2020-2021苏州新区一中高二数学上期中试题(含答案)
2020-2021苏州新区二中高一数学上期中试卷(含答案)

2020-2021苏州新区二中高一数学上期中试卷(含答案)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .23.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .134.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .5.函数()111f x x =--的图象是( ) A . B .C .D .6.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .17.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,49.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .10.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<11.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞, C .[1,1)- D .(3,1]--12.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>二、填空题13.函数()f x =________. 14.若函数()y f x =的定义域是[0,2],则函数()g x =的定义域是__________.15.函数()f x 的定义域是__________.16.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.17.已知2a =5b =m ,且11a b+=1,则m =____. 18.关于下列命题:①若函数2xy =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭; ③若函数2y x =的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤;④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上). 19.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.20.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)三、解答题21.已知2256x ≤且21log 2x ≥,求函数2()log 2xf x =⋅的最大值和最小值. 22.已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2xg x k =-;(1)求m 的值;(2)当[1,2]x ∈时,记()f x 、()g x 的值域分别是A 、B ,若A B A ⋃=,求实数k 的取值范围;23.已知函数()()2,,f x ax bx c a b c R =++∈.(1)若0a <,0b >,0c =且()f x 在[]0,2上的最大值为98,最小值为2-,试求a ,b 的值;(2)若1c =,102a <<,且()2f x x ≤对任意[]1,2x ∈恒成立,求b 的取值范围.(用a 来表示)24.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围; (2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 25.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?26.已知函数())2log f x x =是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.3.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-,即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.4.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.6.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.7.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.8.D解析:D 【解析】 【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.9.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 10.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.11.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.12.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.二、填空题13.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.14.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈ ⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.15.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.16.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2]. 【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集. 易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.17.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.18.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主 解析:①②③【解析】【分析】通过定义域和值域的相关定义,及函数的增减性即可判断①②③④的正误.【详解】对于①,当0x ≤时,01y <≤,故①不正确;对于②,当2x >时,则1102x <<,故②不正确;对于③,当04y ≤≤时,也可能02x ≤≤,故③不正确;对于④,即2log 3x ≤,则08x <≤,故④正确.【点睛】本题主要考查定义域和值域的相关计算,利用函数的性质解不等式是解决本题的关键,意在考查学生的计算能力.19.y =a (1+b )x (x ∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案.【详解】设年产量经过x 年增加到y 件,第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2,第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3,…∴y =a (1+b %)x (x ∈N *).故答案为:y =a (1+b %)x (x ∈N *)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.20.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是 解析:68【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233k k a e a e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kt e -=,则1ln 3kt -= 两式相除可得2ln2531ln 3k kt -=-,即2lg 25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.三、解答题21.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】 熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.22.(1) 0 ; (2) [0,1]【解析】【分析】(1)根据幂函数的定义有2(=11)m -,求出m 的值,然后再根据单调性确定出m 的值.(2)根据函数()f x 、()g x 的单调性分别求出其值域,再由A B A ⋃=得B A ⊆,再求k 的取值范围.【详解】(1) 函数2242()(1)mm f x m x -+=-为幂函数, 则2(=11)m -,解得:0m =或2m =.当0m =时,2()f x x =在(0,)+∞上单调递增,满足条件.当2m =时,2()f x x -=在(0,)+∞上单调递减,不满足条件.综上所述0m =.(2)由(1)可知, 2()f x x =,则()f x 、()g x 在[1,2]单调递增, 所以()f x 在[1,2]上的值域[1,4]A =,()g x 在[1,2]的值域[2,4]B k k =--.因为A B A ⋃=,即B A ⊆,所以2144k k -≥⎧⎨-≤⎩,即10k k≥⎧⎨≤⎩,所以01k ≤≤. 所以实数k 的取值范围是[0,1].【点睛】本题考查幂函数的概念,函数值域和根据集合的包含关系求参数的范围,属于基础题.23.(1) 2,3a b =-=;(2) 当104a <≤时,5212a b a --≤≤-;当1142a <<时,21b a -≤≤-.