2020年高考圆锥曲线知识点汇编.
(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
2020年高考圆锥曲线知识点汇总(精选)

(4)对称性:两条对称轴 x 0, y 0 ,一个对称中心(0,0)
(5)准线方程:两条准线 x a2 c
(6)离心率: e c ( e 1 ) a
(7)渐近线方程: y b x a
(8)焦点半径:“长加短减” 原则:
焦点半径公式:对于双曲线方程 x 2 a2
y2 b2
1( F 1,F 2 分别为双曲线的左、右焦点或分别为双
高考圆锥曲线知识点汇总
知识摘要:
1、椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 2、双曲线及其标准方程.双曲线的简单几何性质. 3、抛物线及其标准方程.抛物线的简单几何性质.
一、椭圆方程.
1. 椭圆的定义:平面内与两个定点 F 1 ,F 2 的距离之和等于常数 2a (大于 F1F2 )的点的 轨迹叫做椭圆.其中两个定点 F 1 ,F 2 为椭圆的两个焦点,两焦点间的距离 F1F2 叫做椭圆的
F 1,F 2 为 左 、 右 焦 点 , 则
PF 1 a ex 0 , PF 2 a ex 0
y2 Ⅱ、设 P(x 0 , y 0 ) 为椭圆 a2
x2 b2
1(a b 0) 上的一点, F 1,F 2 为上、下焦点,则
PF 1 a ey 0 , PF 2 a ey 0
(8)通径:垂直于
Байду номын сангаас
(4)对称性:两条对称轴 x 0, y 0 ,一个对称中心(0,0)
(5)准线:两条准线 x a2 c
(6)离心率: e c ( 0 e 1),其中 e 越小,椭圆越圆; e 越大,椭圆越扁。 a
(7)焦点半径:“左加右减”
I、设
P(x0 ,y0) 为 椭 圆
x2 a2
y2 b2
高考圆锥曲线知识点汇总(精选)课件.doc

高考圆锥曲线知识点汇总知识摘要:1、椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.2、双曲线及其标准方程.双曲线的简单几何性质.3、抛物线及其标准方程.抛物线的简单几何性质.一、椭圆方程 .1. 椭圆的定义:平面内与两个定点F1 ,F2 的距离之和等于常数2a (大于 F 1F 2 )的点的轨迹叫做椭圆 . 其中两个定点 F 1,F 2 为椭圆的两个焦点, 两焦点间的距离 焦距.F F 叫做椭圆的1 2第一定义:当 P FPFaF F ,无轨迹122 1 2当 P FPFa F F ,轨迹是以 122 1 2F , 1F 为端点的线段2当 P FPFa F F ,轨迹为椭圆1221 2第二定义:椭圆上的点到对应焦点的距离与到对应准线的距离的比等于离心率 e . 切记:“ 点点距为分子、点线距为分母 ”,其商即是离心率 e . 如图:P Fc 1eda1或P Fc2e da22、椭圆的标准方程: (1)中心在原点,焦点在x 轴上的椭圆的标准方程:22xy221( 0)a ba b(2)中心在原点,焦点在y 轴上的椭圆的标准方程:22yx221( 0) a ba b3、椭圆的一般方程:221( 0, 0) Ax ByA B22x y 4、焦点在 x轴上的椭圆的标准方程:122a b的参数方程为x y a b cos sin(其中 为参数) 5、椭圆 22xy221(a b 0)的几何性质:a b(1)顶点:( a,0) 和0, b ,其中长轴长为 2 a,短轴长为2b(2)焦点:两个焦点( c,0) ,焦距: 2 2F 1F 2c, c a b2(3)范围: a x a, b y b(4)对称性:两条对称轴x 0, y 0 ,一个对称中心(0,0 )2a(5)准线:两条准线xc(6)离心率: e ca(0 e 1),其中e越小,椭圆越圆;e越大,椭圆越扁。
