软件采用Wi dws n o 编程,界面丰富、 操作直观、易学实用。上位机能够实现以下功能 【 :①工 作状态概览、动态测量显示 、实时阀门状态反馈;②手动
自 动控制方式无扰动切换;④所用工艺曲线、P D I 参数和报
警限等能够进行在线修改;④主要运行参数可以实时或随
pr c s e m e a i n,a o m e s o e c s t m f e o p r s n, e pe t v l o e s of f r nt t o nd c m nt n a h ys e a t r c m a i o r s c i e y.
RESE ARCH 究 研
啤酒发酵 的控制系统设计
张子军
( 东省 农业 机 械研 究所 ,广 州 5 O 5) 广 16 O

要 基于啤酒发酵工艺的研究,全面介绍 了D S A , C 、C N ̄线及P C L 在发酵过程控制 中的应用,并比较了两种
系统之间的优劣。本文详细探论了P C L 模块的配置与设计 、模糊P D I 控制系统的优势和作用步骤 。
Abs r t act :Th o g t pr r u h he e—s u y o t e e m e at o t c t d n h f r nt i n e hni e o b e t e qu s f e r, h pr s nt e e pape r r undl o y i r d e t appl c t o nt o uc s he i a i n o DCS, AN us, n PLC o he o r l ng f C b ad t t c nt ol i
关键词 发酵工艺 C 总线 模块设计 模糊P D A I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古科技大学信息工程学院过程控制课程设计报告题目:啤酒发酵罐的温度控制系统设计学生姓名:***学号:**********专业:测控技术及仪器班级:09测控2班指导教师:***前言啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。

近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。

国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。

啤酒的发酵过程是一个微生物代谢过程。

它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。

在发酵期间,工艺上主要控制的变量是温度、糖度和时间。

啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。

由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。

因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。

这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。

在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。

因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。

在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

1 工艺过程概述1.1啤酒生产工艺过程啤酒生产过程主要包括糖化、发酵以及过滤分装三个环节。

1.1.1糖化糖化过程是把生产啤酒的主要原料与温水混合,利用麦芽的水解酶把淀粉、蛋白质等分解成可溶性低分子糖类、氨基酸、脉、肤等物质,形成啤酒发酵原液-麦汁。

1.1.2发酵啤酒发酵时候,会产生热量,温度一直在升高。

当发酵液温度升到最适合酵母生长的10℃时候就要开始控不让它继续升温,主要是采用将发酵罐外壁周围的通过冷媒来降温。

一般冷媒是用氨液或者酒精水,冷媒易挥发气化吸热。

主酵结束要进行双乙酰还原自然升温到12℃。

还原结束,降温到-1.5℃进行冷储。

啤酒发酵是一个微生物代谢过程,简单的说是把糖化麦汁经酵母发酵分解成C 2H5OH, CO2, H2O的过程,同时还会产生种类繁多的中间代谢物双乙酞、脂肪酸、高级醇、酮等,这些代谢产物的含量虽然极少,但它们对啤酒的质量和口味的影响很大,它们的产生主要取决于发酵温度。

一般认为,低温发酵可以降低双乙酞、脂类等代谢物的含量,提高啤酒的色泽和口味;高温发酵可以加快发酵速度,提高生产效率和经济效益。

总之,如何掌握好啤酒发酵过程中的发酵温度,控制好温度的升降速率是决定啤酒生产质量的核心内容。

啤酒发酵是个放热过程,如不加以控制,罐内的温度会随着发酵生成热的产生而逐渐上升,目前大多数对象是采用往冷却夹套内通入制冷酒精水混合物或液氨来吸收发酵过程中不断放出的热量,从而维持适宜的发酵温度。

整个发酵过程分前酵和后酵两个阶段。

(1)前酵这个阶段又称为主发酵。

麦汁接种酵母进入前酵,接种酵母几小时以后开始发酵,麦汁糖度下降,产生CO2并释放生化反应热,使整个罐内的温度逐渐上升。

经过2~3天后进入发酵最为旺盛的高泡期再经过2~3天,糖度进一步降低,降糖速度变慢,酵母开始沉淀,当罐内发酵糖度达标后进行降温转入后酵阶段。

普通啤酒在前酵阶段,一般要求控制在12℃左右,降温速率要求控制在0.3 0C /h。

(2)后酵当罐内温度从前酵的12℃降到5℃左右时后酵阶段开始,这一阶段最重要的是进行双乙酞还原,此外,后酵阶段还完成了残糖发酵,充分沉淀蛋白质,降低氧含量,提高啤酒稳定性。

一旦双乙酞指标合格,发酵罐进入第二个降温过程,以0.150C/h的降温速率把罐内发酵温度从5℃降到0~-1℃左右进行贮酒,以提高啤酒的风味和质量。

经过一段时间的贮酒,整个发酵环节基本结束。

发酵温度的工艺设定典型曲线如图1-1所示。

图1-1发酵工艺温度设定曲线1.1.3啤酒的过滤和灌装前、后酵结束以后,啤酒将通过过滤机和高温瞬时杀菌,进行生物以及胶体稳定处理,然后灌装。

啤酒过滤是一种分离过程,其主要目的是把啤酒中仍然存在的酵母细胞和其它混浊物从啤酒中分离出去,否则这些物质会在以后的时间里从啤酒中析出,导致啤酒混浊,目前多采用硅藻土过滤方式。

如果啤酒中仍含有微生物(杂菌),则微生物可以在啤酒中迅速繁殖,导致啤酒混浊,其排泄的代谢产物甚至使啤酒不能饮用。

杀菌就是啤酒在灌装之前对其进行生物稳定性处理的最后一个环节。

1.2被控对象——啤酒发酵罐简介1.2.1啤酒发酵过程温控对象特性(1) 时滞很大生化反作用产生的生化反应热导致罐内发酵温度的升高,为了维持适宜的发酵温度,通常是往发酵罐冷却夹套内通入酒精水或液态氨,来带走多余的反应热。

由于罐内没有搅拌装置和加热装置,冷媒发酵液间主要依靠热传导进行热量交换,发酵液内部存在一定的对流,影响到测温点,这就使得控制量的变化后,要经过一段时间,被控量才发生变化,因此这类系统会表现出很大的时滞效应。

(2) 时变性发酵罐的温控特性主要取决于发酵液内生化反应的剧烈程度。

而啤酒发酵是从起酵、旺盛、衰减到停止不断变化的间歇生产过程,在不同的发酵阶段,酵母活力不同,造成酒体温度特性变化,因此对象特性具有明显的时变性。

(3) 大时间常数发酵罐体积大,发酵液体通过罐壁与冷却水进行热交换的过程比较慢。

(4) 强关联因为罐内酒体的对流,所以在任一控制量的变化均会引起三个被控量的变化。

1.2.2锥形发酵罐工艺要求①有效的控制原料质量和糖化效果,每批次麦汁组成应均匀,如果各批麦汁组成相差太大,将会影响到酵母的繁殖与发酵。

②罐的容量应与每次糖化的冷麦汁量以及每天的糖化次数相适应,要求在16h内装满一罐,最多不超过24h,进罐冷麦汁对热凝固物要尽量去除,如能尽量分离冷凝固物则更好。

③冷麦汁的温度控制要考虑每次麦汁进罐的时间间隔和满罐的次数,如果间隔时间长次数多,可以考虑逐批提高麦汁的温度,也可以考虑前一、二批不加酵母,之后的几批将全量酵母按一定比例加入,添加比例由小到大,但应注意避免麦汁染菌。

