解析几何范围最值问题(教师)
浅谈解析几何中最值和参数范围问题的求解策略

浅谈解析几何中最值和参数范围问题的求解策略作者:陆爱莲来源:《教育教学科研》2013年第03期作者简介:陆爱莲,2002年毕业于广西师范大学数学教育专业,大学本科学历,理学学士,同年9月至今任教于马山中学,2008年12月获得中学一级教师资格。
积极参加教研教改活动,所撰写的论文多次在省、国家级论文评选中获二、三等奖。
【摘要】:解析几何中的最值和参数范围问题是高中数学的重要内容.其主要特点是综合性强,在解题中几乎处处涉及函数与方程、不等式、三角等内容.因此,在教学中应重视对数学思想、方法进行归纳提炼,如方程思想、函数思想、参数思想、数形结合的思想、对称思想、整体思想等思想方法,达到优化解题思维、简化解题过程的目的.本文通过对一些典型例题的分析和解答,归纳了解析几何中常见的解决最值和参数范围问题的思想方法,总结了解答典型例题的具体规律,并提供了一些常用的解题方法、技能与技巧。
【关键词】:解析几何最值问题参数范围求解策略解析几何中涉及最值和参数范围问题常有求面积、距离最值、参数范围问或与之相关的一些问题;求直线与圆锥曲线中几何元素的最值或与之相关的一些问题。
我们可以从两个方面来研究圆锥曲线的最值和参数范围问题,一方面用代数的方法研究几何,题中涉及较多数字计算与字母运算,对运算及变形的能力要求较高,用代数的方法解决几何;另一方面要善于从曲线的定义、性质等几何的角度思考,利用数形结合的思想解决问题。
一、代数法:借助代数函数求最值和参数取值范围的方法。
运用代数法时,先要建立“目标函数”,然后根据“目标函数”的特点灵活运用求最值。
常用的方法有: 1.配方法。
由于二次曲线的特点,所求“目标函数”的表达式常常和二次函数在某一个闭区间上的最值联系紧密,这时可对二次函数进行配方,并根据顶点的横坐标结合区间的端点确定所求函数的最值。
1、已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1。
2020版高考数学第8章平面解析几何第9节圆锥曲线中的定点、定值、范围、最值问题教学案理北师大版

第九节 圆锥曲线中的定点、定值、范围、最值问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.定点问题【例1】 已知椭圆E :x 29+y 2b2=1(b >0)的一个焦点与抛物线Γ:y 2=2px (p >0)的焦点F 相同,如图,作直线AF 与x 轴垂直,与抛物线在第一象限交于A 点,与椭圆E 相交于C ,D 两点,且|CD |=103.(1)求抛物线Γ的标准方程;(2)设直线l 不经过A 点且与抛物线Γ相交于N ,M 两点,若直线AN ,AM 的斜率之积为1,证明l 过定点.[解] (1)由椭圆E :x 29+y 2b2=1(b >0),得b 2=9-c 2,由题可知F (c,0),p =2c ,把x =c 代入椭圆E 的方程,得y 2C =b 2⎝ ⎛⎭⎪⎫1-c 29, ∴y C =9-c 23.∴|CD |=103=-c 23,解得c =2.∴抛物线Γ的标准方程为y 2=4cx ,即y 2=8x . (2)证明:由(1)得A (2,4),设M ⎝ ⎛⎭⎪⎫y 218,y 1,N ⎝ ⎛⎭⎪⎫y 228,y 2, ∴k MA =y 1-4y 218-2=8y 1+4,k NA =8y 2+4, 由k MA ·k NA =8y 1+4·8y 2+4=1, 得y 1y 2+4(y 1+y 2)-48=0.(*)设直线l 的方程为x =my +t ,由⎩⎪⎨⎪⎧y 2=8x ,x =my +t ,得y 2-8my -8t =0,∴y 1+y 2=8m ,y 1y 2=-8t , 代入(*)式得t =4m -6,∴直线l 的方程为x =my +4m -6=m (y +4)-6, ∴直线l 过定点(-6,-4).过抛物线:=4的焦点且斜率为的直线交抛物线于,两点,且|AB |=8.(1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. [解] (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1, ∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0). 定值问题【例2】 已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切. (1)求点P 的轨迹C 的方程;(2)设G (m,0) 为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A ,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值?并求出该定值.[解] (1)由题意,设动圆P 的半径为r ,则|PM |=4-r ,|PN |=r ,可得|PM |+|PN |=4-r +r =4,∴点P 的轨迹C 是以M ,N 为焦点的椭圆,∴2a =4,2c =2,∴b =a 2-c 2=3,∴椭圆的方程为x 24+y 23=1.即点P 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知-2<m <2,直线l :y =k (x -m ),由⎩⎪⎨⎪⎧y =k x -m ,x 24+y23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0,∴x 1+x 2=8mk 24k 2+3,x 1x 2=4m 2k 2-124k 2+3, ∴y 1+y 2=k (x 1-m )+k (x 2-m )=k (x 1+x 2)-2km =-6mk4k 2+3,y 1y 2=k 2(x 1-m )(x 2-m )=k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2=3k2m 2-4k 2+3,∴|GA |2+|GB |2=(x 1-m )2+y 21+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2=(k 2+1)[-6m2k 2-++4k2k 2+2.要使ω=|GA |2+|GB |2的值与m 无关,需使4k 2-3=0, 解得k =±32,此时ω=|GA |2+|GB |2=7.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交椭圆于A ,B 两点,△ABF 1的周长为8,且△AF 1F 2的面积的最大时,△AF 1F 2为正三角形.(1)求椭圆C 的方程;(2)若MN 是椭圆C 经过原点的弦,MN ∥AB ,求证:|MN |2AB为定值.[解] (1)由已知A ,B 在椭圆上,可得|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 又△ABF 1的周长为8,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8,即a =2.由椭圆的对称性可得,△AF 1F 2为正三角形当且仅当A 为椭圆短轴顶点, 则a =2c ,即c =1,b 2=a 2-c 2=3, 则椭圆C 的方程为x 24+y 23=1.(2)证明:若直线l 的斜率不存在,即l :x =1,求得|AB |=3,|MN |=23,可得|MN |2AB=4.若直线l 的斜率存在, 设直线l :y =k (x -1),设A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (x 4,y 4),由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 有x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=1+k 2·x 1+x 22-4x 1x 2=+k 23+4k2,由y =kx 代入椭圆方程,可得x =±233+4k2,|MN |=21+k 2·233+4k2=4+k23+4k2, 即有|MN |2AB=4.综上可得,|MN |2AB为定值4.范围问题【例3】 已知m >1,直线l :x -my -m 22=0,椭圆C :x 2m2+y 2=1,F 1,F 2分别为椭圆C的左、右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2,△BF 1F 2的重心分别为G ,H ,若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.