【解析】【分析】(1)求得二次函数的对称轴,根据对称轴和区间的位置关系,分类讨论,待定系数即可求得,a b ;(2)对参数a 进行分类讨论,利用对勾函数的单调性,求得函数的最值,即可容易求得参数范围.【详解】(1)由题可知2y ax bx =+是开口向下,对称轴为02b a->的二次函数, 当22b a-≥时,二次函数在区间[]0,2上单调递增, 故可得0min y =显然不符合题意,故舍去; 当122b a ≤-<,二次函数在0,2b a ⎛⎫- ⎪⎝⎭单调递增,在,22b a ⎛⎫- ⎪⎝⎭单调递减, 且当0x =时,取得最小值,故0min y =,不符合题意,故舍去; 当012b a <-<时,二次函数在2x =处取得最小值,在2b x a=-时取得最大值. 则422a b +=-;29228b b a b a a ⎛⎫⎛⎫⨯-+⨯-= ⎪ ⎪⎝⎭⎝⎭,整理得292b a -=; 则24990b b --=,解得3b =或34b =-(舍), 故可得2a =-.综上所述:2,3a b =-=.(2)由题可知()21f x ax bx =++, 因为()2f x x ≤对任意[]1,2x ∈恒成立,即12ax b x++≤对任意[]1,2x ∈恒成立, 即122ax b x-≤++≤对任意[]1,2x ∈恒成立, 令()1g x ax b x =++,则()2max g x ≤,且()2min g x ≥-.因为102a <<> 2≥,即104a <≤时, ()g x 在区间[]1,2单调递减,故()()11max g x g a b ==++,()()1222min g x g a b ==++则112,222a b a b ++≤++≥-, 解得51,22b a b a ≤-≥--.此时,()5721022a a a ⎛⎫----=--< ⎪⎝⎭,也即5212a a --<-, 故5212a b a --≤≤-.2<<,即1142a <<时, ()g x 在⎛ ⎝单调递减,在2⎫⎪⎭单调递增. ()2min g x g b ==≥-,即2b ≥- 又因为()11g a b =++,()1222g a b =++, 则()()11202g g a -=-+>, 故()g x 的最大值为()11g a b =++,则12a b ++≤,解得1b a ≤-,此时()())2213140a a ---=-=-<,故可得21b a -≤≤-.综上所述: 当104a <≤时,5212a b a --≤≤-;当1142a <<时,21b a -≤≤-. 【点睛】本题考查二次函数动轴定区间问题的处理,以及由恒成立问题求参数范围,涉及对勾函数的单调性,属综合中档题.24.(1)2,73⎛⎫⎪⎝⎭;(2)12-或4. 【解析】【分析】(1)先利用对数运算求出32a =,可得出函数()y f x =在其定义域上是增函数,由()()3225f m f m -<+得出25320m m +>->,解出即可;(2)由题意得出272x x -=,解该方程即可. 【详解】(1)()log a f x x =Q ,则()()332log 3log 2log 12a a a f f -=-==,解得32a =, ()32log f x x ∴=是()0,∞+上的增函数,由()()3225f m f m -<+,得25320m m +>->,解得273m <<. 因此,实数m 的取值范围是2,73⎛⎫⎪⎝⎭; (2)()332227log log 2f x x x ⎛⎫=-= ⎪⎝⎭Q ,得272x x -=,化简得22740x x --=, 解得4x =或12x =-. 【点睛】本题考查对数运算以及利用对数函数的单调性解不等式,在底数范围不确定的情况下还需对底数的范围进行分类讨论,同时在解题时还应注意真数大于零,考查运算求解能力,属于中等题.25.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元【解析】设房屋地面的长为米,房屋总造价为元.26.(1) 1a = (2) [)4,+∞【解析】【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解.【详解】(1)因为())22log f x x a x =+是R 上的奇函数,所以()00f = , 即log 0a =,解得1a =.(2)由(1)可得())22log 1f x x x =+,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< . 因为奇函数())22log log f x x ==,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭, 因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-, 因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞.【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。
2020-2021江苏省苏州高新区第一中学高二上学期期初考试数学试题含答案

2020-2021学年江苏省苏州高新区第一中学高二上学期期初考试数学试题含答案2020—2021学年度上学期苏州新区一中高二期初考试数学(总分150分,完成时间120分钟)一、单选题(每题5分共40分,只有一个选项正确)1.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60名同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)()错误!第8行错误!第9行A。
07 B. 25 C。
42 D。
52 2. 函数f(x)=x sin x,x∈[-π,π]的大致图象是()错误!错误!错误!错误!3。
若函数y=f(x)的部分图象如图(1)所示,则图(2)所对应的函数解析式可以是()图(1)图(2)A。
y=f错误!B. y=f(2x-1)C。
y=f错误!D。
y =f错误!4. 鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的体积(容器壁的厚度忽略不计)的最小值为( )A . 2821πB 。
722πC 。
282πD . 以上结果都不对5。
已知3(,1),(1,log 4)a x b ==,若a b ,则3389221(log 9)(log 16)22x x x x x x --+++++的值为( ) A 。
143 B . 7 C . 103D 。
以上结果都不对6. 一半径为4。
8m 的水轮如图所示,水轮圆心O 距离水面2.4m ,已知水轮每60s 逆时针转动一圈,如果当水轮上点P从水中浮现时(图中点P 0)开始计时,则( )A 。
点P 第一次到达最高点需要10sB 。
在水轮转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间C 。
2020-2021苏州新区一中高三数学上期中试题(含答案)

2020-2021苏州新区一中高三数学上期中试题(含答案)一、选择题1.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20172.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-3.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或74.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5) 5.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .366.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .218.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .149.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5211.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-12.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <二、填空题13.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 14.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.15.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________16.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V,则ab =__17.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .18.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 19.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =,求ABC ∆的面积;(2)若25sin 5CAD ∠=,4=AD ,求CD 的长. 22.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.23.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积. 24.已知数列{}n a 的首项123a =,且当2n ≥时,满足1231312n n a a a a a -++++=-L . (1)求数列{}n a 的通项公式; (2)若2n n nb a =,n T 为数列{}n b 的前n 项和,求n T . 25.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .26.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=. (1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.2.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.3.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.4.A解析:A【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。
2020-2021苏州市高二数学上期中一模试题(含答案)

2020-2021苏州市高二数学上期中一模试题(含答案)一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.492.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x,方差为2s,则A.270,75x s=<B.270,75x s=>C.270,75x s><D.270,75x s<>3.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于11222422226C C CC+的是 ( )A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)4.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为 ( ) A.11347250C CCB.20347250C CCC.1233250C CC+D.1120347347250C C C CC+5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 6.用电脑每次可以从区间()0,1内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( ) A .127B .23C .827D .497.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +8.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个B .2个C .3个D .4个9.如图所示的程序框图的算法思路源于世界数学名题“3x +1问题”.执行该程序框图,若输入的N =3,则输出的i =A .9B .8C .7D .610.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④11.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1512.如图所示是为了求出满足122222018n +++>L 的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n二、填空题13.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.14.某班按座位将学生分为两组,第一组18人,第二组27人,现采用分层抽样的方法抽取5人,再从这5人中安排两人去打扫卫生,则这两人来自同一组的概率为__________.x,若这组数据的平均数、中位数、众数成等差数15.已知一组数据分别是,10,2,5,2,4,2列,则数据x的所有可能值为__________.16.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=____________.17.某班全体学生参加英语成绩的频率分布直方图如图,若低于60分的人数是15,则该班的学生人数是__________.18.如左下图是一次数学考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是_________。
2020-2021苏州苏州大学实验学校高二数学上期中第一次模拟试卷带答案

2020-2021苏州苏州大学实验学校高二数学上期中第一次模拟试卷带答案一、选择题1.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A .e m =0m =xB .e m =0m <xC .e m <0m <xD .0m <e m <x2.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .49 3.设,m n 分别是先后抛掷一枚骰子得到的点数,则方程20x mx n ++=有实根的概率为( ) A .1936B .1136C .712D .124.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长5.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A .23B .13C .12D .5126.用秦九韶算法求多项式()54227532f x x x x x x =+++++在2x =的值时,令05v a =,105v v x =+,…,542v v x =+,则3v 的值为( )A .83B .82C .166D .1677.运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >8.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为( )A .35B .13C .415D .159.下列说法正确的是( )A .若残差平方和越小,则相关指数2R 越小B .将一组数据中每一个数据都加上或减去同一常数,方差不变C .若2K 的观测值越大,则判断两个分类变量有关系的把握程度越小D .若所有样本点均落在回归直线上,则相关系数1r =10.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤L ,()1150k b k ≤≤为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( ) A .12150b b b M n++=LB .12150150b b b M ++=LC.12150b b b Mn++>LD.12150150b b bM++>L11.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.712.设点(a,b)为区域40x yxy+-≤⎧⎪>⎨⎪>⎩内任意一点,则使函数f(x)=2ax2bx3-+在区间[12,+∞)上是增函数的概率为A.13B.23C.12D.14二、填空题13.判断大小,,,,则、、、大小关系为_____________.14.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__. 15.如图,四边形ABCD为矩形,3AB=,1BC=,以A为圆心,1为半径作四分之一个圆弧»DE,在DAB∠内任作射线AP,则射线AP与线段BC有公共点的概率为________.16.如图所示,程序框图(算法流程图)的输出值x=________.17.执行如图所示的算法流程图,则输出x 的值为__________.18.已知样本数据12345,,,,a a a a a 的方差222222123451(20)5s a a a a a =++++-,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为__________.19.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为ˆˆ1.02yx a =+,则实数ˆa =__________. 20.已知x ,y 取值如表,画散点图分析可知y 与x 线性相关,且求得回归方程为$35y x =-,则m 的值为__________.x0 13 5 6y 1 2m 3m - 3.8 9.2三、解答题21.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验; (Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出 y 关于x 的线性回归方程 ;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?附:对于一组数据11(,)u v ,2,2)u v ( ,…,(,)n n u v ,其回归直线V u αβ=+ 的斜率和截距的最小二乘估计分别为i 1i i i 12i n()(?)u )ˆ(n u u v u β==∑-=∑-nn ,ˆ-ˆu ανβ= . 22.某种设备的使用年限x (年)和维修费用y (万元),有以下的统计数据:(Ⅰ)画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (Ⅲ)估计使用年限为10年,维修费用是多少万元?(附:线性回归方程中1122211()()()ˆˆˆnni i i ii i nni ii i x x y y x y nxyb x x xnx ay bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑,其中11ni i x x n ==∑,11ni i y y n ==∑).23.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F .享受情况如下表,其中“d ”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访. 员工 项目 ABCDEF子女教育 ○ ○ × ○ × ○ 继续教育 × × ○ × ○ ○ 大病医疗×× × ○ × × 住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人○○×××○(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.24.为了调查教师对教育改革认识水平,现从某市年龄在[]20,45的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在[)[)[]30,35,35,40,40,45中用分层抽样的方法选取6名教师代表.(1)求年龄在[)35,40中的教师代表人数;(2)在这6名教师代表中随机选取2名教师,求在[)35,40中至少有一名教师被选中的概率.25.某“双一流A 类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数x ; (2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设区间[)1.85,2.15Ω=,月薪落在区间Ω左侧的每人收取400元,月薪落在区间Ω内的每人收取600元,月薪落在区间Ω右侧的每人收取800元; 方案二:每人按月薪收入的样本平均数的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?26.某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x (单位:千万元)对年销售量y (单位:千万件)的影响,统计了近10年投入的年研发费用i x 与年销售量()1,2,,10i y i =L 的数据,得到散点图如图所示:(Ⅰ)利用散点图判断,y a bx =+和dy c x =⋅(其中c ,d 为大于0的常数)哪一个更适合作为年研发费用x 和年销售量y 的回归方程类型(只要给出判断即可,不必说明理由);(Ⅱ)对数据作出如下处理:令ln i u x =,ln i y υ=,得到相关统计量的值如下表:根据(Ⅰ)的判断结果及表中数据,求y 关于x 的回归方程; (Ⅲ)已知企业年利润z (单位:千万元)与x ,y 的关系为27z y x e=-(其中2.71828e =L ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据()()()1122,,,,,,n n u u u υυυL ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆnniii ii i nni i i i u u u nu u uu nuυυυυβ====---==--∑∑∑∑,ˆˆˆu αυβ=-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即e m =5.5,5出现的次数最多,故0m =5,23341056637282921030x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈5.97于是得0m <e m <x . 考点:统计初步.2.C解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==,故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .3.A解析:A 【解析】由题意知本题是一个等可能事件的概率, 试验发生包含的事件数是6×6=36种结果, 方程x 2+mx +n =0有实根要满足m 2−4n ⩾0, 当m =2,n =1 m =3,n =1,2 m =4,n =1,2,3,4 m =5,n =1,2,3,4,5,6, m =6,n =1,2,3,4,5,6 综上可知共有1+2+4+6+6=19种结果∴方程x 2+mx +n =0有实根的概率是1936; 本题选择A 选项.4.D解析:D 【解析】 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项. 【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】分析:可以按照等可能时间的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式求解.详解:因为a 是抛掷一枚骰子得到的点数,所以试验发生包含的事件总数为6, 方程220x ax ++=有两个不等实根,所以280a ->, 以为a 为正整数,所以3,4,5,6a =,即满足条件的事件有4种结果,所以所求的概率为4263P ==,故选A. 点睛:本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω.6.A解析:A 【解析】【分析】利用秦九韶算法,求解即可.【详解】利用秦九韶算法,把多项式改写为如下形式:()((((75)3)1)1)2f x x x x x=+++++按照从里到外的顺序,依次计算一次多项式当2x=时的值:07v=172519v=⨯+=2192341v=⨯+=3412183v=⨯+=故选:A【点睛】本题主要考查了秦九韶算法的应用,属于中档题.7.D解析:D【解析】运行该程序,第一次,1,k2x==,第二次,2,k3x==,第三次,4,k4x==,第四次,16,k5x==,第五次,4,k6x==,第六次,16,k7x==,第七次,4,k8x==,第八次,16,k9x==,观察可知,若判断框中为5k≥.,则第四次结束,输出x的值为16,满足;若判断框中为4k>.,则第四次结束,输出x的值为16,满足;若判断框中为9k≥.,则第八次结束,输出x的值为16,满足;若判断框中为7k>.,则第七次结束,输出x的值为4,不满足;故选D.8.C解析:C【解析】【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案.【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615C p C ==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115C p C ==;故12415p p p =+=. 故选:C . 【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.9.B解析:B 【解析】 【分析】由残差平方和越小,模型的拟合效果越好,可判断A ;由方差的性质可判断B ;由的随机变量2K 的观测值的大小可判断C ;由相关系数r 的绝对值趋近于1,相关性越强,可判断D .【详解】对于A ,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,相关指数2R 越大,故A 错误;对于B ,将一组数据的每一个数据都加上或减去同一常数后,由方差的性质可得方差不变,故B 正确;对于C ,对分类变量X 与Y ,它们的随机变量2K 的观测值越大,“X 与Y 有关系”的把握程度越大,故C 错误;对于D ,若所有样本点均落在回归直线上,则相关系数1r =,故D 错误. 故选:B. 【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.10.A解析:A 【解析】 【分析】由于选项中必有一项正确,故本选择题利用特殊法解决.设2n =,这2名学生的得分分别为150,150.则这2名学生中得分至少为(1150)k k 剟分的人数分别为:2,2,⋯,2,2.一共有150个“2”,计算12150b b b n++⋯+的值,再对照选项即可得到答案.【详解】利用特殊法解决.假设2n =,这2名学生的得分分别为150,150. 则这2名学生中得分至少为1分的人数分别为:12b =, 这2名学生中得分至少为2分的人数分别为:22b =, 这2名学生中得分至少为3分的人数分别为:32b =,⋯这2名学生中得分至少为150分的人数分别为:1502b =, 即这2名学生中得分至少为(1150)k k 剟分的人数k b 分别为: 2,2,⋯,2,2.一共有150个“2”,从而得k 分的同学会被记k 次,所有k b 的和恰好是所有人得分的总和, 即12112k k b b b b a a -++⋯++=+, 从而121502222215015022b b b n ++⋯++++⋯+⨯===.12150222221502150150150b b b ++⋯++++⋯+⨯===.对照选项,只有(A )正确. 故选:A . 【点睛】本题主要考查众数、中位数、平均数、数列求和等基础知识,考查运算求解能力,考查特殊化思想思想、化归与转化思想.属于基础题.11.A解析:A 【解析】 【分析】根据框图,模拟计算即可得出结果. 【详解】程序执行第一次,0021s =+=,1k =,第二次,1=1+23,2S k ==,第三次,33211,3S k =+==,第四次,11112100,4S k =+>=,跳出循环,输出4k =,故选A. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.12.A解析:A 【解析】作出不等式组对应的平面区域如图所示:若f (x )=2ax 2bx 3-+在区间[12,+∞)上是增函数, 则02122a b a >⎧⎪-⎨-≤⎪⎩,即020a a b >⎧⎨-≥⎩,则A (0,4),B (4,0),由4020a b a b +-=⎧⎨-=⎩得8343a b ⎧=⎪⎪⎨⎪=⎪⎩,即C (83,43), 则△OBC 的面积S=14423⨯⨯=83. △OAB 的面积S=14482⨯⨯=. 则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为P=OBC OAB S S n n =13, 故选:A .二、填空题13.a<c<b<d 【解析】【分析】利用中间值01来比较得出a<00<b<10<c<1d>1再利用中间值12得出bc 的大小关系从而得出abcd 的大小关系【详解】由对数函数的单调性得a=log305<log解析:.【解析】 【分析】利用中间值、来比较,得出,,,,再利用中间值得出、的大小关系,从而得出、、、的大小关系.由对数函数的单调性得,,即,,即,,即.又,即, 因此,,故答案为.【点睛】本题考查对数值的大小比较,对数值大小比较常用的方法如下: (1)底数相同真数不同,可以利用同底数的对数函数的单调性来比较;(2)真数相同底数不同,可以利用对数函数的图象来比较或者利用换底公式结合不等式的性质来比较;(3)底数不同真数也不同,可以利用中间值法来比较.14.【解析】由题意可知与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积即所以与三个顶点的距离都大于2的区域的面积由几何概型的概率公式知其恰落在与三个顶点的距离都大于2的地方的概率为答案 解析:1515π- 【解析】由题意可知,与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积,即2π,所以与三个顶点的距离都大于2的区域的面积302π-。
江苏省苏州市2020-2021学年第一学期期中教学质量调研测试高二数学试题

苏州市2020-2021学年第一学期期中教学质量调研测试高二数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上. 1.已知a>b,c>d>0,则( ) 11.A abB.a-c> b-d .a b C c d4.4d d D c c 2.关于x 的不等式102x x的解集为()A.(-∞,-1]∪(2,+∞)B.[-1,2)C.(-∞,-1]U[2,+∞)D.[-1,2]3.设等差数列{}n a 的前n 项和为,n S 公差d=1,且6210S S ,则34a a ()A.2B.3C.4D.54.若不等式210ax bx的解集为{|12},x x则a+b 的值为( )1.4A B.01.2C D.15.已知等比数列{}n a 中,2346781,64a a a a a a ,则5a 的值为()A.±2B.-2C.2D.46.已知在数列{}n a 中,112,,1nn na a a n 则2020a 的值为(1.2020A 1.2019B 1.1010C 1.1009D 7.已知a>0,b>0,a+b=3,则411y ab的最小值为()9.8A 9.4B 9.2C D.98.已知数列{}n b 满足1212(),2n nb n 若数列{}n b 是单调递减数列,则实数λ的取值范围是()10.(1,)3A 110.(,)23B C.(-1,1) 1.(,1)2D二、多项选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,都有多个选项是正确的,全部选对得5分,选对但不全的得3分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置.上. 9.下列说法正确的有()A.“a=b”是“ac=bc”的充分不必要条件B.“11ab”是“a<b”的既不充分又不必要条件 C.“a≠0”是“ab≠0”的必要不充分条件 D.“a>b>0”是“(,2)nn a b nN n”的充要条件10.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则()8.0Aa B.当且仅当n= 7时,n S 取得最大值49.C S SD.满足0nS 的n 的最大值为1211.已知a,b 均为正实数,且a+b=1,则( ) 22.Aa b 的最小值为121.B abab的最小值为2.C b 的最大值为 11.D ab的最大值为4 12. 对于数列{},n a 定义:*1(),n nnb a n N a 称数列{}n b 是{}n a 的“倒差数列”下列叙述正确的有()A.若数列{}n a 单调递增,则数列{}n b 单调递增B.若数列{}n b 是常数列,数列{}n a 不是常数列,则数列{}n a 是周期数列C.若11(),2nna 则数列{}nb 没有最小值 D.若11()2,nna 则数列{}nb 有最大值 三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置.上. 13.命题“2,20xR x xm”的否定是____.14.在等比数列{}n a 中,已知3810,a a 则357a a 的值为____.15. 已知x>0,y>0,x+3y+xy=9,则x+ 3y 的最小值为_____.16.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.大衍数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史.上第一道数列题,其前10项依次是0, 2,4, 8,12, 18, 24, 32, 40, 50, 则此数列第19项的值为____.此数列的通项公式na ______. (本题第一空2分,第二空3分)四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在①f(x+1)-f(x)=2ax,②f (x)的对称轴为12x ,③f(1)=2这三个条件中任选一个,补充在下面问题中,并回答下面问题.已知二次函数2()1,f x ax bx若____________,且不等式f(x)≥0对任意的x ∈R 恒成立,试求实数a 的取值范围.18.(本小题满分12 分)已知数列{}n a 是公比q> 1的等比数列,若12314,a a a 且21a 是13,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)设2log ,n n b a 数列11{}n n b b 的前n 项和为,n T 若12n m T 对*n N 恒成立,求满足条件的自然数m 的最小值.19. ( 本小题满分12分) 已知数列{}n a 中,12,a 且满足1*122()n nna a n N .(1)求证:数列{}2n na是等差数列,并求数列{}n a 的通项公式;(2)求证:对于数列122}{,n n n b b b nb a 的充要条件是1(1)2.n nnb n20. (本小题满分12 分) 已知函数21(),21x xa f x a R(1)当a=1时,求不等式f (x)> 3的解集; (2)若不等式|(2)()|1f x f x 对任意x ∈[1,2]恒成立,求实数a 的取值范围.21. ( 本小题满分12 分)如图,某森林公园内有一条宽为2百米的笔直的河道(假设河道足够长),现拟在河道内围出一块直角三角形区域养殖观赏鱼.三角形区域记为△ABC,A 到河两岸距离AE,AD 相等,B,C 分别在两岸上,AB ⊥AC 便游客观赏,拟围绕△ABC 区域在睡眠搭建景观桥,桥的总长度(即△ABC 的周长)为l.设EC x 百米.(1) 试用x 表示线段BC 的长度;(2)求l 关于x 的函数解析式f(x),并求f (x)的最小值.22.(本小题满分12分)已知数列{}n a 为等差数列,公差为d,前n 项和为.n S (1)若10,2a d,求100S 的值;(2)若11,a {}n a 中恰有6项在区间1(,8)2内,求d 的取值范围;(3)若121,3,a S ,集合*{|},n Aa nN 问能否在集合A 中抽取到无穷多个不全相等的元素组成一个新数列{},n b ,使得此新数列{}n b 满足从第二项开始,每一项都等于它的前一项和后一项的调和平均数.若能,请举例说明;若不能,请说明理由. (注:数2aba b叫作数a 和数b 的调和平均数).。
江苏省苏州中学2020-2021学年高二上学期期中数学试题
学校:___________姓名:___________班级:___________考号:个相交平面能把空间分成个部分.
2.直线x-y+2=0的倾斜角是________
3.若点 在过点 和 的直线上,则实数 的值为________
(2)求直线 与直线 之间的距离;
(3)若过点 的直线 与直线 相交于点 ,且 ,求直线 的方程.
16.如图,在正方体 中.
(1)求证: 平面
(2)求证: 为异面直线
(3)求直线 与 所成角的大小.
17.已知点 关于直线 的对称点为 .
(1)求点 的坐标;
(2)若点 在直线 上,点 为坐标原点,在下列条件下求点 的坐标;
【详解】
化为 ,
方程表示过点 斜率为 的直线方程,
所以直线过定点 .
故答案为: .
【点睛】
本题考查直线方程一般式与其它形式之间互化,属于基础题.
6.4
【分析】
根据已知可得 ,可证 平面 ,即可得出结论.
【详解】
如图所示四面体 中, 平面 ,
,
为直角三角形,
平面 ,
平面 ,
为直角三角形,
四面体 中,四个面中都是直角三角形.
13.在平面直角坐标系 中, 的坐标分别为 , , ,则 的平分线所在直线的方程为_______
14.小明在解题中发现函数 , 的几何意义是:点 与点 连线的斜率,因此其值域为 ,类似地,他研究了函数 , ,则函数 的值域为_____
二、解答题
15.已知过点 的直线 与直线 平行.
(1)求直线 的方程;
【详解】
①若 ,而 ,则 ,与已知 矛盾,
高二数学第一学期期中试卷参考答案
淮安市高中校协作体2020~2021学年第一学期高二年级期中考试数学试卷参考★答案★考试时间:120分钟 总分:150分 命题人:蒋法宝一、单项选择题(本大题共有8小题,每题5分,共40分)”1. “0a =”是“函数221y ax x =++与x 轴只有一个交点”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 【★答案★】C2.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13【★答案★】B3.椭圆2214x y m +=的焦距为2,则m 的值等于( )A .3B .5C .8D . 5或3【★答案★】D 4.已知0x <,函数4y x x=+的最大值是( ) A .4B .-4C .-6D .-8【★答案★】B5.双曲线mx 2+y 2=1的虚轴长是实轴长的3倍,则m 的值为( ) A .9B .-9C .19D .-19【★答案★】D6.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .19B .17C .13D .7【★答案★】B7.一元二次不等式2201920200x x --<的解集为( ) A .(2020,1)- B .(1,2020)- C .(,1)(2020,)-∞-+∞ D .(,2020)(1,)-∞-+∞【★答案★】B8.设等差数列{}n a 的公差10,4d a d ≠=,若k a 是1a 与2k a 的等比中项,则k=( )A .3或6B .3 或-1C .6D .3【★答案★】D二、多项选择题(本大题共有4小题,每题5分,共20分。
在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.) 9.下列说法正确的是( )A .命题“(2,)x ∃∈-+∞,24x ≤”的否定是“(2,)x ∀∈-+∞,24x >”B .命题“x ∀∈R ,22x >-”的否定是“x ∃∈R ,22x <-”C .“22x y >”是“x y >”的必要而不充分条件D .“0m >”是“关于x 的方程2x 2x m 0--=有一正一负根”的充要条件 【★答案★】AD10.下列说法正确的有( ) A .若a b >,则22ac bc >B .若22a bc c>,则a b > C .若a b >,则22a b > D .若a b >,则22a b > 【★答案★】BD11.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B . 2392n n nS -= C .36n a n =-D .2n a n =【★答案★】BC12.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A .14ab ≥B .114a b+≥ C . 2a b +≤D .2212a b +≥【★答案★】BCD三、填空题(本大题共有4小题,每题5分,共20分) 13.已知{}n a 为等差数列,a 3+a 8=25,a 6=11,则a 5= _______ 【★答案★】1414.已知点P 为双曲线C :2213664x y -=上的动点,点()10,0A -,点()10,0B .若16PA =,则PB =_______【★答案★】28或4 15.计算:111113355720192021++++=⨯⨯⨯⨯__________.【★答案★】1010202116.设a ,b 为正数,若22a b +=,当a 取值为__________时12a b+取最小值为________ 【★答案★】12,4 四、解答题(本大题共有6小题,第17题10分,其余每题12分,共70分) 17.已知命题p :“方程210x mx -+=有两个不相等的实根”,命题p 是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(4)0x a x a ---<的解集为N ,若x ∈N 是x ∈M 的充分条件,求a 的取值范围. 解:(1) 命题p :方程210x mx +=-有两个不相等的实根,240m ∴∆=->,解得2m >,或2m <-.M={m|2m >,或2m <-}. ………………………………5分 (2) 因为x ∈N 是x ∈M 的充分条件,所以N M ⊆ N={|4}x a x a <<+42a +≤-或2,a ≥综上,6a ≤-或2a ≥ ………………………………10分 18.已知在等差数列{}n a 中,1344,3a a a +==;{}n b 是各项都为正数的等比数列,1113b a =,3141b a =.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .解:(1)由134a a +=,得224a =即22a =, 所以等差数列{}n a 的公差42321222a a d --=== 则数列{}n a 的通项公式为211(2)2(2)122n a a n d n n =+-=+-=+ …………3分所以1111313322b a ==⨯= 由3141b a =,得381b ⨯=,即318b =, 由0q >所以等比数列{}n b 的公比3112b q b ==, 所以数列{}n b 的通项公式为1112nn n b b q-⎛⎫== ⎪⎝⎭.………………………………6分 (2)由数列{}n n a b 的前n 项和为n T =112233n n a b a b a b a b ++++ ①得12n T =1223341n n a b a b a b a b +++++ ②由①-②得12n T =11231n n n a b db db db a b +++++-=1111[1()]311142(1)12222212n n n -+-⨯+⨯-+-=113111[1()](1)44222n n n -++--+ =2412n n ++-所以n T =1422n n ++- ………………………………12分19.(1)求焦点在x 轴上,长轴长为8,焦距为4的椭圆标准方程; (2)求一个焦点为()5,0,渐近线方程为43yx 的双曲线标准方程. 解:(1)设椭圆标准方程为:()222210x y a b a b+=>>由长轴长知:28a =4a ∴=由焦距知:24c =222162c a b b ∴=-=-=,解得:212b =∴椭圆标准方程为:2211612x y += ………………………………6分 (2)双曲线焦点在x 轴上 ∴可设双曲线标准方程为()222210,0x ya b a b-=>>∴双曲线渐近线方程为:43b y x x a =±=±43b a ∴= 又焦点为()5,022221659a b a a ∴+=+=,解得:29a =216b ∴= ∴双曲线标准方程为:229116x y -= ………………………………12分20.已知函数9()(1)1f x x x x =+>- (I )求函数()f x 的最小值; (II )若不等式()71tf x t ≥++恒成立,求实数t 的取值范围. 解:(I )110x x >∴-> 99()1111f x x x x x ∴=+=-++-- 92(1)171x x ≥-⋅+=- 当且仅当911x x -=-即4x =时上式取得等号 当4x =时,函数()f x 的最小值是7. ………………………………6分 (II )由(I )知,当1x >时,()f x 的最小值是7, 要使不等式()71t f x t ≥++恒成立,只需771t t ≥++ 01tt ∴≤+ 解得10t -<≤实数的取值范围是(1,0]- ………………………………12分 21.已知数列{}n a 的前n 项和n S 满足:2n n S a =-. (1)求{}n a 的通项公式;(2)设41n n c a =+,求数列{}n c 的前n 项和n T .解:(1)当1n =时,112S a =-,得11a =. 当2n ≥时,由2n n S a =-,① 得112n n S a --=-,②①—②,得12n n a a -=,又110a =≠,∴0n a ≠,∴()1122n n a n a -=≥, ∴{}n a 是等比数列,∴112n n a -⎛⎫= ⎪⎝⎭ ………………………………6分(2)由112n n a -⎛⎫= ⎪⎝⎭,则1141412n n n c a -⎛⎫=+=⨯+ ⎪⎝⎭,则123n n T c c c c =++++()1234n a a a a n =+++++31112481212n n n n -=⨯+=+---………………………………12分 22.已知不等式2364ax x -+>的解集为{1x x <或}x b >. (1)求,a b(2)解不等式2()0ax at b x bt -++<.解:(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >, 所以x 1=1与x 2=b 是方程2320ax x -+=的两个实数根,且b >1.由根与系数的关系,得3121b ab a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩; ……………………………6分(2)原不等式化为:2(t 2)20x x t -++<,即(2)()0x x t --<,①当2t >时,不等式的解集为{}2x x t <<,……………………………8分 ②当2t <时,不等式的解集为{}2x t x <<,……………………………10分t=时,不等式的解集为∅.……………………………12分③当2感谢您的下载!快乐分享,知识无限!。
江苏省苏州市吴中区2020_2021学年第一学期期中调研测试试卷高二数学
A. ab ≥ 1 4
B. ab ≤ 1 4
C. a b≥1
D. a b ≤1
10.已知数列{an}是公比为 q 的等比数列, bn an 4 ,若数列{bn}有连续 4 项在集合
{50, 20, 22, 40,85}中,则公比 q 的值可以是 ·········································( ▲ )
的值可.以.是······················································································( ▲ )
A. 1 3
B. 2 3
C. 4 5
D. 5 4
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.不需要写出解答过程,请把答案直 接填在答.题.卡.相.应.位.置.上.. 13.若命题“∃x∈R,使得 x2 ax a 0 ”是真命题,则实数 a 的取值范围是 ▲ .
A. 3 4
B. 2 3
C. 4 3
D. 3 2
11.无穷等差数列{an}的前 n 项和为 Sn ,若 a1 0 , d 0 ,则下列结论正确的是 ( ▲ )
A.数列{an}单调递减
B.数列 {an } 有最大值
C.数列{Sn} 单调递减
D.数列{Sn} 有最大值
12.若关于 x 的不等式 0 ≤ ax2 bx c ≤1 ( a 0 )的解集为{x | 1≤ x ≤ 2} ,则 3a+2b+c
19.(本题满分 12 分)
已知数列{an}满足
a1=1,nan+1=2(n+1)an,设 bn
an n
.
(1)求数列 {bn } 的通项公式;
2020-2021学年江苏省苏州中学高二(上)期初数学试卷+答案解析(附后)
2020-2021学年江苏省苏州中学高二(上)期初数学试卷一、单选题:本题共6小题,每小题5分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设,,则( )A. B.C. D.2.如果,则的解析式为( )A. B.C. D.3.在中,M 是BC 的中点,,点P 在AM 上且满足,则等于( )A. B. C.D.4.直线是圆C :的一条对称轴,过点作圆C 的一条切线,切点为B ,则( )A. B.C.D. 15.已知锐角中,角A ,B ,C 所对的边分别为a ,b ,c ,若,则的取值范围是( )A.B.C.D.6.如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.为小球相交部分图中阴影部分的体积,为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是( )A. B. C. D.二、多选题:本题共2小题,共10分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
7.已知函数,则下列说法正确的是( )A. 函数的图象与x轴有两个交点B. 函数的最小值为C. 函数的最大值为4D. 函数的图象关于直线对称8.已知圆C被x轴分成两部分的弧长之比为1:2,且被y轴截得的弦长为4,当圆心C到直线的距离最小时,圆C的方程为( )A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分。
9.已知函数在区间内是减函数,则实数a的取值范围是______.10.已知直线:和直线:,若,且坐标原点到这两条直线距离相等,则ab的值为______.11.如图,已知线段,四边形ABNM的两顶点M、N在以AB为直径的半圆弧上,且,则的取值范围是______.四、解答题:本题共3小题,共45分。
解答应写出文字说明,证明过程或演算步骤。
12.本小题15分在中,角A,B,C所对的边分别为a,b,c,已知求证:为定值;若,求的值.13.本小题15分如图,在三棱锥中,,,点M是BC上一点,P是SB上一点,N是SC的中点,且平面求证:;若P为SB中点,求证:平面平面14.本小题15分已知圆:,圆:过点作圆的切线MA,MB,A,B为切点,求直线AB的方程;是否存在定点P,使得过点P有无穷多对互相垂直的直线,分别被圆和圆截得的弦长之比为1:2?若存在,求出点P的坐标;否则,请说明理由.答案和解析1.【答案】B【解析】【分析】本题考查描述法、区间的定义,一元二次不等式的解法,以及交集的运算,属于基础题.可求出集合A,B,然后进行交集的运算即可.【解答】解:,;故选:2.【答案】C【解析】【分析】本题考查函数解析式的求解及常用方法,考查了配方法求函数解析式,属于基础题.由,运用换元法,令代入可得答案.【解答】解:,令,则,,则,故选3.【答案】A【解析】【分析】本题主要考查向量的数量积、几何应用等.由M是BC的中点,知AM是BC边上的中线,又由点P在AM 上且满足,即可求解.【解答】解:是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足,是三角形ABC的重心,,又,,故选4.【答案】D【解析】解:由圆C:,得圆心,则,即,,如图,,可得切线长为,故选:利用对称轴过圆心求得a,从而确定点A,结合图形即得切线长.本题考查了圆的对称性,考查数形结合的解题思想方法,是基础题.5.【答案】C【解析】解:由,余弦定理,可得,正弦定理边化角,得,,,,是锐角三角形,,即,,那么:,可得,则故选:由利用余弦定理,可得,正弦定理边化角,在消去C,可得,利用三角形ABC是锐角三角形,结合三角函数的有界限,可得的取值范围.本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.6.【答案】D【解析】解:设大球的半径为R,则小球的半径为:,由题意可得:所以即:故选:根据题意推知小球半径是大球的一半,建立大球体积小球体积和阴影部分的体积的关系,可推知选项.本题考查组合体的体积,空间想象能力,逻辑推理能力,是难题.7.【答案】AB【解析】解:函数,令,解得,可得,或,所以A正确;,所以函数的最小值为,所以B正确,没有最大值,所以C不正确;函数的定义域为:,所以函数的图象不可能关于对称,所以D不正确;故选:求出函数的零点判断A;求解函数的最小值判断B;利用函数的值域判断C;函数的定义域判断本题考查函数的零点与方程根的关系,函数的最值的求法,考查转化思想以及计算能力,是中档题.8.【答案】AB【解析】解:设圆心为,半径为r,圆C被x轴分成两部分的弧长之比为1:2,则其中劣弧所对圆心角为,由圆的性质可得,又圆被y轴截得的写出为4,,,变形为,即在双曲线上,易知双曲线上与直线平行的切线的切点为,此点到直线有最小距离.由,消去y得,解得当时,,当时,即切点为或,半径r为圆的方程为或故选:设圆心为,半径为r,由圆C被x轴分成两部分的弧长之比为1:2,得,再由圆被y轴截得的写出为4,可得,说明在双曲线上,求出双曲线上与直线平行的切线的切点坐标,即圆心坐标,由此可得圆的方程.本题考查圆的标准方程,考查导数的几何意义,解题的关键是圆心到直线的距离的最小值的应用,考查化归与转化思想,考查运算求解能力,是中档题.9.【答案】【解析】解:函数在区间内是减函数.由于在区间内单调递增,且,,,故答案为:由题意利用二倍角公式可得在区间内是减函数,再利用二次函数的性质可得,由此求得a的范围.本题主要考查复合函数的单调性,二次函数的性质,二倍角公式的应用,属于中档题.10.【答案】或【解析】解:直线:和直线:,若,则,求得直线、直线和y轴的交点分别为、,直线、直线和x轴的交点分别为、,且坐标原点到这两条直线距离相等,,求得,;或,,或,故答案为:或由题意利用两条直线平行的性质,线段的中点公式,求出a、b的值,可得ab的值.本题考查两条直线平行的性质,线段的中点公式,考查运算求解能力,是基础题.11.【答案】【解析】解:连接OM,ON,则,当线段MN在上运动时,的夹角由到0再到,所以,即可得的取值范围为故答案为:连接OM,ON,则,结合的夹角范围即可求解.本题考查向量数量积的运算,关键是对,的变形,要尽量用知道模和夹角的向量来表示,是一道中档题.12.【答案】解:证明:因为:,所以由正弦定理可得:,①因为A,B为三角形的内角,所以,所以①式两边同时乘以,可得:,所以,得证.因为,所以,可得,因为A为三角形内角,,所以,可得,因为由可得,解得,所以【解析】由正弦定理化简已知等式,由于,可得,进而根据同角三角函数基本关系式即可求得,从而得解.由已知利用余弦定理可求,利用同角三角函数基本关系式可求,的值,由进而可求的值,进而根据两角和的正切函数公式即可求解的值.本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,两角和的正切函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.13.【答案】证明:由平面ASB,平面SBC,且平面平面,可得,又N是SC的中点,可得M为BC的中点,即;由,M为BC的中点,可得,由,M为BC的中点,可得,又,可得平面SAM,由PN为的中位线,可得,则平面SAM,又平面ANP,可得平面平面【解析】由线面平行的性质和平行线的性质,即可得证;由等腰三角形的性质和线面垂直的判定定理,可得平面SAM,再由中位线定理和面面垂直的判定定理,即可得证.本题考查空间线线、线面和面面的位置关系,主要是平行和垂直的判定和性质,考查空间想象能力和推理能力,属于中档题.14.【答案】解:因为,,以为直径的圆的方程:,又圆:,圆和圆的方程相减可得:即直线AB的方程:设P点坐标为,直线的斜率为依题意,则直线的方程为,即,直线的方程为,即因为直线被圆截得的弦长的2倍与直线被圆截得的弦长相等,且圆的半径是圆的半径的2倍,所以圆心到直线的距离的2倍与圆心到直线的距离相等,整理得:或由于关于k的方程有无穷多解,第11页,共11页所以,,或,,解得,,或,,所以所有满足条件的P 点坐标为或 【解析】求出以为直径的圆的方程,是圆与圆的相交弦,将两圆方程相减即可的答案;利用直线的垂直关系,进一步建立点到直线的距离公式的关系式,进一步建立方程组,求出点的坐标.本题考查了直线与圆的位置关系的应用,方程组的解法,点到直线的距离公式的应用.属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021苏州新区一中高二数学上期中试题(含答案)一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .49 2.设,m n 分别是先后抛掷一枚骰子得到的点数,则方程20x mx n ++=有实根的概率为( )A .1936 B .1136C .712D .123.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示: x 1 2 3 4 y0.1m3.14则实数m =( ) A .0.8B .0.6C .1.6D .1.84.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .565.下面的算法语句运行后,输出的值是( )A .42B .43C .44D .456.已知0,0,2,a b a b >>+=则14y a b=+的最小值是 ( ) A .72B .4C .92D .57.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( )A .13B .14C .16D .1128.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,则该45名学生的数学成绩的中位数为( )A .127B .128C .128.5D .1299.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③10.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .1111.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为( ). A .16,26,8B .17,24,9C .16,25,9D .17,25,812.已知函数()cos3xf x π=,根据下列框图,输出S 的值为( )A .670B .16702C .671D .672二、填空题13.执行如图所示的程序框图,则输出的m 的值为____.14.用秦九韶算法计算多项式f(x)=2x 4-x 3+3x 2+7,在求x=2时对应的值时,v 3的值为___. 15.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为ˆˆ1.02yx a =+,则实数ˆa =__________. 16.高二某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为__________.17.执行如图所示的程序框图,若输入的A ,S 分别为0,1,则输出的S =____________.18.为了对某课题进行研究,用分层抽样方法从三所高校,,A B C 的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)若从高校,B C抽取的人中选2人作专题发言,则这2人都来自高校C的概率P __________.19.执行如图所示的流程图,则输出的x值为______.20.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为________.(结果用分数表示)三、解答题21.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如下表,其中“d”表示享受,“×”表示不享受.现从这6 ,,,,,人中随机抽取2人接受采访.员工A B C D E F项目子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.22.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(1)求三种粽子各取到1个的概率.(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.23.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),...,[80,90),[90,100](1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率. 24.高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.25.某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y (单位:千万件)的影响,统计了近10年投入的年研发费用i x 与年销售量()1,2,,10i y i =L 的数据,得到散点图如图所示:(Ⅰ)利用散点图判断,y a bx =+和dy c x =⋅(其中c ,d 为大于0的常数)哪一个更适合作为年研发费用x 和年销售量y 的回归方程类型(只要给出判断即可,不必说明理由);(Ⅱ)对数据作出如下处理:令ln i u x =,ln i y υ=,得到相关统计量的值如下表:根据(Ⅰ)的判断结果及表中数据,求y 关于x 的回归方程; (Ⅲ)已知企业年利润z (单位:千万元)与x ,y 的关系为27z y x e=-(其中2.71828e =L ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据()()()1122,,,,,,n n u u u υυυL ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆnniii ii i nni i i i u u u nu u uu nuυυυυβ====---==--∑∑∑∑,ˆˆˆu αυβ=- 26.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率; (Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==,故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.A解析:A 【解析】由题意知本题是一个等可能事件的概率, 试验发生包含的事件数是6×6=36种结果, 方程x 2+mx +n =0有实根要满足m 2−4n ⩾0, 当m =2,n =1 m =3,n =1,2 m =4,n =1,2,3,4 m =5,n =1,2,3,4,5,6, m =6,n =1,2,3,4,5,6 综上可知共有1+2+4+6+6=19种结果 ∴方程x 2+mx +n =0有实根的概率是1936; 本题选择A 选项.3.D解析:D【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m my +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】 【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.5.C解析:C 【解析】 【分析】根据算法语句可知,程序实现功能为求满足不等式22000i <的解中最大自然数,即可求解. 【详解】 由算法语句知,运行该程序实现求不等式22000i <的解中最大自然数的功能, 因为24520252000=>,24419362000=<,所以44i =, 故选:C 【点睛】本题主要考查算法语句,考查了对循环结构的理解,属于中档题.6.C解析:C 【解析】 【分析】由题意结合均值不等式的结论即可求得14y a b=+的最小值,注意等号成立的条件. 【详解】 由题意可得:14y a b =+()11414522b a a b a b a b ⎛⎫⎛⎫=⨯++=⨯++ ⎪ ⎪⎝⎭⎝⎭152⎛≥⨯+ ⎝92=, 当且仅当24,33a b ==时等号成立. 即14y a b =+的最小值是92. 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7.D解析:D 【解析】 【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。