(7)焦点半径:“左加右减”I 、设P(x0 ,y0 ) 为椭圆2 2x y2 2 1(a b 0)a b上的一点, F 1,F 2 为左、右焦点,则PF 1 a e0x,P F2 a e0 xⅡ、设P(x0, y0 ) 为椭圆2 2y x2 2 1(a b 0)a b上的一点, F 1,F 2 为上、下焦点,则PF 1 a ey0 , PF 2 a ey0(8)通径:垂直于x 轴且过焦点的弦叫做通经: d2 2b2 a2 2x y注:若P 是椭圆: 12 2a b上的点. F 1,F 2 为焦点,若 F 1PF 2 ,则PF 1F 2 的面积为2b (用余弦定理与PF1 PF 2 2a 可得)tan2二、双曲线方程.1. 双曲线的定义第一定义:平面内与两个定点F1 ,F2 的距离之差的绝对值等于常数 2 a (且的点的轨迹叫做双曲线. 02a F F )1 2当PF1 PF2 2a F1F2 ,轨迹为双曲线当PF1 PF2 2a F1F2 ,轨迹是以F1 ,F2 为端点的射线当PF1 PF2 2a F1F2 ,无轨迹第二定义:平面内到定点 F 的距离与它到定直线的距离的比为常数e(e 1)的点的轨迹叫做双曲线.MF如图:,d 为点M 到定直线的距离.ed切记:“点点距为分子、点线距为分母”,其商即是离心率e.2、双曲线的标准方程:(1)中心在原点,焦点在x 轴上的双曲线的标准方程:2 2x y2 2 1(a 0,b 0)a b(2)中心在原点,焦点在y 轴上的双曲线的标准方程:2 2y x2 2 1( 0, 0)a ba b3、双曲线的一般方程: 2 2 1( 0)Ax By A B4、双曲线2 2x y2 2 1( 0, 0)a ba b的几何性质:(1)顶点:( a,0) ,其中实轴长为 2 a,虚轴长为2b(2)焦点:两个焦点( c,0) ,焦距: 2 2F1F2 2c, c a b (3)范围:x a, y R(4)对称性:两条对称轴x 0, y 0 ,一个对称中心(0,0 )(5)准线方程:两条准线x2 a c(6)离心率: e ca(e 1)(7)渐近线方程:b y xa(8)焦点半径:“长加短减”原则:2 2x y焦点半径公式:对于双曲线方程1(F 1,F 2 分别为双曲线的左、右焦点或分别为双2 2a b曲线的上下焦点)MF MF 12exexaa构成满足MF1MF22aMMFF12exexaa(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)▲y▲yM' MF1MxxF 1 F2M'F2MF 1 eyaMF 2 eyaM F 1 eyaM F 2 eya5、等轴双曲线:双曲线x2 y2 a2 称为等轴双曲线,其渐近线方程为y x ,离心率 e 2 .三、抛物线方程.3. 设p 0,抛物线的标准方程、类型及其几何性质:2 y 2 2 px x 2 2 py x2 2 pyy 2px图形▲y▲y ▲y ▲yx x xxOO OO焦点p p p pF ( ,0) F ( ,0) F (0, ) F (0, )2 2 2 2准线x p2xp2yp2yp2范围x 0, y R x 0, y R x R, y 0 x R, y 0 对称轴x轴y 轴顶点(0,0)离心率 e 1半焦距p p p p PF 1x PF yPF x PF y1 112 2 2 224ac b b注:①ay2 by c x 顶点)(4a 2a.2 px p②y 2 ( 0) 则焦点半径P2 py pPF ; x 2 ( 0) 则焦点半径为x2Py.PF2③通径为2p,这是过焦点的所有弦中最短的.2④y 2px2(或x 2py )的参数方程为2x 2 ptx 2pt(或y 2 pt y 2 pt2)(t 为参数).注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F1,F2 的距离1.到两定点F1,F2 的距之和为定值 2 a (2离之差的绝对值为定值a>|F1F2|)的点的轨迹2 a (0<2 a<|F1F2|)的点的轨迹2.与定点和直线的距离2.与定点和直线的距离与定点和直线的距离相等之比为定值 e 的点的轨之比为定值 e 的点的轨的点的轨迹.迹.(0<e<1)迹.(e>1)图形略略略方标准2 2 2 2x y x y方程1( a b >0) 12 2 2 2a b a b(a>0,b>0) 2 2y px参数方程xy(参数a cosb sin为离心角)xyasecb tan(参数为离心角)xy2 pt2pt2程(t 为参数) 范围x 0a x a,b y b x a, y R中心原点O (0,0) 原点O(0,0)顶点( a,0),(0, b) (a ,0) ,( a ,0) (0,0)对称轴x轴,y 轴;x轴,y 轴 ; x轴长轴长 2 a,短轴长2b 实轴长 2 a, 虚轴长2b.焦点pF1 ( c,0), F2 (c,0) F1( c,0), F2 (c,0) ,0)F (2 焦距2c (c= 2 b2a )2c (c=2 b2a )离心率 c ce (0 e 1) e (e 1)e=1a a准线x=2acx=2acxp2渐近线y=±ba x焦半径r a exr (ex a) r x p 2通径22b 2b22pa a焦参数a 2 2aPc c。
