数理统计复习题,
数理统计考试试题及答案

一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
中国石油大学090107概率论与数理统计期末复习题及参考答案

《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
数理统计习题(汇总)

150 162 175 165
(1) 求 Y 对 X 的线性回归方程; (2) 检验回归方程的显著性; (3) 求回归系数 b 的 95%的置信区间; (4) 取 x 0 =90,求 y 0 的预测值及 95%的预测区间。 8. 为了考察影响某种化工产品转化率的因素 , 选择了三个有关因素: 反应温度 (A)、反应时 间( B)、用碱量(C),而每个因素取三种水平,列表如下: 水平 因子 温度(A) 时间(B) 用碱量(C) 1 80℃( A1 ) 90 分( B1 ) 5%( C1 ) 2 90℃( A2 ) 120 分( B2 ) 6%( C2 ) 3 90℃( A3 ) 150 分( B3 ) 7%( C3 )
X ________, E ( X ) ______, D( X ) ______ .
3. 设 X 1 , X 2 , , X n 相互独立,且 X i N (0,1).(i 1, 2, , n) 则 的________分布。
2 4. 设 X N (0,1).Y ( n). X 与 Y 独 立 ,则 随 机 变 量 T
2
9. 某厂生产一种乐器用的合金弦线,按以往的资料知其抗拉强度(单位: kg cm 2 )服从 正态分布 N (10560,802 ) ,今用新配方生产了一批弦线,欲考察这批弦线的抗拉强度是 否有提高,为此随机抽取 10 根弦线做抗拉试验,测得其抗拉强度均值为 x 10631.4 , 均方差 s 81.00 。 (检验水平 0.05 ) 。 10. 某厂生产一种保险丝,规定保险丝熔化时间的方差不能超过 400。今从一批产品中
2 2 2 sB 1024( h2 ) ,取置信水平为 0.99 ,试求:
(1)
2 1 的区间估计。 2 2
数理统计总复习(题型归纳)

56学 考题8(2005级 256学时) 三 、 ( 本 题 8 分 ) 设 X 1 , X 2 , L , X n为 服 从 泊 松 分 布 )的 π(λ )的总体X的一个样本,求λ的极大似然估计量。
32 考题9(2004级 32学时) 三、(本题8分)设总体X的概率密度为: ( θ + 1) x θ , 0 < x < 1, f ( x) = 0, 其它 其中θ > −1是未知参数,X 1 , X 2 , L , X n为总体X 的一个容量为n简单随机样本,求参数θ的极大 似然估计量。
考题5(2007级 64学时 作业P153 四) 七、(本题8分)设X 1 , L , X n为总体X的样本, X的密度函数为: 0< x<1 θ, f ( x , θ) = 1 − θ, 1 ≤ x < 2;其中未知参数θ > 0 0, 其他 设N为样本值x1 , L , xn中小于1的个数,求θ的极 大似然估计。
1 2 n
32学 考题4(2007级 32学时) 10分 六、(本题10分)设随机变量X的概率密度为 2x 2 , 0< x<θ f ( x) = θ ,其中未知参数θ > 0, 0, 其他 X 1 , L , X n是样本,求θ的矩估计和最大似然估计。
(此题和2008级的第三大题一样的.)
: 解(1)检验假设H 0:σ 2 = 1,H 1:σ 2 ≠ 1; ( n − 1) S 2 取统计量:χ 2 = 2 σ0
2 拒绝域为:χ 2 ≤ χ 2 α ( n − 1) = χ 0.975 ( 9) = 2.70 1−
或χ 2 ≥ χ 2 ( n − 1) = χ α
2
2 2 0.025
概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。
《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。
2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。
3.a,b为随机事件,则p(ab)?0.3。
p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。
25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。
36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。
7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。
8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。
339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。
5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。
12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。
319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。
15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。
0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。
数理统计试题及答案

一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。
数理统计考试题及答案

数理统计考试题及答案一、选择题1. 下列哪个选项是中心极限定理的主要内容?A. 样本均值的分布趋近于正态分布B. 样本方差的分布趋近于正态分布C. 样本中位数的分布趋近于正态分布D. 样本最大值的分布趋近于正态分布答案:A2. 假设检验中的两类错误是什么?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 测量误差和估计误差D. 抽样误差和非抽样误差答案:A二、填空题1. 总体均值的估计量是_________。
答案:样本均值2. 在进行假设检验时,如果原假设被拒绝,则我们犯的是_________错误。
答案:第一类三、简答题1. 简述什么是置信区间,并说明其在统计分析中的作用。
答案:置信区间是指在一定置信水平下,用于估计总体参数的一个区间范围。
它的作用是在统计分析中提供对总体参数估计的不确定性度量,帮助我们了解估计值的可信度。
2. 解释什么是点估计和区间估计,并给出它们的区别。
答案:点估计是用样本统计量来估计总体参数的单个值。
区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
它们的区别在于点估计提供了一个具体的数值,而区间估计提供了一个包含该数值的区间,反映了估计的不确定性。
四、计算题1. 某工厂生产的零件长度服从正态分布,样本均值为50mm,样本标准差为1mm,样本容量为100。
求95%置信水平下的总体均值的置信区间。
答案:首先计算标准误差:\( SE = \frac{\sigma}{\sqrt{n}} =\frac{1}{\sqrt{100}} = 0.1 \)。
然后根据正态分布的性质,95%置信水平下的置信区间为:\( \bar{x} \pm 1.96 \times SE \)。
计算得到:\( 50 \pm 1.96 \times 0.1 = (49.84, 50.16) \)。
2. 假设某公司员工的日均工作时长服从正态分布,样本均值为8小时,样本标准差为0.5小时,样本容量为36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计复习题一、名词解释:1. 简单随机样本2. 无偏估计3.有效估计4.相合估计5. 统计量6. )(2n χ分布、)(n t 分布、F 分布的概念及上α分位点概念 7. 回归分析中残差平方和的概念 8.假设检验中p 值的概念二、填空判断选择: 1.设12,,,n x x x 是正态总体),0(2σN 的一个样本,x 和2S 分别为样本均值和样本方差,则x ~ ;2211~nii xσ=∑ ;22)1(σs n -~ ;2i Ex = (n i ,,2,1 =).2. 设n x x x ,,,21 是来自)(λπ的一个样本,x 和2s 分别为样本均值和样本方差,则=)(x D . 3. 设n x x x ,,,21 是正态总体),(2σμN 的一个样本,x 是样本均值,则~nx σμ- .4. 设n x x x ,,,21 是来自)(2n χ分布的一个样本,x 和2s 分别为样本均值和样本方差,则=)(x D ;)(x E = .5. 已知随机变量)(~),(~2212n V n U χχ,且两随机变量相互独立,则~21n V n U . 6. 设1021,,,x x x 是来自参数为p 的0—1分布的一个样本,x 为样本均值,则=)(x D ;)(x E = .7. 设1X ,n X ,,X 2 是来自标准正态分布01(,)N 的一个简单随机样本,则∑==ni ixY 12~ 分布 .8.设总体~()X πλ,12,,,n X X X 来自X 的样本,则1~ni i X =∑ 。
9. 设n X X X ,,,21 是来自)10(2χ分布总体的一个样本,则统计量Y =∑=101i iX服从 分布.10.设n x x x ,,,21 是正态总体),(2σμN 的一个简单随机样本,则 )(1i i x x E -= (n i ,,2,1 =). 11. 在点估计中,常用来评价估计量的三个标准为 、 、 12. 检验总体是否为正态分布的方法有哪些(填两种即可) 、 . 13. 设n X X X ,,,21 是来自总体X 的一个样本,已知)(~λP X ,则 )0(=X P 的最大似然估计为 .14. 设n X X X ,,, 21是n 个相互独立同分布的随机变量,μ=)(i X E ,2(),i D X σ=),,2,1(n i =,对于∑==ni in X X 1,估计概率{4}P X μ-≥≤ . 15. 由正态总体),(2σμN 抽一样本资料,设已算得10,2.570==n x ,在显著性水平05.0=α下检验假设 570:,570:0100=≠==μμμμH H ,计算过程 ; 结论 。
16. 由正态总体),(2σμN 抽一样本资料,设已算得16,7259.98,5.241===n S x ,在显著性水平05.0=α下检验假设225:,225:0100=>=≤μμμμH H ,(7531.1)15(05.0=t )17. 判断正误(1)设n x x x ,,21 为抽自正态总体),(2σμN 的样本(2,σμ未知),x 和2S 分别为样本均值和样本方差,则 x 与2s 均为统计量.( )(2)设n x x x ,,21 为抽自正态总体),(2σμN 的样本,则x 与2s 均为μ的无偏估计.( )(3)设样本n x x x ,,21 为抽自正态总体),(2σμN 的样本(2,σμ未知),x 为样本均值,则随机变量nx /σμ-服从标准正态分布.( )(4)总体频率又称总体成数,总体频率参数p 的估计问题也就是0—1分布中参数p 的估计问题.( ) (5)设总体的概率密度为);(θx f ,则θ的矩估计量和极大似然估计量总是相同的.( ) 18.单项选择题(1)在假设检验中,原假设0H ,备择假设1H ,则称( )为犯第一类错误.(A) 0H 为真,接受0H (B) 0H 不真,接受0H (C) 0H 为真,拒绝0H (D) 0H 不真,拒绝0H .(2)θ 是总体X 的未知参数,θ的估计量是θˆ,则下列结论一定正确的是( ) (A )θˆ是一个数,近似等于 θ (B )θˆ是一个随机变量 (C )θˆ 是一个统计量,且θθ=)ˆ(E (D )θˆ是θ的有效估计量.(3)对于一组呈正态分布的计量资料,若对每一个个体同减去一个不为零的数,则下列结论正确的是( ) (A )均数、标准差均不变(B )均数变、标准差不变 (C )均数、标准差均变 (D) 均数不变、标准差变(4)设总体X 的概率分布列为⎪⎪⎭⎫⎝⎛-- p p p p p 21)1(2321022,其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3,求 得p 的矩估计值为( ) (A )0.5 (B ) 0.25 (C )0.2 (D ) 0.35(5)设θˆ是参数θ的无偏估计量,且0)ˆ(>θD .则下列结论一定成立的是( ) (A ) 2ˆθ不是2θ的无偏估计(B )2ˆθ是2θ的无偏估计(C )θˆ不是θ的矩估计(D )θˆ是θ的矩估计. (6)对正态总体的数学期望进行假设检验,如果在显著水平05.0=α下,接受假设00:μμ=H ,则在显著水平01.0=α下,下列结论中正确的是( )(A )必接受0H (B )可能接受,也可能有拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H .(7) 设)1,0(~N X ,)(~2n Y χ,X 与Y 独立,则随机变量nY X 服从的分布为( )(A ) )(n t (B )),1(n F (C ))1,(n F (D ))1(-n t . 三、计算题1. 设随机变量X 与Y 相互独立,且25155 ~ (,), ~(), X N Y χ求概率(1)53{.P X ->.2. 设X ~B (1,p ),n x x x x ,,,,321 是来自X 的一个样本 ,试求参数p 的矩估计和极大似然估计.3. 从某地区取得某种植物的样品10个,测得植物中铁元素含量(g g /μ)的数据如下: 9.0,14.0,15.3,16.2,,10.2,19.5,17.0,12.0,18.0,9.0求该植物中铁元素含量总体均值μ及总体方差2σ的矩估计值,并求样本方差2s .4. 设随机抽取某品种玉米株高数据如下(㎝):170 180 270 280 250 270 290 270 230 170 ,由以往资料,该品种玉米株高服从正态分布,且方差2σ=25.试求该品种玉米株高总体均值μ的95%的置信区间.若方差2σ未知,总体均值μ的95%的置信区间是多少.5. 已知重复抽样测得杨树插条苗高资料为(单位:cm ):200,310,315,255,250,212,287 ,162,250,303,求该苗高总体平均值μ及总体方差2σ的最大似然估计值,并求样本方差2s . 6. 设总体X 服从参数为λ的泊松分布,求参数λ的矩估计和似然估计.7. 设总体X 服从参数为λ的指数分布,n x x x x ,,,,321 是来自X 的一个样本 ,试求参数p 的矩估计和极大似然估计.8. 从某总体X 中抽取容量为n =100的样本,计算得x =5.75,标准差s =4.5,试求该总体均值μ的点估计及置信区间(α=0.05).9. 设某批铝材料比重服从正态分布N (μ,23),现测量它的比重16次,算得样本均值 2.705x =,求未知参数μ的置信度为0.05的置信区间(005.α=).10. 从某厂生产的滚珠中随机抽取10个,测得样本方差2s =0.0373.已知滚珠直径服从N (μ,2σ),μ未知,求2σ的95%的置信区间.(20.975(9)19.0χ=,20.025(9) 2.70χ=).11. 由正态总体),(2σμN 抽一样本资料,设已算得25,25.41==n x ,由以往资料知σ=2,在显著性水平05.0=α下检验假设 40:,40:0100=>==μμμμH H (645.105.0=z ).12. 设婴儿奶粉袋净含量在正常情况下服从正态分布2~(,)X N μσ,σ未知,今在装好的婴儿奶粉中随机抽取十袋,测得平均含量x =498克,试问能否认为μ是500克?(05.0=α,0.05(9) 1.833t =)13. 一手机生产厂家在其宣传广告中声称他们生产的某种品牌的手机待机时间的平均值至少为71.5小时,一质检部门检查了该厂生产的这种品牌的手机6部,得到的待机时间为:69 68 72 70 66 75,设手机的待机时间2~(,)X N μσ,由这些数据能否说明其广告有欺骗消费者之嫌疑?(05.0=α,0.05(5) 2.015t =)14.某特殊润滑油容器的容量为正态分布,现抽取容量为10的样本,测得样本标准差为0.246s =.在显著性水平05.0=α下检验假设:2201:003,:0.03H H σσ=≠,(220.0250.975(9)19.023,(9) 2.700χχ==).15.经管院会计专业的三个班参加了某模拟考试,现从每个班随机的抽取了一些学生,记录成绩如表.在显著性水平0.05α=下检验各班级的平均分数有无显著差别.(设三总体服从正态分布,且方差相等,要列出方差分析表)0.05(2,21) 3.07F = .16.假设儿子的身高(y )与父亲的身高(x )适合一元正态线性模型,观察了10对英国父子的身高(英寸),见表.(1)求y 对x 的一元线性回归方程;(2)对所得的方程进行显著性检验. (0.0520.05,(8) 2.3060t α==.)17.用四种安眠药(A )在动物身上进行试验,测定安眠时间。
每种安眠药做6次试验在显著性水平05.0=α下对其进行了方差分析.(0.05(3,20) 3.10F =) (1) 完成下列方差分析表并给出结论 (2) 求出对应总体方差2σ的点估计.18.某实验室得到关于变量x 和Y 一批数据,由数据计算得下列结果: 5=n ,6=x , 4.210=y ,∑=51i 2202=xi, ∑=51i 2759902=yi, ∑=51i x i7790iy=, 由经验知两变量之间有线性相关关系,(1)求Y对x 的线性回归方程;(2)对建立的回归方程进行显著性检验.(0052005331824..,().t α==)(保留四位小数)来源 平方和 自由度 均方和 F 比因子A 2.54误差e总和 3.87。