[解] (1)因为直线l :x -my -m 22=0经过F 2(m 2-1,0),所以m 2-1=m 22,得m 2=2.又因为m >1,所以m =2, 故直线l 的方程为x -2y -1=0. (2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +m 22,x 2m 2+y 2=1,消去x ,得2y 2+my +m 24-1=0,则由Δ=m 2-8⎝ ⎛⎭⎪⎫m 24-1=-m 2+8>0,知m 2<8,且有y 1+y 2=-m 2,y 1y 2=m 28-12.由于F 1(-c,0),F 2(c,0),可知G ⎝ ⎛⎭⎪⎫x 13,y 13,H ⎝ ⎛⎭⎪⎫x 23,y 23.因为原点O 在以线段GH 为直径的圆内, 所以OH →·OG →<0, 即x 1x 2+y 1y 2<0.所以x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+m 22⎝ ⎛⎭⎪⎫my 2+m 22+y 1y 2=(m 2+1)·⎝ ⎛⎭⎪⎫m 28-12<0.解得m 2<4(满足m 2<8).又因为m >1,所以实数m 的取值范围是(1,2).(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.[解] (1)由题意知2b =2,∴b =1.∵e =c a =32,a 2=b 2+c 2,∴a =2. 椭圆的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx+4m 2-4=0,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1 ①,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·m 2-4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54 ②,由①②得0≤m 2<65,120<k 2≤54.∵原点O 到直线l 的距离d =|m |1+k2,∴d 2=m 21+k 2=54-k 21+k2=-1+9+k2.又120<k 2≤54,∴0≤d 2<87,∴0≤d <2147. ∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147.最值问题【例4】 (2019·太原模拟)已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A , B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3,所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|=2x 1+x 22-4x 1x 2=247. (2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k2, 因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3.(2017·浙江高考)如图,已知抛物线x =y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解](1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +3k 2+.因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上递增,⎝⎛⎭⎪⎫12,1上递减,因此当k =12时,|PA |·|PQ |取得最大值2716.1.(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2013·全国卷Ⅰ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ABCD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. [解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±-n 23.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=43 9-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2, 当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.。
高考数学复习第11关 以解析几何中离心率、最值、范围为背景解答题(解析版)

专题二 压轴解答题第11关 以解析几何中离心率、最值、范围为背景解答题【名师综述】解析几何中的范围、最值和离心率问题仍是高考考试的重点与难点,试题难度较大.注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.【典例解剖】类型一 离心率问题典例1.在平面直角坐标系xOy 中,已知椭圆C :22221(0)43x y t t t+=>的左、右顶点为A ,B ,右焦点为F .过点A 且斜率为k (0k >)的直线交椭圆C 于另一点P .(1)求椭圆C 的离心率;(2)若12k =,求22PA PB的值; (3)设直线l :2x t =,延长AP 交直线l 于点Q ,线段BQ 的中点为E ,求证:点B 关于直线EF 的对称点在直线PF 上.【答案】(1)12(2)224513PA PB =(3)详见解析 【解析】【分析】第一问利用离心率的公式直接求解;第二问将直线AP 的方程为1(2)2y x t =+与椭圆C 的方程2223412x y t +=联立求出点P 的坐标,再利用两点间的距离公式即可求出22PA PB的值;第三问先求出Q 点的坐标,再利用中点坐标公式求出点E 的坐标,然后求出点P 的坐标及直线PF 的斜率、直线EF 的斜率,最后根据tan tan 2PFB θ∠=得出2PFB EFB ∠=∠即可证明.【详解】(1)∵椭圆C :2222143x y t t +=,∴224a t =,223b t =,22c t =.又0t >,∴2a t =,c t =,∴椭圆C 的离心率12c e a ==. (2)∵直线AP 的斜率为12,且过椭圆C 的左顶点(2,0)A t -,∴直线AP 的方程为1(2)2y x t =+.代入椭圆C 的方程2223412x y t +=,得2223(2)12x x t t ++=,即2220x tx t +-=,解得x t =或2x t =-(舍去),将x t =代入1(2)2y x t =+,得32y t =,∴点P 的坐标为3,2t t ⎛⎫⎪⎝⎭.又椭圆C 的右顶点B (2t ,0),∴2222345(2)024PA t t t t ⎛⎫=++-= ⎪⎝⎭,2222313(2)024PB t t t t ⎛⎫=-+-= ⎪⎝⎭,∴224513PA PB =. (3)直线AP 的方程为(2)y k x t =+,将2x t =代入(2)y k x t =+,得4y kt =,∴(2,4)Q t kt .∵E 为线段BQ 的中点,∴(2,2)E t kt ,∵焦点F 的坐标为(t ,0),∴直线EF 的斜率2EF k k =.联立222(2)3412y k x t x y t =+⎧⎨+=⎩,,消y 得,()()2222234164430k x k tx k t +++-=.由于()22244334A P k t x x k -=+,2A x t =-,∴()2223434P k t x k -=+,∴点P 的坐标为()22223412,3434k t kt k k ⎛⎫- ⎪ ⎪++⎝⎭,∴直线PF 的斜率()222221242234141(2)23434PFktk kk k k k k ttk ⋅+===----+.而直线EF 的斜率为2k ,若设EFB θ∠=,则有tan tan 2PFB θ∠=,即2PFB EFB ∠=∠,∴点B 关于直线EF 的对称点在直线PF 上. 【名师点睛】本题主要考查离心率的求值、直线与椭圆的综合问题、点关直线对称问题等. 求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 化转为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 【举一反三】(2020·陕西渭南期末考试)如图,12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,A 是椭圆C的顶点,B 是直线2AF 与椭圆C 的另一个交点,123F AF π∠=.