高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
圆锥曲线知识点全归纳(完整精华版)

焦点三角形面积公式椭圆=b²tan(a/2)=c|y0|双曲线=b²cot(a/2)。
即椭圆:x0x/a^2+y0y/b^2=1;
双曲线:x0x/a^2-y0y/b^2=1;
抛物线:y0y=p(x0+x)
四、焦准距
圆锥曲线的焦点到准线的距离p叫圆锥曲线的焦准距,或焦参数。
椭圆的焦准距:p=(b^2)/c
双曲线的焦准距:p=(b^2)/c
抛物线的准焦距:p
五、通径
圆锥曲线中,过焦点并垂直于轴的弦成为通径。
2.点差法,或称代点相减法。
设出弦的两端点坐标(x1,y1)和(x2,y2),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0由斜率为(y1-y2)/(x1-x2)可以得到斜率的取值。(使用时注意判别式的问题)
2)双曲线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:
1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2.
椭圆的通径:(2b^2)/a
双曲线的通径:(2b^2)/a
抛物线的通径:2p
六、圆锥曲线的性质对比
见下图:
七、圆锥曲线的中点弦问题
已知圆锥曲线内一点为圆锥曲线的一弦中点,求该弦的方程
⒈联立方程法。
用点斜式设出该弦的方程(斜率不存在的情况需要另外考虑),与圆锥曲线方程联立求得关于x的一元二次方程和关于y的一元二次方程,由韦达定理得到两根之和的表达式,在由中点坐标公式的两根之和的具体数值,求出该弦的方程。
高中数学圆锥曲线知识点总结

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F-E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高中数学圆锥曲线知识点梳理+例题解析

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其 他几个亦成立。
②对称性:双曲线 x 2 y 2 1 关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点 a2 b2
是双曲线 x 2 y 2 1 的对称中心,双曲线的对称中心叫做双曲线的中心。 a2 b2
③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线 x 2 y 2 1的方程里,对称轴是 x, y 轴,所 a2 b2
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段 A1A2 、 B1B2 分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和 2b , a 和 b 分别叫做椭圆的长
半轴长和短半轴长。
由 椭 圆 的 对 称 性 知 : 椭 圆 的 短 轴 端 点 到 焦 点 的 距 离 为 a ; 在 RtOB2F2 中 , | OB2 | b , | OF2 | c , | B2F2 | a ,且 | OF2 |2 | B2F2 |2 | OB2 |2 ,即 c2 a2 b2 ;
y
b 所围成的矩形里;
②对称性:在曲线方程里,若以 y 代替 y 方程不变,所以若点 (x, y) 在曲线上时,点 (x, y) 也在曲线上,
所以曲线关于 x 轴对称,同理,以 x 代替 x 方程不变,则曲线关于 y 轴对称。若同时以 x 代替 x , y 代替 y
方程也不变,则曲线关于原点对称。
y2 的分
母的大小。例如椭圆 x2 y2 1( m 0 , n 0 , m n )当 m n 时表示焦点在 x 轴上的椭圆;当 m n 时 mn
表示焦点在 y 轴上的椭圆。
(2)椭圆的性质
①范围:由标准方程
x2 a2
y2 b2