也有采用前几批麦汁添加酵母,最后一批麦汁不加酵母的办法。

④冷麦汁溶解氧的控制可以根据酵母添加量和酵母繁殖情况而定,一般要求每批冷麦汁应按要求充氧,混合冷麦汁溶解氧不低于8mg/L。

⑤控制发酵温度应保持相对稳定,避免忽高忽低。

温度控制以采用自动控制为好。

⑥应尽量进行CO2回收,以便于进行CO2洗涤、补充酒中CO2和以CO2背压等。

⑦发酵罐最好采用不锈钢材料制作,以便于清洗和杀菌,当使用碳钢制作发酵罐时,应保持涂料层的均匀与牢固,不能出现表面凹凸不平的现象,使用过程中涂料不能脱落。

发酵罐要装有高压喷洗装置,喷洗压力应控制在0.39~0.49MPa 或更高。

1.2.3发酵罐温度控制工艺简介发酵罐是啤酒生产的主要设备之一,罐内灌有百吨以上的麦汁,冷媒酵母在罐内发生化学反应产生热量,使罐内麦汁温度上升。

罐内设有三个测温点,传感器采用Ptl00热电阻(RTD),其铂电阻探头插入灌内0.5米左右。

罐的外壁设置有上、中、下三段冷却套和三台两位式电动阀。

通过电动阀调节冷却套内的冷媒体流量以实现对罐内麦汁温度的控制。

某厂的冷媒体采用液氨来降温。

上、中、下三台电动阀都可独立开关的,该厂情况较为特殊,上阀开关主要影响的是中部温度,中阀开关主要影响下部温度,下阀安装在出口处附近,也就是说三个测温点与三套冷却套不是一一对应的。

上部测温点由于安装过高,酒体(把主要由麦汁和酵母组成的发酵罐内的液体称之为酒体)较浅的话,测量的温度为气液混和物的温度,因此一般不作为被控量,同样由于酵母沉积在发酵罐的锥底部,故下温也不宜作为被控量。

所以以控制中温为主,兼顾上温和下温,以通过上阀控制为主,以中阀为辅,如图1-2所示。

在发酵的过程中,温度在不断的升高,当达到上限温度时,要打开制冷设备,通过酒精在冷却管内循环使罐内的温度降下来。

当发酵温度低于工艺要求的温度时,关闭冷媒,则啤酒按工艺要求继续发酵,整个发酵过程大约20多天完成。

因此,控制好啤酒发酵过程中温度及其升降速率是决定啤酒质量和生产效率的关键。

图1-2 发酵罐工艺示意图2 锥形发酵罐温度控制系统2.1啤酒发酵温控系统设计根据发酵罐的结构以及发酵工艺特点,采用串级控制系统,充分发挥它的优点,合理准确的测量并控制发酵罐温度。

发酵罐中温度串级控制系统图如下所示:图2-1锥形发酵罐中温度串级控制系统图在系统设计时,必须明白主、副被控参数的选择;副回路的设计;主、副回路的关系以及主副调节器控制规律的选择及其正反作用方式的确定等问题。

2.1.1发酵温控系统主、副被控参数的选取设计被控系统时,选取的参数要能有效的反映工艺状况。

根据工艺主参数为发酵罐中麦汁的温度。

而副参数的选取是串级控制系统的关键所在,副回路设计的合理与否决定了串级控制的特点能否发挥。

根据副回路的设计原则,副被控参数的选择应使副回路的时间常数小,控制通道短,反应灵敏,副回路包含被控对象所受的主要干扰,当对象具有较长纯滞后时间时,应尽量将纯滞后部分包含在主对象中。

因此,选取冷却液的流量作为副被控参数,构成如图所示的串级温度控制系统框图。

图3-2 发酵罐中温度控制系统方框图2.1.2主、副调节器调节规律的选择串级控制系统中主副调节器的类型是根据控制要求进行选择的。

(1)主调节器调节规律的选择在串级控制系统中,主参数是生产工艺的主要指标,直接关系着产品质量,工艺要求比较严格。

因为主被控参数为发酵罐的温度,对象控制通道容量滞后较大,为了克服容量滞后,所以就要选用PID调节规律。

(2)副调节器调节规律的选择串级控制系统设置副参数的目的在于保证和提高主参数的控制质量,副回路是一个随动系统,它的给定值随主调节器输出的变化而变化。

在选择流量为副被控参数时,由于比例调节规律对噪声敏感,为保持系统稳定,比例度必须选得较大,比例控制作用较弱,为此引入积分作用,采用PI调节规律。

2.1.3主、副调节正、反作用方式的选择为保证串级控制系统的正常运行,串级系统中主、副调节器的正、反作用必须正确选择。

副调节器的正反作用只和副回路有关,与主回路无关。

根据工艺要求,为保证产品质量,调节阀选择关闭形式,其放大系数为“-”,当阀门开度增大时,进入冷却套的流量增加,则副对象的放大系数为“+”根据副环放大系数符号为“+”的原则,副调节器为“-”,所以选择正作用方式。

相关文档
最新文档