(1)求椭圆C 的离心率;(2)已知1AF B ∆的面积为,a b 的值.【答案】(1)12;(2)10,a b ==【解析】【分析】(1)由题意可知,12AF F ∆为等边三角形,2a c =,∴1=2e ;(2)已知1AF B ∆的面积为,a b 的值. 【详解】(1)由题意,A 是椭圆C 的顶点,可知12=AF AF ,又123F AF π∠=,∴12AF F ∆ 为等边三角形,2a c =,∴1==2c e a . (2)由(1)可得224a c =,又222+a b c =,2234b a =.直线AB 的倾斜角为23π,斜率为AB 的方程为 )y x c =-.将其代入椭圆方程 2223412x y c +=,解得 8,5B c ⎛⎫⎪ ⎪⎝⎭,∴ 81680555AB c c a =-==,1AF a =,由1211118sin 225AF B S AF AB F AB a a ∆=⋅∠=⋅==10a =,b =类型二 最值、范围问题典例2.(2020上海南模中学月考)某景区欲建两条圆形观景步道12,M M (宽度忽略不计),如图所示,已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆M 与,AB AD 分别相切于点B ,D ,圆2M 与,AC AD 分别相切于点C ,D .(1)若BAD 3π∠=,求圆12,M M 的半径;(结果精确到0.1米)(2)若观景步道12,M M 的造价分别为每米0.8千元与每米0.9千元,则当BAD ∠多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元) 【答案】(1)34.6米,16.1米;(2)263.8千元. 【解析】 【分析】(1)利用切线的性质即可得出圆的半径;(2)设∠BAD =2α,则总造价y =0.8•2π•60tanα+0.9•2π•60tan (45°﹣α),化简,令1+tanα=x 换元,利用基本不等式得出最值. 【详解】(1)连结M 1M 2,AM 1,AM 2,∵圆M 1与AB ,AD 相切于B ,D ,圆M 2与AC ,AD 分别相切于点C ,D , ∴M 1,M 2⊥AD ,∠M 1AD =12∠BAD =6π,∠M 2AD =12π,∴M1B =ABtan ∠M1AB =60×3=.6(米),∵tan6π=22tan121tan12ππ-tan 12π=2,同理可得:M 2D =60×tan12π=60(2≈16.1(米).(2)设∠BAD =2α(0<α<4π),由(1)可知圆M 1的半径为60tanα,圆M 2的半径为 60tan (45°﹣α),设观景步道总造价为y 千元,则y =0.8•2π•60tanα+0.9•2π•60tan (45°﹣α)=96πtanα+108π•1tan 1tan αα-+,设1+tanα=x ,则tanα=x ﹣1,且1<x <2. ∴y =96π(x ﹣1)+108π(21x -)=12π•(8x +18x﹣17)≥84π≈263.8, 当且仅当8x =18x 即x =32时取等号, 当x =32时,tanα=12,∴α≈26.6°,2α≈53.2°.∴当∠BAD 为53.2°时,观景步道造价最低,最低造价为263.8千元.【名师点睛】求最值、范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.例3.(2020上海高三模拟考试)已知圆:(),定点,,其中为正实数.(1)当时,判断直线与圆的位置关系;C 22(1)x y a ++=0a >(,0)A m (0,)B n ,m n3a m n ===AB C(2)当时,若对于圆上任意一点均有成立(为坐标原点),求实数的值; (3)当时,对于线段上的任意一点,若在圆上都存在不同的两点,使得点是线段的中点,求实数的取值范围.【答案】(1) 相离.(2) ,.(3)【解析】 【分析】(1)利用圆心到直线的距离和半径的关系即可得到判断;(2)利用两点间的距离公式进行化简整理,由点P 的任意性即可得实数m ,λ的值;(3)设出点P 和点N 的坐标,表示出中点M 的坐标,M 、N 满足圆C 的方程,根据方程组有解说明两圆有公共点,利用两圆位置关系要求及点P 满足直线AB 的方程,解出半径的取值范围. 【详解】解: (1) 当时,圆心为当时,直线方程为, ∴圆心到直线距离为(2)设点,则,∵,∴,,…………由得,,∴,代入得,,化简得,…………∵为圆上任意一点,∴……… 4a =C P PA PO λ=O ,m λ2,4m n ==AB P C ,M N M PN a 3m =2λ=1736,95⎡⎫⎪⎢⎣⎭3a =()1,0-3m n ==AB 30x y +-=d ==<(),P x y PO =PA =PA PO λ=()()22222x m y xy λ-+=+()()222221120x y mx m λλ-+-+-=()2214x y ++=22230x y x ++-=2232x y x +=-()()2213220x mx m λ--+-=()()22221310m x m λλ-+-+-=P C ()22210,310,m m λλ⎧-+=⎪⎨-+-=⎪⎩又,解得,.………………… (3)法一:直线的方程为,设(),, ∵点是线段的中点,∴,又都在圆:上,∴ 即…………………… ∵该关于的方程组有解,即以为半径的圆与以为圆心,为半径的圆有公共点,∴,又为线段上的任意一点,∴对所有成立.而 在上的值域为, ∴∴.……… 又线段与圆,∴. 故实数的取值范围为.……………法二:过圆心作直线的垂线,垂足为,设,,则则消去得,,,0m λ>3m =2λ=AB 124x y+=(),42P t t -02t ≤≤(),N x y M PN ,222x ty M t +⎛⎫-+⎪⎝⎭,M N C ()221x y a ++=()22221,12,22x y a x t y t a ⎧++=⎪⎨+⎛⎫⎛⎫++-+=⎪⎪ ⎪⎝⎭⎝⎭⎩()()()22221,2424,x y a x t y t a ⎧++=⎪⎨++++-=⎪⎩,x y ()1,0-()2,24t t ---()()221249a t t a ≤++-≤P AB ()()221249a t t a ≤++-≤02t ≤≤()()()22124f t t t =++-2736555t ⎛⎫=-+ ⎪⎝⎭[]0,236,175⎡⎤⎢⎥⎣⎦36,5917,a a ⎧≤⎪⎨⎪≥⎩173695a ≤≤AB C <365a <a 1736,95⎡⎫⎪⎢⎣⎭C MN H CH d ==MN l 222221232d l a d l PC ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩l [)2290,88PC d a a =-∈∴(]2,9PC a a ∈直线方程为 点到直线且为线段上的任意一点, …,,故实数的取值范围为.【举一反三】1.(2020上海高三模拟考试)如图,某市有相交于点O 的一条东西走向的公路l ,与南北走向的公路m ,这两条公路都与一块半径为1(单位:千米)的圆形商城A 相切.根据市民建议,欲再新建一条公路PQ ,点P 、Q 分别在公路l 、m 上,且要求PQ 与圆形商城A 也相切.(1)当P 距O 处4千米时,求OQ 的长; (2)当公路PQ 长最短时,求OQ 的长. 【答案】(1) 3千米.(2) 【解析】 【分析】(1)先建立以O 为原点,直线l 、m 分别为x ,y 轴建立平面直角坐标系.设直线方程为:,由,运算即可得解;(2)设,,由PQ 与圆A 相切,得,再结合重要不等式即可得解. 【详解】解:(1)以O 为原点,直线l 、m 分别为x ,y 轴建立平面直角坐标系. 设PQ 与圆A 相切于点B ,连结AB ,以1千米为单位长度,AB 240x y +-=∴C AB =3,CA CB ==P AB ∴236,175PC ⎡⎤∈⎢⎥⎣⎦(]36,17,95a a ⎡⎤∴⊆⎢⎥⎣⎦361795a a ∴<<≤a 1736,95⎡⎫⎪⎢⎣⎭2+14x yb+=1=(,0)P a (0,)Q b (2,2)a b >>2()2ab a b =+-则圆A 的方程为, 由题意可设直线PQ 的方程为,即,, ∵PQ 与圆A,解得,故当P 距O 处4千米时,OQ 的长为3千米. (2)设,, 则直线PQ 方程为,即. ∵PQ 与圆A,化简得,即; 解法一:因此∵,,∴,于是.又,解得,或∵,∴,当且仅当时取等号,∴PQ 最小值为,此时.答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法二:化简得,即.∵22(1)(1)1x y -+-=14x yb+=440bx y b +-=(2)b >1=3b =(,0)P a (0,)Q b (2,2)a b >>1x ya b+=0bx ay ab +-=1=202()a ab b -++=2()2ab a b =+-PQ ====2a >2b >4a b +>()2PQ a b =+-22()22a b ab a b +⎛⎫=+-≤ ⎪⎝⎭04a b <+≤-4a b +≥+4a b +>4a b +≥+()22PQ a b =+-≥+2a b ==2+2a b ==2+202()a ab b -++=2(1)2222a b a a -==+--PQ ====∵,∴. 当且仅当,即时取到等号, 答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法三:设PQ 与圆A 相切于点B ,连结AB 、AP 、AQ ,设, 则,,且,∴,又∵,∴,∴(当且仅当取等号)答:当P 、Q 两点距离两公路的交点O 都为PQ 最短. 解法四:设PQ 与相切于点B ,设,,则,,,在中,由得:,化简得:,∴,解得:或(舍)=2(2)22a a ==-++-2a >2(2)2222PQ a a =-++≥+=-222a a -=-2a b ==+2+OPA θ∠=APB APO ∠=∠BQA OQA ∠=∠2OPQ OQP π∠+∠=4AQB πθ∠=-AB PQ ⊥1tan PB θ=10,4tan 4BQ πθπθ⎛⎫=∈ ⎪⎛⎫⎝⎭- ⎪⎝⎭111111tan 1tan tan tan tan 1tan tan 1tan 4PQ θθπθθθθθθ+=+=+=+--⎛⎫- ⎪+⎝⎭12121(tan 1tan )1tan 1tan tan 1tan θθθθθθ⎛⎫=+-=++-- ⎪--⎝⎭1tan 2tan 12122tan 1tan θθθθ-=+++-≥+=+-tan 1θ=2+A BP x =(0,0)BQ y x y =>>1OP x =+1OQ y =+PQ x y =+RT OPQ ∆222OP OQ PQ +=222()(1)(1)x y x y +=+++1xy x y =++212x y x y +⎛⎫++≤ ⎪⎝⎭2x y +≥+2x y +≤-(当且仅当时等号成立),∴当时,PQ有最小值.答:当P、Q两点距离公路交点O都为PQ最短.2.已知椭圆()222210x ya ba b+=>>的离心率3e=,左、右焦点分别为12,F F,且2F与抛物线24y x=的焦点重合.(1)求椭圆的标准方程;(2)若过1F的直线交椭圆于,B D两点,过2F的直线交椭圆于,A C两点,且AC BD⊥,求AC BD+的最小值.【答案】(1)椭圆的标准方程为22132x y+=;(2)AC BD+.【解析】(1)抛物线24y x=的焦点为()1,0,∴1c=,又∵13cea a===,∴a=22b=,∴椭圆的标准方程为22132x y+=.12BD x x=-=)22132kk+=+.易知AC的斜率为1k-,∴)222211112332kkACkk⎫+⎪+⎝⎭==+⨯+.()222114313223AC BD kk k⎛⎫+=++⎪++⎝⎭()()()()()()22222222220312031322332232k kk k k k++=≥++⎡⎤+++⎢⎥⎢⎥⎣⎦1x y==+2OP OQ==+2+)()222212514k k +==+. 当21k =,即1k =±时,上式取等号,故AC BD +的最小值为1635. (ii )当直线BD的斜率不存在或等于零时,易得AC BD +=>综上:AC BD +. 类型三 面积问题典例3.(2020上海松江区一模)设抛物线的焦点为,经过轴正半轴上点的直线交于不同的两点和.(1)若,求点的坐标;(2)若,求证:原点总在以线段为直径的圆的内部;(3)若,且直线∥,与有且只有一个公共点,问:△的面积是否存在最小值?若存在,求出最小值,并求出点的坐标,若不存在,请说明理由. 【答案】(1);(2)证明见解析;(3)存在,最小值2,. 【解析】 【分析】(1)由抛物线方程以及抛物线定义,根据求出横坐标,代入,即可得出点的坐标; (2)设,,设直线的方程是:,联立直线与抛物线方程,根据韦达定理,以及向量数量积运算,得到,推出恒为钝角,即可得结论成立; (3)设,则,由得,推出直线的斜率.设直线2:4y x Γ=F x (,0)M m lΓA B ||3FA =A 2m =O AB ||||FA FM =1l l 1l ΓE OAE M (2,±(3,0)M ||3FA =24y x =()11,A x y ()22,B x y AB 2x my =+12120OA OB x x y y ⋅=+<AOB ∠()11,A x y 110≠x y ||||FA FM =1(2,0)+M x AB 12=-AB y k的方程为,代入抛物线方程,根据判别式等于零,得.设,则,,由三角形面积公式,以及基本不等式,即可求出结果. 【详解】(1)由抛物线方程知,焦点是,准线方程为,设,由及抛物线定义知,,代入得,∴点的坐标或 (2)设,, 设直线的方程是:,联立,消去得:,由韦达定理得, ∴,故恒为钝角,故原点总在以线段AB 为直径的圆的内部. (3)设,则,∵,则,由得,故,故直线的斜率. ∵直线和直线平行,设直线的方程为,代入抛物线方程得,由题意,得. 设,则,,,当且仅当,即时等号成立, 1l 12y y x b =-+12b y =-(),E E E x y 14E y y =-21141E x y x ==(1,0)F 1x =-()11,A x y ||3FA =12x =24y x=y =±A (2,A (2,A -()11,A x y ()22,B x y AB 2x my =+224x my y x =+⎧⎨=⎩x 2480y my --=121248y y m y y +=⎧⎨=-⎩1212OA OB x x y y ⋅=+22212121212()4804416y y y y y y y y =⋅+=+=-<AOB ∠O ()11,A x y 110≠x y ||||FA FM =111-=+m x 0m >12=+m x 1(2,0)+M x AB 12=-AB y k 1l AB 1l 12y y x b =-+211880b y y y y +-=21164320b y y ∆=+=12b y =-(),E E E x y 14E y y =-21141E x y x ==11111111014111222141OAE y x S x y x y x y ∆==+≥-11114y x x y =22114y x =由得,解得或(舍),∴点的坐标为,. 【名师点睛】对于平面图形的面积问题,可以直接表示或者可以利用割补的办法,将面积科学有效表示,其中通过设直线和曲线的交点,利用韦达定理是解决该种问题的关键.典例4.(2020上海吴淞中学月考)已知椭圆,是它的上顶点,点各不相同且均在椭圆上.(1)若恰为椭圆长轴的两个端点,求的面积; (2)若,求证:直线过一定点;(3)若,的外接圆半径为,求的值. 【答案】(1)2(2)证明见解析(3) 【解析】【分析】(1)求得,由三角形的面积公式,即可求解面积;(2)设,联立方程组,求得,又由,求得,得到,即可得到答案;(3)由题意得:,求得线段的中垂线方程,求得外接圆圆心的纵坐标为,即可求解. 【详解】(1)由题意,椭圆,可得,故的面积为. (2)根椐对称性,定点必在轴上,利用特殊值可计算得定点为, 设,,,221121144y x y x ⎧=⎨=⎩21144x x =11x =10x =M (3,0)M min ()2OAE S ∆=2214x y +=A ()*,n n P Q n N∈11,P Q 11APQ∆0n n AP AQ ⋅=n n P Q 11n n P Q y y n==-n n AP Q ∆n R lim n n R →∞411(0,1),(2,0),(2,0)A P Q -11APQ ∆():1n n P Q y l kx m m =+≠1212,x x x x +0n n AP AQ ⋅=35m =-3:5n n P Q y kx l =-22112,1n P n nn ⎛⎫-- ⎪ ⎪⎝⎭n AP 332y n=-+2214x y +=11(0,1),(2,0),(2,0)A P Q -11APQ ∆11422⨯⨯=y 30,5⎛⎫- ⎪⎝⎭():1n n P Q y l kx m m =+≠()11,n P x y ()22,n Q x y联立方程组,整理得,可得, ∵,所,即, 可得, 即,可得,又∵,∴,∴,可得必过定点.(3)易知是等腰三角形,外接圆圆心在轴上,由题意得:,线段的中垂线为: 故外接圆圆心的纵坐标为:,∴,∴. 【举一反三】已知12,F F 是椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,点()2,3A --在椭圆M 上,且离心率为12e =.(1)求椭圆M 的方程;(2)若12F AF ∠的角平分线所在的直线l 与椭圆M 的另一个交点为,B C 为椭圆M 上的一点,当ABC 面积最大时,求点C 的坐标.【答案】(1)2211612x y +=(2) 1919⎛- ⎝⎭【解析】(1)由椭圆M 经过点()2,3A --,离心率12e =,可得22491a { 12b c a +==,解得2214y kx mx y =+⎧⎪⎨+=⎪⎩()()222148410k x kmx m +++-=()122212208144114km x x k m x x k ⎧⎪∆>⎪⎪+=-⎨+⎪⎪-⎪=+⎩90n n P AQ ∠=︒0n n AP AQ ⋅=12121210x x y y y y +--+=()()()()12121210x x kx m kx m kx m kx m +++-+-++=()()()()2212121110kx xk m x x m ++-++-=()()5310m m +-=1m ≠35m =-3:5n n P Q y kx l =-30,5⎛⎫- ⎪⎝⎭n n AP Q ∆y 1n P n ⎛⎫- ⎪ ⎪⎝⎭nAP 112y x n ⎛⎫--= ⎪⎝⎭332y n =-+3313422n R n n ⎛⎫=--+=- ⎪⎝⎭3lim lim 442n n n R n →∞→∞⎛⎫=-= ⎪⎝⎭2216,12a b ==,∴椭圆的标准方程为2211612x y +=∴直线l 的方程为210x y -+=,设过C 点且平行于l 的直线为20x y m -+=由221{ 161220x y x y m +=-+=,整理得()2219164120x mx m ++-= 由()()22164194120m m =-⨯⨯-=,解得276m =,∵m 为直线20x y m -+=在y 轴上的截距,依题意,0m <,故m =-解得x =,y =,∴C点的坐标为⎝⎭ 【精选名校模拟】1.(2020·上海闵行区期末考试)在平面直角坐标系xOy 中,设椭圆2222:1(3)9x yC a a a +=>-.(1)过椭圆C 的左焦点,作垂直于x 轴的直线交椭圆C 于M 、N 两点,若||9MN =,求实数a 的值; (2)已知点(1,0),6T a =,A 、B 是椭圆C 上的动点,0TA TB ⋅=,求TA BA ⋅的取值范围; (3)若直线:13x yl a a +=-与椭圆C 交于P 、Q 两点,求证:对任意大于3的实数a ,以线段PQ 为直径的圆恒过定点,并求该定点的坐标.【答案】(1)6a =;(2)[24,49];(3)证明见解析,(3,0)-. 【解析】【分析】(1)由椭圆的方程可得左焦点坐标,再由MN 的长可得纵坐标,即椭圆过9(3,)2-,代入椭圆的方程求出a 的值;(2)6a =代入椭圆可得椭圆的标准形式,设A 的坐标,TA BA 中的BA 用,TA TB 向量表示,再由题意可得关于A 的坐标的关系,由A 的坐标的范围求出数量积TA BA 的取值范围;(3)将直线l 与椭圆联立求出两根之和及两根之积,进而求出PQ 的中点的坐标,及弦长PQ ,求出以线段PQ 为直径的圆的方程,整理出关于a 的二次三项式恒为0,可得a 的所有系数都为0,可得x ,y 的值,即圆恒过的定点坐标.【详解】(1)由题意可得:222(9)9c a a =--=,即左焦点为:(3,0)-,若||9MN =,∴9||2y =,将3x =,9||2y =代入椭圆可得:229181149a a +=-,又3a >解得:6a =. (2)6a =时,椭圆的方程为:2213627x y +=,设(,)A x y ,66x -,2()||TA BA TA TA TB TA TA TB =-=-,由题意可得:222222211||(1)(1)27(1)228(4)243644x TA BA TA x y x x x x ==-+=-+-=-+=-+,由66x -,∴[24TA BA ∈,49].(3)联立直线l 与椭圆的方程可得:22(9)0ay a y --=,解得10y =,229a y a-=,设(,0)P a ,29(3,)a Q a--,∴PQ 的中点为:3(2a -,29)2a a -,22229||(3)()a PQ a a -=++, ∴以线段PQ 为直径的圆的方程为:2222223919()()[(3)()]224a a a x y a a a ----+-=++,整理可得:22222222239939(3)()()()()2222a a a a a x a x y y a a a---+---++-+=+,即2229(3)30a x a x y y a a---+--=,整理可得:22(3)(3)90x y a x x y a y -++++++=,对于任意的3a >,关于a 的二次三项式22(3)(3)9x y a x x y a y -++++++恒为0, ∴二次项,一次项和常数项的系数均为0,即2(3)390x y x x y y -++=++==, ∴3x =-,0y =,即定点坐标为(3,0)-.2.(2019·上海南模中学高三月考)已知椭圆2212x y +=上两个不同的点A 、B 关于直线()102y mx m =+≠对称.(1)若已知10,2C ⎛⎫ ⎪⎝⎭,M 为椭圆上动点,证明:2MC ≤; (2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点).【答案】(1)证明见解析;(2)6,,⎛⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭;(3)2. 【解析】【分析】(1)设点(),M x y ,则有11y -≤≤,代入椭圆的方程得出2212x y =-,然后利用两点间的距离公式和二次函数的基本性质可求出MC 的最大值2,从而证明2MC ≤; (2)由A 、B 关于直线()102y mx m =+≠对称,可得出直线AB 与直线12y mx =+,从而可得出直线AB 的斜率为1m -,设直线AB 的方程为1y x b m=-+,设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆方程联立,得出>0∆,并列出韦达定理,求出线段AB 的中点M ,再由点M 在直线上列出不等式,结合>0∆可求出m 的取值范围; (3)令1t m-=,可得出直线AB 的方程为y tx b =+,利用韦达定理结合弦长公式计算出AB ,利用点到直线的距离公式计算出AOB ∆的高d 的表达式,然后利用三角形的面积公式得出AOB ∆面积的表达式,利用基本不等式可求出AOB ∆面积的最大值.【详解】(1)设(),M x y ,则2212x y +=,得2222x y =-,于是MC ====因11y -≤≤,∴当12y时,max MC =,即MC ≤ (2)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. 由22121x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222222102m b x x b m m +-+-=.∵直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,即2221b m <+,①由韦达定理得12242bm x x m +=+,()22122212b m x x m -=+,2122212222y y bm bm b m m m +=-⋅+=++,∴线段AB 的中点2222,22mb bm M m m ⎛⎫ ⎪++⎝⎭.将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+,解得2222m b m +=-②, 将②代入①得22222222m mm m ⎛⎫++-< ⎪⎝⎭,化简得223>m .解得3m <-或3m >,因此,实数m 的取值范围是6,,33⎛⎛⎫-∞-+∞⎪ ⎪⎝⎭⎝⎭; (3)令160,t m ⎛⎫⎛⎫=-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即230,2t ⎛⎫= ⎪⎝⎭,且2212t b +=-. 则122421tb x x t +=-+,21222221b xx t -=+, 则12AB x x =-=221t==+==,且O到直线AB的距离为2d=设AOB∆的面积为()S t,∴()124S t ABd=⋅=()()222132422t t++-≤⋅=,当且仅当212t=时,等号成立,故AOB∆.3.(2020·上海南模中学期末)已知定点()1,0F,动点P在y轴上运动,过点P作直线PM交x轴于点M,延长MP至点N,使0PM PF⋅=.||||PM PN=点N的轨迹是曲线C.(1)求曲线C的方程;(2)若S,T是曲线C上的两个动点,满足0OS OT⋅=,证明:直线ST过定点;(3)若直线l与曲线C交于A,B两点,且4OA OB⋅=-,||430AB≤≤l的斜率k的取值范围.【答案】(1) ()240y x x=>;(2) 直线ST过定点()4,0;(3)111,,122k⎡⎤⎡⎤∈--⋃⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)设出动点N ,则,M P 的坐标可表示出,利用0PM PF ⋅=,可求得,x y 的关系式,即N 的轨迹方程;(2)设直线:ST x ty m =+,联立直线与(1)中所得抛物线的方程,利用韦达定理表示0OS OT ⋅=,进而求得m 即可;(3)设出直线l 的方程,A ,B 的坐标,根据12124x x y y +=-推断出128y y =-,把直线与抛物线方程联立消去x 求得12y y 的表达式,进而求得2b k =-,利用弦长公式表示出2AB ,再根据AB 的范围,求得k 的范围.【详解】(1)设动点(),N x y ,则(),0M x -,0,2y P ⎛⎫⎪⎝⎭,0x >,∵0PM PF ⋅=,即,1,022y y x ⎛⎫⎛⎫--⋅-= ⎪ ⎪⎝⎭⎝⎭,化简得()240y x x =>. (2)设直线:ST x ty m =+,联立()2240440y x x y ty m x ty m⎧=>⇒--=⎨=+⎩. 设()()1122,,,S x y T x y ,则124y y m ⋅=-,()22212212124416y y y y x x m ⋅⋅=⋅==.又0OS OT ⋅=,故由题有12120x x y y +=,即240m m -=.由题意可知0m ≠,故4m =.故直线:ST 4x ty =+,恒过定点()4,0. (3)设直线l 方程为y kx b =+,l 与抛物线交于点()()1122,,,A x y B x y ,则由4OA OB ⋅=-,得12124x x y y +=-,即221212444y yy y ⋅+=-,∴()2121216640y y y y ++=,解得128y y =-,由()()2240440,0y x x ky y b k y kx b⎧=>⇒-+=≠⎨=+⎩,∴12482by y b k k ==-⇒=-, 当216160120kb k ∆=->⇒+>恒成立,()()222121212222211116161141b AB yy y y y y k k k k k ⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=+-=++-=+- ⎪ ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭()()22416112k k k ++=. 由题意,||430AB ≤≤()()224161121661630k k k++⨯≤≤⨯,即2422132513121428424k k k ⎛⎫≤+≤⇒≤+≤⎪⎝⎭, ∵21302k +>,故2251311114222k k ≤+≤⇒≤≤,解得2114k ≤≤,∴112k ≤≤或112k -≤≤-. 即所求k 的取值范围是111,,122⎡⎤⎡⎤--⋃⎢⎥⎢⎥⎣⎦⎣⎦. 4.(2020·上海南模中学期末)教材曾有介绍:圆222x y r +=上的点()00,x y 处的切线方程为200x x y y r +=.我们将其结论推广:椭圆()222210x y a b a b+=>>上的点()00,x y 处的切线方程为00221x x y y a b +=,在解本题时可以直接应用.已知,直线0x y -+=与椭圆()222:11x E y a a+=>有且只有一个公共点.(1)求a 的值;(2)设O 为坐标原点,过椭圆E 上的两点A 、B 分别作该椭圆的两条切线1l 、2l ,且1l 与2l 交于点()2,M m .当m 变化时,求OAB ∆面积的最大值;(3)在(2)的条件下,经过点()2,M m 作直线l 与该椭圆E 交于C 、D 两点,在线段CD 上存在点N ,使CN MCND MD=成立,试问:点N 是否在直线AB 上,请说明理由.【答案】(1)a =2)2(3)见解析 【解析】【分析】(1)将直线y =x x 的方程,由直线和椭圆相切的条件:判别式为0,解方程可得a 的值;(2)设切点A (x 1,y 1),B (x 2,y 2),可得切线1l ,22x xy y 12+=,CN MC ND MD =,再将M 代入上式,结合两点确定一条直线,可得切点弦方程,AB 的方程为x+my =1,将直线与椭圆方程联立,运用韦达定理,求得△OAB 的面积,化简整理,运用基本不等式即可得到所求最大值;(3)点N 在直线AB 上,∵()C C C x ,y设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =-,于是C D0x λx x 1λ+=+,向量坐标化,得C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=,将()CN λND λ0,λ1=>≠代入椭圆方程,结合()D D D x ,y 、()00N x ,y 在椭圆上,整理化简得2223x y 1ay x ⎧=+⎪⎨+=⎪⎩,即N 在直线AB 上.【详解】(1)联立2211x 20(1)a a ⎛⎫+++=> ⎪⎝⎭,整理得(2214120a a ⎛⎫-⋅+⋅=⇒= ⎪⎝⎭依题意Δ0=,即()11A x ,y . (2)设()22B x ,y 、11x xy y 12+=,于是直线1l 、2l 的方程分别为()M 2,m 、CN MC ND MD =,将11x my 10+-=代入1l 、2l 的方程得22x my 10+-=且x my 10+-=,∴直线AB 的方程为()222210m 2y 2my 10x y 12x my +-=⎧⎪⇒+--=⎨+=⎪⎩, 联立1221y y m 2=-+, 显然Δ0>,由1y ,2y 是该方程的两个实根,有1222my y m 2+=+,ΔOAB , 121S y y 2=-面积()()()()222121222222m 1121S y y 4y y 142m 2m12m 1+⎡⎤=+-==≤⎣⎦+++++,即22C C x y 12+=,当且仅当m 0=时,“=”成立,S取得最大值2. (3)点N 在直线AB 上,∵()C C C x ,y ,设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =-, 于是C D 0x λx x 1λ+=+,即C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=,又22222222C D DD C D x x x y 1y λy 1λ222⎛⎫+=⇒+-+=- ⎪⎝⎭C D C D C D C D x λx x λx y λy y λy 1121+λ1λ1+λ1λ+-+-⇒⋅⋅+⋅=--00001x 2y m 1x my 102⇒⋅⋅+=⇒+-=, ()()()()()f 2,j f 1,j f 1,j 12f 1,j 48j 4j 1,2,,n 1=++=+=+=-,即N 在直线AB 上.5.(2020·上海普陀区一模)已知双曲线Γ:22221(0,0)x y a b a b-=>>的焦距为4,直线:40l x my --=(m R ∈)与Γ交于两个不同的点D 、E ,且0m =时直线l 与Γ的两条渐近线所围成的三角形恰为等边三角形.(1)求双曲线Γ的方程;(2)若坐标原点O 在以线段DE 为直径的圆的内部,求实数m 的取值范围;(3)设A 、B 分别是Γ的左、右两顶点,线段BD 的垂直平分线交直线BD 于点P ,交直线AD 于点Q ,求证:线段PQ 在x 轴上的射影长为定值.【答案】(1)2213x y -=;(2)15((,3)33-;(3)证明见解析. 【解析】【分析】(1)求得双曲线的2c =,由等边三角形的性质可得a ,b 的方程,结合a ,b ,c 的关系求得a ,b ,进而得到双曲线的方程;(2)设1(D x ,1)y ,2(E x ,2)y ,联立直线40x my --=和2233x y -=,应用韦达定理和弦长公式,设DE 的中点为F ,求得F 的坐标,由题意可得1||||2OF DE <,应用两点的距离公式,解不等式可得所求范围;(3)求得A ,B 的坐标和P 的坐标,求得BD 的垂直平分线方程和AD 的方程,联立解得Q 的坐标,求出||P Q x x -,即可得证.【详解】(1)当0m =直线:4l x =与C 的两条渐近线围成的三角形恰为等边三角形,由根据双曲线的性质得,2221tan 303b a ==,又焦距为4,则224a b +=,解得a =1b =,则所求双曲线Γ的方程为2213x y -=.(2)设11(,)D x y ,22(,)E x y ,由221340x y x my ⎧-=⎪⎨⎪--=⎩,得22(3)8130m y my -++=,则12283m y y m +=-,122133y y m =-,且2226452(3)12(13)0m m m ∆=--=+>, 又坐标原点O 在以线段DE 为直径的圆内,则0OD OE ⋅<,即12120x x y y +<,即1212(4)(4)0my my y y +++<,即212124()(1)160m y y m y y ++++<,则22221313816033m m m m +-+<--,即223503m m -<-,则3m <<-或3m <<, 即实数m的取值范围15((,3). (3)线段PQ 在x 轴上的射影长是p q x x -.设00(,)D x y ,由(1)得点B , 又点P 是线段BD 的中点,则点00()22x y P+, 直线BD,直线AD ,又BDPQ ⊥,则直线PQ的方程为0000(22y x x yx y -=-,即200000322x x y y x y y -=++, 又直线AD的方程为y x =+,联立方程200000322x x y y x y y y x ⎧-=++⎪⎪⎨⎪=+⎪⎩, 消去y化简整理,得2220003)22x y x x x -++=+,又220013x y =-,代入消去20y,得20002(3)1)(33x x x x x -+=+,即02(1(33x xx +-+=+,则024x x =,即点Q 的横坐标为024x ,则p q x x -==.故线段PQ 在x 轴上的射影长为定值.6.(2020·上海金山中学期末)已知椭圆C :2221tan y x α+=,其中04πα<<,点A 是椭圆C 的右顶点,射线l :(0)y x x =≥与椭圆C 的交点为B . (1)求点B 的坐标;(2)设椭圆C 的长半轴、短半轴的长分别为a 、b ,当ba的值在区间0,3⎛⎫ ⎪ ⎪⎝⎭中变化时,求α的取值范围; (3)在(2)的条件下,以A 为焦点,(,0)D m 为顶点且开口方向向左的抛物线过点B ,求实数m 的取值范围.【答案】(1)(sin , sin )B αα;(2)06πα<<;(3)314m +<<. 【解析】【分析】(1)联立方程组2221tan y x y x α⎧+=⎪⎨⎪=⎩,再求解即可;(2)由椭圆的几何性质可得1a =,tan b α=,再解不等式040tan 3παα⎧<<⎪⎪⎨⎪<<⎪⎩即可;(3)先求出抛物线的方程为24(1)()y m x m =---,由点(sin ,sin )B αα在抛物线上可得2sin 4(1)(sin )m m αα=---,再令sin t α=,则2()4(1)4(1)f t t m t m m =--+-①,其中102t <<,则问题可转化为抛物线①在区间10,2⎛⎫⎪⎝⎭上与椭圆有一个交点的充要条件是:(0)0102f f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,再求解即可.【详解】(1)解方程组2221tan y x y x α⎧+=⎪⎨⎪=⎩,得sin x y α==,∴(sin , sin )B αα. (2)∵04πα<<,0tan 1α<<,∴椭圆的焦点在x 轴上,1a =,tan b α=,由条件0403b a πα⎧<<⎪⎪⎨⎪<<⎪⎩,得:040tan 3παα⎧<<⎪⎪⎨⎪<<⎪⎩,∴06πα<<;(3)由题意得:1m ,且抛物线焦点A 与顶点D 的距离为1m -,设抛物线方程为:22()y p x m =--,那么2(1)p m =-,故抛物线的方程为24(1)()y m x m =---,∵点(sin ,sin )B αα在抛物线上,∴2sin 4(1)(sin )m m αα=---,2sin 4(1)sin 4(1)0m m m αα--+-=,设sin t α=,∵06πα<<,∴102t <<, 令2()4(1)4(1)f t t m t m m =--+-①,其中102t <<,抛物线①开口向上,其对称轴2(1)0t m =-<, 抛物线①在区间10,2⎛⎫⎪⎝⎭上与椭圆有一个交点的充要条件是:(0)0102f f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,即24(1)074604m m m m -<⎧⎪⎨-+<⎪⎩,∴0? 1m m m ⎧<<或m的取值范围是314m <<. 7.(2020·上海闵行区一模)已知抛物线2:8y x Γ=和圆22:40x y x Ω+-=,抛物线Γ的焦点为F .(1)求Ω的圆心到Γ的准线的距离;(2)若点(),T x y 在抛物线Γ上,且满足[]1,4x ∈,过点Γ作圆Ω的两条切线,记切点为A B 、,求四边形TAFB 的面积的取值范围;(3)如图,若直线l 与抛物线Γ和圆Ω依次交于M P Q N 、、、四点,证明:12MP QN PQ ==的充要条件是“直线l 的方程为2x =”【答案】(1)4;(2);(3)见解析 【解析】【分析】(1)分别求出圆心和准线方程即可得解;(2)根据条件可表示出四边形TAFB 的面积S =,利用函数的单调性即可得解;(3)充分性:令直线l 的方程为2x =,分别求出M 、P 、Q 、N 四点坐标后即可证明12MP QN PQ ==;必要性:设l 的方程为x ty m =+,()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,由12MP QN PQ==可得1234y y y y +=+,即可得出t 与m 的关系,进而可得出直线l 的方程为2x =.【详解】(1)由2240x y x +-=可得:()22 24x y -+=,∴Ω的圆心与Γ的焦点F 重合,∴Ω的圆心()2,0到Γ的准线2x =-的距离为4.(2)四边形TAFB 的面积为:1222S =⨯⨯===,∴当[]1,4x ∈时,四边形TAFB 的面积的取值范围为.(2)证明(充分性) :若直线l 的方程为2x =,将2x =分别代入28y x =2240x y x +-=得()2,4M ,()2,2P ,()2,2Q -,()2,4N -.∴122MP ON PQ ===,∴12MP QN PQ ==.(必要性) :若12MP QN PQ ==,则线段MN 与线段PQ 的中点重合,设l 的方程为x ty m =+,()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,则1234y y y y +=+,将x ty m =+代入28y x =得2880y ty m --=,128y y t +=,264320t m ∆=+>即220t m +>,同理可得,()342221t m y y t-+=-+, ∴()22281t m t t--=+即0t =或242m t =--, 而当242m t =--时,将其代入220t m +>得2220t -->不可能成立;.当0t =时,由280y m -=得:1y =2y =- 将x m =代入2240x y x +-=得3y =4y =12MP PQ =,∴12=⋅,∴220m m -=,∴2m =或0m =(舍去),∴直线l 的方程为2x =,12MP QN PQ ==的充要条件是“直线l 的方程为2x =”.8.(2020·上海川沙中学期末考试)已知两点1(F、2F ,动点(,)M x y 满足12|||4|MF MF +=,记M 的轨迹为曲线C ,直线:l y kx =(0k ≠)交曲线C 于P 、Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交曲线C 于点G . (1)求曲线C 的方程,并说明曲线C 是什么曲线; (2)若2k =,求△PQG 的面积; (3)证明:△PQG 为直角三角形.