1知 |
x |
a
,|
y | b ,说明椭圆位于直线 x
a ,
焦距。
椭圆和双曲线比较:
椭
圆
定义
| PF1 | | PF2 | 2a(2a | F1F2 |)
方程 焦点
x2 y2 1 a2 b2
F (c, 0)
x2 y2 1 b2 a2
F (0, c)
双
曲
线
|| PF1 | | PF2 || 2a(2a | F1F2 |)
x2 y2 1 a2 b2
以令 y 0 得 x a ,因此双曲线和 x 轴有两个交点 A
(a,0)
A2
(a,0)
,他们是双曲线
x a
2 2
y2 b2
1的顶点。
令 x 0 ,没有实根,因此双曲线和 y 轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个
端点。
2)实轴:线段 A A2 叫做双曲线的实轴,它的长等于 2a, a 叫做双曲线的实半轴长。虚轴:线段 B B2 叫做双
y2 x2 1 a2 b2
F (c, 0)
F (0, c)
注意:如何用方程确定焦点的位置! (2)双曲线的性质
①范围:从标准方程 x 2 y 2 1 ,看出曲线在坐标系中的范围:双曲线在两条直线 x a 的外侧。即 x 2 a 2 , a2 b2
x a 即双曲线在两条直线 x a 的外侧。
曲线的虚轴,它的长等于 2b, b 叫做双曲线的虚半轴长。
④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从
x2
图上看,双曲线
y2
1 的各支向外延伸时,与这两条直线逐渐接近。
a2 b2
⑤等轴双曲线:
1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式: a b ; 2)等轴双曲线的性质:(1)渐近线方程为: y x ;(2)渐近线互相垂直。
a2
y2 b2
1( a b 0 )(焦点在 x 轴上)或 y 2 a2
x2 b2
1( a b 0 )(焦点在 y 轴
上)。
注:①以上方程中 a, b 的大小 a b 0 ,其中 b2 a2 c2 ;
②在
x2 a2
y2 b2Biblioteka 和y2 a2x2 b2
1两个方程中都有 a
b
0 的条件,要分清焦点的位置,只要看 x2 和
④离心率:椭圆的焦距与长轴的比 e c 叫椭圆的离心率。∵ a c 0 ,∴ 0 e 1,且 e 越接近1, c 就 a
越接近 a ,从而 b 就越小,对应的椭圆越扁;反之, e 越接近于 0 , c 就越接近于 0 ,从而 b 越接近于 a ,这时 椭圆越接近于圆。当且仅当 a b 时, c 0 ,两焦点重合,图形变为圆,方程为 x2 y2 a2 。
2.双曲线 (1)双曲线的概念
平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(|| PF1 | | PF2 || 2a )。 注 意 : ① 式 中 是 差 的 绝 对 值 , 在 0 2a | F1F2 | 条 件 下 ; | PF1 | | PF2 | 2a 时 为 双 曲 线 的 一 支 ; | PF2 | | PF1 | 2a 时为双曲线的另一支(含 F1 的一支);②当 2a | F1F2 | 时, || PF1 | | PF2 || 2a 表示两条射 线;③当 2a | F1F2 | 时,|| PF1 | | PF2 || 2a 不表示任何图形;④两定点 F1, F2 叫做双曲线的焦点, | F1F2 | 叫做
所以,椭圆关于 x 轴、 y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心
叫椭圆的中心;
③顶点:确定曲线在坐标系中的位置,常需要求出曲线与 x 轴、 y 轴的交点坐标。在椭圆的标准方程中,令
x 0 ,得 y b ,则 B1(0, b) , B2 (0, b) 是椭圆与 y 轴的两个交点。同理令 y 0 得 x a ,即 A1(a, 0) , A2 (a, 0) 是椭圆与 x 轴的两个交点。
圆锥曲线的方程与性质
1.椭圆 (1)椭圆概念
平面内与两个定点 F1 、 F2 的距离的和等于常数 2 a (大于 | F1F2 | )的点的轨迹叫做椭圆。这两个定点叫做椭圆
的焦点,两焦点的距离 2c 叫椭圆的焦距。若 M 为椭圆上任意一点,则有| MF1 | | MF2 | 2a 。
x2
椭圆的标准方程为: