解析几何中的最值问题教案

合集下载

解析几何中的最值问题 苏教版精品课件

解析几何中的最值问题 苏教版精品课件
线 PA、PB,(1)求切线长 PA 的最小值; (2)在(1)的条件下,求四边形 PACB 的面积 S。
(2):S=PA×AC
P
= 17
B
C A
例2变题
变 1.由直线 y x 1上的点 P 向圆 C:(x-3)2+(y+2)2=1 引切
线 PA、PB,求 PA PB 的最小值;
思考:在本题中向量的
数量积用定义式运算还
P
是用坐标运算?
B
C A
例2变题
变 1.由直线 y x 1上的点 P 向圆 C:(x-3)2+(y+2)2=1 引切
线 PA、PB,求 PA PB 的最小值;
解: 设ቤተ መጻሕፍቲ ባይዱC d, d 3 2 设APC=,则APB=2
sin 1 ,则cos2 1 2sin 2 1 2
解: 设PC d, 设APC=,则APB=2
P点2 评: sin 1 ,则cos2 1 2sin 2 1 2 在M本例的解决dP过A程PB中,PA关 P键B是co将s2目标d 2 量值P表。示这P为种1 利PC用长函度(d数d2的的1函) 思数(1想,d研22求)究函d解2数析的d2几2 最 3 何是最如值何A问选题择C在变B解量题。在是PPAA中本什4 P经P题么BBd的的常中?最最6遇d大小的到值值取为为,:值: 51关50825范键围
时光在飞逝,父母容颜渐渐沧桑,望着父母佝偻的背影,心里一阵阵莫名的心酸。年轻时不努力拼搏,老了就自己受苦,这是现在年轻人经常激励自己的话,为了所谓的以后,我们牺牲了自己最美好的年华,却没有谁知道以后的样子又会是如何,也许这就是所谓的选择。
解 析 几 何 中 的 最 值 问 题

解析几何 与圆有关的最值问题 高中数学教案 专题提升课四

解析几何  与圆有关的最值问题  高中数学教案  专题提升课四

专题提升课四与圆有关的最值问题方法一利用距离的定义求最值【典例】圆x2+y2-2x+4y-20=0上的点到直线3x-4y+19=0的最大距离为() A.10B.11C.12D.13【解析】选B.由题意,x2+y2-2x+4y-20=0的圆心为(1,-2),半径为5,圆心到直线的距离d所以圆x2+y2-2x+4y-20=0上的点到直线l的最大距离是5+6=11.【思维提升】利用距离的定义求最值的方法关键是确定距离最大、最小时点的位置.一般通过圆心和点的连线和直线的垂线与圆的交点确定点的位置,再利用距离公式求最值.【即学即练】圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是.【解析】圆x2+y2-4x-4y-10=0可化为(x-2)2+(y-2)2=18,圆心为(2,2),半径r=32.圆心(2,2)到直线x+y-14=0=52>32,所以圆上的点到直线的最大距离与最小距离的差是2r=62.答案:62方法二利用几何意义求最值【典例】已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求2m+n的最大值;(2)求(m+2)2+(n-3)2的最小值;(3)求r1的范围.【解析】由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,则圆心C的坐标为(2,7),半径r=22.(1)设2x+y=b,即2x+y-b=0,作出圆(x-2)2+(y-7)2=8与一组平行线2x+y-b=0,当直线2x+y-b=0与圆相切时,纵截距b取得最大值或最小值,此时圆心到直线的距离d4+1=22,解得b=11+210或b=11-210,所以2m+n的最大值为11+210.(2)(m+2)2+(n-3)2表示点M(m,n)与点Q(-2,3)的距离的平方,又|QC|=(2+2)2+(7-3)2=42.所以|MQ|min=42-22=22,即(m+2)2+(n-3)2的最小值为8.(3)r1=-0-(-1)表示点过M(m,n)与点P(-1,0)的直线的斜率,令r1=k,则n=k(m+1),即km-n+k=0.当直线MP与圆相切时,斜率取到最大值、最小值.2+1=22,解得k=1或41,所以r1的范围是1,41.【思维提升】常见的三种几何意义的应用(1)形如t=--形式的最值问题,可转化为动直线斜率的最值问题,即转化为过点(a,b)和点(x,y)的直线的斜率的最值;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如t=(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离平方的最值问题.【即学即练】已知实数x,y满足方程(x-2)2+y2=3,求的最大值和最小值.【解析】原方程表示以点(2,0)为圆心,3为半径的圆,设=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值和最小值,=3,解得k=±3.故的最大值为3,最小值为-3.方法三距离转化法求最值【典例】若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,求由点(a,b)向圆C 所作的切线长的最小值.【解析】因为圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,所以圆心C(-1,2)在直线2ax+by+6=0上,所以-2a+2b+6=0,即a-b=3.又圆的半径为2,当点(a,b)与圆心的距离最小时,切线长取得最小值,又点(a,b)与圆心的距离为(+1)2+(-2)2=2(-2)2+18≥32,所以切线长的最小值为(32)2-(2)2=4.【思维提升】关于距离转化法求最值(1)利用勾股定理等方法,将切线长表示出来,分析决定切线长大小的要素,利用该要素的最值求切线长的最值;(2)常见的转化依据:直线外一点与直线上的点的距离的最小值是该点到这条直线的距离.【即学即练】直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,求△ABP 面积的取值范围.【解析】设圆心到直线AB的距离d =22.点P到直线AB的距离为d'.易知d-r≤d'≤d+r,即2≤d'≤32.又AB=22,所以S△ABP=12·|AB|·d'=2d',所以2≤S△ABP≤6.方法四利用对称转化求最值【典例】已知点A(-1,1)和圆C:(x-5)2+(y-7)2=4,求一束光线从点A出发经x轴反射到圆C上的最短路程.【解析】点A关于x轴的对称点为A'(-1,-1),A'与圆心(5,7)的距离为(5+1)2+(7+1)2=10.所以所求最短路程为10-2=8.【思维提升】利用对称转化求最值涉及光线反射可以利用对称性,将折线转化为直线解题,根据题意可以选择点对称,也可以选择圆对称.【即学即练】(多选题)一束光线从点A(-1,1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程时()A.点A(-1,1)关于x轴的对称点A'的坐标为(-1,-1)B.反射光线所在的直线方程是4x-3y+1=0C.光线的最短路程为4D.当光线的路程最短时,反射点的坐标为14,0【解析】选ABC.圆C的圆心C的坐标为(2,3),半径r=1.点A(-1,1)关于x轴的对称点A'的坐标为(-1,-1).因为当反射光线是A'C时,光线的路程最短,所以最短距离为|A'C|-r,即[2-(-1)]2+[3-(-1)]2-1=4,此时,反射光线为直线A'C,其方程是4x-3y+1=0,反射点为直线A'C与x轴的交点,其坐标为-14,0.。

初中数学精品教案:几何最值问题

初中数学精品教案:几何最值问题

微设计《破解中考数学压轴题(一)0107几何最值问题》学习目标:1、学会怎样通过平行线和直角三角形构造相似三角形.2、理解并会运用二次函数的性质解决几何最值问题.3、学会通过求2x的最值来求x的最值的方法.4、体会数形结合在解决压轴题中的重要作用.学习重点:1、做辅助线构造相似的过程.2、借助变量表示线段长度,建立等量关系的过程.3、运用二次函数求2x的最小值的过程.学习难点:先求2x的最小值,再求x的最小值的过程.学习过程:一、问题背景几何中最值问题是指在一定条件下,求平面几何图形中某个确定的量(如线段长度,角度大小,图形面积)等的最大值或最小值。

几何最值问题近年来广泛出现在中考中,这是由于这类问题具有很强的探索性(目标不明确)。

解题时,需要运用动态思维,数形结合,特殊与一般相结合,逻辑推理与合情想象相结合等思想。

二、例题解析16.(5分)如图1,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.图11. 思路探究问题一:题中所给的已知条件有哪些呢?这些条件可以分为几大类呢?(设计意图:分析题目之前,首先让学生自主理清题目条件,并归类.)问题二:由l 1∥l 2∥l 3 ,你能想到什么?结合∠ABC =90° ,你会做怎样的构造?(设计意图:让学生自主通过角相等联想到三角形相似,自主想到添加辅助线的办法.) 问题三:对于条件4=n m 通常情况下怎么处理? (设计意图:引导学生常用结论的固定处理方式.让学生联想已有结论表示出线段的长度.) 问题四:在⊿AEB ∽⊿BFC 中,能否尽可能多的表示出线段长?(引导学生二次设元,在相似三角形中表示出更多的线段.)问题五:如何能将BD=4这一条件运用到解题中?你能表示出更多的线段吗?(设计意图:引导学生作出另外两条辅助线,构造出另一组相似三角形⊿AGD ∽⊿CHD ,表示出相应的线段长.从而得到关于两个未知数的等式.) 问题六:结合原题所问,你认为怎样处理236442=--yx y 这一条件会更好? (设计意图:引导学生分离变量,为后面求x 的最小值做好铺垫.)问题七:观察等式91022y y x -=的左边和右边,你认为怎样与求x 的最小值联系起来? (设计意图:引导学生尝试先求2x 的最小值,再求x 的最小值.)2.解法展示解:如图2,EABCBF ABE EAB CBF ABE ABC BFC AEB Fl E l EF B ∠=∠︒=∠+∠︒=∠+∠∴︒=∠︒=∠=∠⊥则又则于点,交于点作过点9090909031 E G HDB A 1l 2l 3l 图2∵m+n=5x ∴当x 最大时,m+n 最大 .由二次函数的性质可知:当y=5时,2x 有最大值为925,则x 的最大值为 35,m+n 的最大值为325 . 3.方法小结 本题最主要的解题模型是添加了3条辅助线,构造两组三角形相似,这两个相似三角形是常见的“三垂相似型”,“8字相似型”,课件灵活运用基本图形在解决综合题中的起到关键的作用。

最值教案

最值教案

课题:几何图形中的最值问题授课教师:教学目标:1.了解解决几何最值问题的基本原理和方法。

2.初步掌握利用平面几何知识及几何图形等知识解决几何最值问题,培养学生几何探究、推理的能力。

3.进一步体验对称变换、旋转变换等的思想方法。

教学重点:几何最值问题原理的运用;教学难点:寻求几何最值问题解决的有效途径及方法。

教学过程:一、引入:中考中的最值问题往往综合了几何变换、函数等方面的知识,具有一定的难度.通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等;2.几何最值问题的基本原理:①两点之间线段最短②垂线段最短③利用函数关系求最值④三角形三边的关系二例题:例1:在学习轴对称的时候,老师让同学们思考课本中的探究题。

如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.请直接写出△PDE周长的最小值:.例2如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为13 时,求正方形的边长.ADB C三、变式练习阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值 小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ′BC ,连接A ′A ,当点A 落在A ′C 上时,此题可解(如图2). 请你回答:AP 的最大值是参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点,则AP+BP+CP 的最小值是四、小结 :1、“对称、平移、旋转” 是三种保形变换.通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.2、求解时,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长.3、科学选择.捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路4、几何变换成了“两折线”或“三折线”后,根据“两点之间线段最短”或“垂线段最短”把“折线”转“直”,找出最短位置,求出最小值.五、巩固练习1.(2012四川攀枝花)如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 . 2.(2012湖北鄂州)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

解析几何最值问题的赏析教案

解析几何最值问题的赏析教案

解析几何最值问题的赏析教案
《解析几何最值问题的赏析教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
作业内容
解析几何最值问题的赏析
问题提出:
已知椭圆方程:,A,B分别为椭圆的上顶点和右顶点。

过原点作一直线与线段AB交于点G,并和椭圆交于E、F两点,求四边形AEBF 面积的最大值。

问题分析:
图形的处理:
不规则图形转化为规则图形(割补法)
变量的选择:
设点:设点则,可得到二元表达式;
设动直线的斜率(可设AF,BF,EF,AE,BE中任意一条直线的斜率),可得一元表达式。

3,最值的处理方法:
一元表达式可用基本不等式或函数法处理;
二元表达式可用基本不等式或消元转化为一元表达式。

问题解决:
解法一:
由基本不等式得
解法二:
解法三:
因为,所以设切线方程为:
由得
再由得
切线的方程为:,点到直线的最大距离
变式与推广
①已知圆方程:,A,B分别为圆的上顶点和右顶点。

过原点作一直线与线段AB交于点G,并和圆交于E、F两点,则四边形AEBF面积的最大值为;
②已知椭圆方程:,A,B分别为椭圆的上顶点和右顶点。

过原点作一直线与线段AB交于点G,并和椭圆交于E、F两点,则有如下结论:
(1)四边形AEBF面积的最大值;
(2)AB的斜率与EF的斜率互为相反数;
(3)EF过线段AB的中点;
③若条件中点E、F变成椭圆上且位于AB两侧任意的两点,则E、F关于原点对称时,四边形面积取得最大,上述②的结论不变。

解析几何最值问题的赏析教案这篇文章共1626字。

微专题26解析几何中的最值与范围问题(教学案)

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题.2. 构造函数模型研究长度及面积相关的范围与最值问题.3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题.4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用.考题导航利用数形结合或三角换元等方法解决直线与圆2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则yx 的最大值为________;y -x 的最小值为________;x 2+y 2的最小值为________.1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________.1. 已知双曲线为C :x 24-y 2=1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0),则PA 的最小值为________.1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________.1. 椭圆M :x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点,且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______.1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→=λF 1Q →.若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.1. 如图,已知动直线l :y =kx +m 与椭圆x 24+y 2=1交于A ,B 两点.(1) 若动直线l :y =kx +m 又与圆x 2+(y -2)2=1相切,求实数m 的取值范围; (2) 若动直线l :y =kx +m 与y 轴交于点P ,且满足PB →=2AP →,O 为坐标原点.求△AOB 面积的最大值,并指出此时k 的值.冲刺强化训练(26)1. 已知双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是________.2. 已知F 1、F 2是椭圆的两个焦点,椭圆上存在一点M 满足MF 1→·MF 2→=0,则椭圆离心率的取值范围是________.3. 如图,M 为椭圆x 23+y 2=1上任意一点,P 为线段OM 的中点,则PF 1→·PF 2→的最小值为________.4. 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是________.5. 在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,右顶点为A ,P是椭圆上的一点,l 为左准线,PQ ⊥l ,垂足为Q ,若四边形PQFA 为平行四边形,则椭圆的离心率e 的取值范围是________.6. 在平面直角坐标系xOy 中,若直线l :4x -3y -2=0上至少存在一点,使得以该点为圆心、1为半径的圆与以(4,0)为圆心,r 为半径的圆C 有公共点,则r 的最小值是________.7. 双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点为F 1、F 2,若P 为双曲线上的一点,且PF 1=2PF 2,则双曲线离心率的取值范围为________.8. 若O 和F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________.9. 在平面直角坐标系xOy 中,若直线y =k(x -33)上存在一点P ,圆x 2+(y -1)2=1上存在一点Q ,满足OP →=3OQ →,则实数k 的最小值为________.10. 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是________.11. 如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1) 若直线l 的斜率为12,求APAQ 的值;(2) 若PQ →=λAP →,求实数λ的取值范围.12. 如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,A 1、A 2分别是椭圆E 的左、右两个顶点,圆A 2的半径为a ,过点A 1作圆A 2的切线,切点为P ,在x 轴的上方交椭圆E 于点Q.(1) 求直线OP 的方程;(2) 求PQ QA 1的值;(3) 设a 为常数,过点O 作两条互相垂直的直线,分别交椭圆E 于B ,C 两点,分别交圆A 2于M ,N 两点,记△OBC 和△OMN 的面积分别为S 1,S 2,求S 1·S 2的最大值.。

解析几何中的最值问题教案

解析几何中的最值问题教案

解析几何中的最值问题一、教学目标解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。

基本内容:有关距离的最值,角的最值,面积的最值。

二、教学重点方法的灵活应用。

三、教学程序1、基础知识探求解析几何最值的方法有以下几种:(1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。

(2)不等式法:(常用的不等式法主要有基本不等式等)(3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法(4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等)(1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。

分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ|的最大值,只要求|OQ|的最大值。

说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。

例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值(2)不等式法例2、 设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF •的最大值是解:124PF PF +=由12PF PF +≥得 44)(22121=+≤•PF PF PF PF即21PF PF •的最大值是4 。

最新沪教版高中数学高二下册 -12 本章小结:解析几何中的最值问题 教案

最新沪教版高中数学高二下册 -12 本章小结:解析几何中的最值问题 教案

解析几何中的最值问题圆锥曲线中参数的范围及最值问题,由于其能很好地考查学生对数学知识的迁移、组合、融会的能力,有利于提高学生综合运用所学知识分析、解决问题的能力.该类试题设计巧妙、命制新颖别致,常求特定量、特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.学习目标:1.能够根据变化中的几何量的关系建立目标函数,求出最值;2.能够熟练应用圆锥的定义和几何性质,运用几何法求出最值;学习重点与难点:1.根据关系建立目标函数或不等式;2.根据问题的几何意义,应用数形结合的思想解决问题一、基础训练:1. 已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为________.2. 已知(,)P x y 是椭圆22143x y +=上的动点,12,F F 是焦点,则12||||PF PF ⋅的取值范围是 .3. 若C(-3,0),D(3,0),M 是椭圆x24+y2=1上的动点,则1|MC|+1|MD|的最小值为________.4. 已知点A(–3,–2)和圆C :(x –4)2+(y –8)2=9,一束光线从点A 发出,射到直线l :y=x –1后反射(入射点为B),反射光线经过圆周C 上一点P ,则折线ABP 的最短长度是 .5. 已知(,)P x y 是椭圆221169x y +=的点,则x y +的最大值是 . 二、合作探究:例1 已知点(4,0),(0,4)A B ,动点(,)P x y 在线段AB 上,求:(1)x y +的最小值;(2)22x y +的最小值;(3的最小值;的最小值.例2 已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0). (1)若3m =,求PA 的最大值与最小值; (2)若PA 的最小值为MA ,求实数m 的取值范围.例3 已知O 为坐标原点,椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为21F F ,,右顶点为A ,上顶点为B , 若|||,||,|2AB OF OB 成等比数列,椭圆C 上的点到焦点2F 的最短距离为26-.(1)求椭圆C 的标准方程; (2)设T 为直线3-=x 上任意一点,过1F 的直线交椭圆C 于点Q P 、,且01=⋅,求||||1PQ TF 的最小值.三、课堂练习:1、设连接双曲线x2a2-y2b2=1(a>0,b>0)与y2b2-x2a2=1(b>0,a>0)的四个顶点的四边形面积为S1,连接四个焦点的四边形面积为S2,则S1S2的最大值是 .2、设P ,Q 分别为圆x2+(y -6)2=2和椭圆x210+y2=1上的点,则P ,Q 两点间的最大距离是 .3、如果y x ,满足,369422=+y x 则1232--y x 的最大值为 .四、归纳小结:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的最值问题
一、教学目标
解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。

基本内容:有关距离的最值,角的最值,面积的最值。

二、教学重点
方法的灵活应用。

三、教学程序
1、基础知识
探求解析几何最值的方法有以下几种:
(1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。

(2)不等式法:(常用的不等式法主要有基本不等式等)
(3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法
(4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等)
(1)函数法
例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2
219
x y +=上移动,试求PQ 的最大值。

分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ|
的最大值,只要求|OQ|的最大值。

说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。

例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2
213
x y +=上的一个动点,求S x y =+的最大值
(2)不等式法
例2、 设21,F F 是椭圆14
22
=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是
解:124PF PF +=
由12PF PF +≥得 44)(2
2121=+≤∙PF PF PF PF
即21PF PF ∙的最大值是4 。

说明:在用基本不等式时要注意条件“一正二定三相等”须同时具备,缺一不可
(3)曲线定义法:
例3、 给定点(2,2)A -,已知B 是椭圆22
12516x y +=上的动点,F 是右焦点,当53
AB BF +
取得最小值时,试求B 点的坐标。

分析:因为椭圆的离心率35e =,所以513AB BF AB BF e +=+,而1BF e
为动点B 到左准线的距离。

故本题转法为,在椭圆上求一点B ,使得它到A 点和左准线的距离之和最小,过点B 作l 的垂线,垂点为N ,过A 作此准线的垂线,垂点为M ,由椭圆定义 ||3
5||||||||BF e BF BN e BN BF ==⇒= 于是 5||||||3
AB BF AB BN AN AM +
=+≥≥为定值 其中,当且仅当B 点AM 与椭圆的定点时等点成立,
此时B 为(2) 所以,当53AB BF +
取得最小值时,B 点坐标为(2) 说明:圆锥曲线的定义在处理许多解析几何问题(包括最值问题)时常常显得极其简便。

(4)平面几何法
例4、已知,x y 满足()()22
221(2),x y y -+-=≥
(1)求33
y x ++的最大值和最小值; (2)若2b x y =+,求b 的最大值和最小值。

例4.椭圆离心率为,过点M (1,2),并以y 轴为准线,则长轴的最大值为( )
A.1
B.2
C.3
D.4
分析:设椭圆方程为由已知得,a 2=4c 2 b 2=3c 2 m=4c ,椭圆为化为12c 2-8c+1=
. 故选A.
2.综合问题
例5、已知椭圆()22
2210x y a b a b
+=>>过点()3,2-,圆O 的圆心为坐标原点,直径为椭圆的短轴,圆M 的方程为()()22
864x y -+-=,过圆M 上任一点P 作圆的切线,PA PB ,切点分别为,A B
(1)求椭圆的方程;
(2)若直线PA 与圆M 的另一交点为Q 点,当弦PQ 最大时,求PA 的方程
(3)求OA OB ⋅的最大值与最小值。

例5.设动点P 到定点F (1,0)及定直线L :x=3距离之
和为4,求P 点轨迹方程,并画出草图.若过F 点的直线被上
述轨迹截得弦AB ,求|AB|的最大值.
解:设动点P (x,y ),P 到定直线L 的距离d=|x-3|依
题意|PF|+d=4. 即 若x ≥3,

.∴P 点轨迹为
设直线AB的倾角θ.
.
3归纳小结
(1).解决解几中最值问题的基本思路:
(2)求最值常见的方法和技巧:
4.课后思考题:
(2001年春季高考北京、安徽试题)已知抛物线,过动点M(a,0)且斜率为1的直线L与该抛物线交于不同两点A、B,(1)求a的取值范围。

(2)若线段AB的垂直平分线交x轴与点N,求面积的最大值。

相关文档
最新文档