【答案】(1)22142x y +=,轨迹是以0)、(为焦点的椭圆;(2)4027;(3)证明见解析. 【解析】【分析】(1)1212|||||4|MF MF F F +=>,根据椭圆定义,即可求出方程;(2)设111(,),0,0P x kx x k >>,可得111(,),(,0)Q x kx E x --,求出QE 方程,与椭圆方程联立求出G 点坐标,再将2y x =与椭圆方程联立,求出,,P Q G 坐标,即可求解; (2)根据(2)中G 点坐标求出PG 斜率,即可证明结论.【详解】(1)1212|||||4|MF MF F F +=>,M点轨迹就是以12(F F 为焦点的椭圆,其方程为22142x y +=.(2)设111(,),0,0P x kx x k >>,则111(,),(,0)Q x kx E x --,直线QE 方程为1()2ky x x =-, 联立122()2240k y x x x y ⎧=-⎪⎨⎪+-=⎩消去y 得,2222211(2)280k x k x x k x +-+-=,① 设221(,),G x y x -为方程①的解,222111121212222232,222k x k x k x x x x x x k k k +-=∴=+=+++,323111122122232(),(,)2222k x k x x k x ky x x G k k k +=-=+++, 联立22224y x x y =⎧⎨+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩或2343x y ⎧=-⎪⎪⎨⎪=-⎪⎩,2424148(,),(,),(,)333399P Q G --, 1414240()239327PQG S ∆=⨯+=.(3)由(2)得231112232(,)22k x x k x G k k +++,3112122111122123222PGk x kx kx k k k x x k x k x k -+===-+--+, PQ PG ∴⊥,即△PQG 为直角三角形.9.(2020·上海东昌中学期末考试)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆221:14x C y +=.(1)若椭圆222:1164x y C +=,判断2C 与1C 是否相似?如果相似,求出2C 与1C 的相似比;如果不相似,请说明理由;(2)写出与椭圆1C 相似且焦点在x 轴上、短半轴长为b 的椭圆b C 的标准方程;若在椭圆b C 上存在两点M 、N 关于直线1y x =+对称,求实数b 的取值范围;(3)如图:直线y x =与两个“相似椭圆”和分别交于点,A B 和点,C D ,试在椭圆M 和椭圆M λ上分别作出点E 和点F (非椭圆顶点),使CDF ∆和ABE ∆组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)【答案】(1) 相似比为2:1(2)b >(3)详见解析 【解析】【详解】(1)椭圆2C 与1C 相似.∵椭圆2C 的特征三角形是腰长为4,底边长为 而椭圆1C 的特征三角形是腰长为2,底边长为 因此两个等腰三角形相似,且相似比为2:1. (2)椭圆b C 的方程为:,设:MN l y x t =-+,点1122(,),(,)M x y N x y ,MN 中点为00(,)x y ,则2222{14y x tx y b b =-++=, ∴222584()0x tx t b -+-=,则12004,255x x t tx y +===, ∵中点在直线1y x =+上,∴有4155t t =+,53t =-,即直线MN l 的方程为:5:3MN l y x =--, 由题意可知,直线MN l 与椭圆b C 有两个不同的交点,即方程2225558()4[()]033x x b --+--=有两个不同的实数解,∴224025()454()039b ∆=-⨯⨯⨯->,即b > (3)作法1:过原点作直线,交椭圆M 和椭圆M λ于点E 和点F ,则CDF ∆和ABE ∆即为所求相似三角形,且相似比为λ.作法2:过点A 、点C 分别做x 轴(或y 轴)的垂线,交椭圆M 和椭圆M λ于点E 和点F ,则CDF ∆和ABE ∆即为所求相似三角形,且相似比为λ.10.(2020·上海华师大附中月考)已知椭圆Γ的方程为22184x y +=,圆C 与x 轴相切于点()2,0T ,与y 轴正半轴相交于A 、B 两点,且3AB =,如图1.(1)求圆C 的方程;(2)如图1,过点B 的直线l 与椭圆Γ相交于P 、Q 两点,求证:射线AB 平分PAQ ∠;(3)如图2所示,点M 、N 是椭圆Γ的两个顶点,且第三象限的动点R 在椭圆Γ上,若直线RM 与y 轴交于点1M ,直线RN 与x 轴交于点1N ,试问:四边形11MNN M 的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.【答案】(1)()2225224x y 5⎛⎫-+-= ⎪⎝⎭;(2)证明见解析;(3)是, 【解析】【分析】(1)根据已知条件设出圆心坐标,半径为圆心纵坐标,利用弦长公式,可求出圆的方程;(2)先求出,A B 点坐标,设出直线AB 方程,与椭圆方程联立,利用韦达定理,即可求得0AP AQ k k +=,命题得证;(3)设220000(,),28R x y x y +=,求出直线RM 、直线RN 方程,进而求出点1M 与点1N 的坐标,然后四边形11MNN M 的面积用点1M 与点1N 的坐标表示,计算可得定值.【详解】(1)依题意,设圆心(2,),C b r b =,||3AB ==,解得52r =, ∴所求的方程为()2225224x y 5⎛⎫-+-= ⎪⎝⎭. (2)0x =代入圆C 方程,得1y =或4y =,(0,1),(0,4)B A ∴, 若过点B 的直线l 斜率不存在,此时,,A P Q 在y 轴上,0PABQAB,射线AB 平分PAQ ∠,若过点B 的直线l 斜率存在,设其方程为1y kx =+,联立22281x y y kx ⎧+=⎨=+⎩,消去y 得,22222(21)460,1624(21)8(83)0,k x kx k kk∆。
高考数学《解析几何中的参数取值范围问题》

高考数学 解析几何中的参数取值范围问题
6. 已知椭圆ax22+by22=1(a>b>0)的离心率为 22,且过点(2, 2). (1) 求椭圆 C 的标准方程; (2) 设 A,B 为椭圆 C 的左、右顶点,过 C 的右焦点 F 作直线 l 交椭圆于 M, N 两 点,分别记△ABM,△ABN 的面积为 S1,S2,求|S1-S2|的最大值.
高考数学 解析几何中的参数取值范围问题
2. 已知 F1,F2 是椭圆的两个焦点,满足M→F1·M→F2=0 的点 M 总在椭圆内部,则椭
圆离心率的取值范围是________________.
0,
2 2
解析:满足M→F1·M→F2=0 的点 M 在圆 x2+y2=c2 上,由题意知方程组
x2+y2=c2, ax22+by22=1
高考数学 解析几何中的参数取值范围问题
解析:(1) 由题意知,e=ac=12,CD=7-2a,
所以 a2=4c2,b2=3c2.
7-4c2
因为点c,7-24c在椭圆上,即4cc22+
2 3c2
=1,
所以 c=1.
高考数学 解析几何中的参数取值范围问题
【思维变式题组训练】 1. 已知椭圆2x52 +1y62 =1,F 为椭圆的右焦点,点 A(1,2),P 为椭圆上任意一点,则 5PF+3PA 的最小值为________. 22 解析:过点 P 作右准线的垂线,垂足为 P1.根据统一定义PPPF1=35,5PF+3PA =3(PA+PP1)≥3235-1=22.
(2) 求△PCD 面积的最大值.
高考数学 解析几何中的参数取值范围问题
a32+41b2=1, 解析:(1) 由题意得ac= 23,
a2=b2+c2, 故椭圆 C 的标准方程为x42+y2=1.
解析几何最值问题常用求解策略

在评 价过 程 中要 重 视 对 数 学 学 习 过 程 的评 价 .既 要 关 注 学生 知识 与技 能 的理 解 和 掌 握 ,又 要 关 注 他 们 情 感 与 态 度 的 形成 和发 展 : 要 关 注 学 生 学 习数 学 的结 果 , 要 关 注他 们 在 既 又 数学 学 习 过程 中 的 变化 和 发 展 。 多 元 性 的 评 价 包 括 参 与 数 学 活 动 的程 度 、 自信 心 、 作 交 流 的 意 识 、 立 思 考 的 习 惯 、 学 合 独 数 思考 发展 水 平 , 等 。 如 , 否积 极 主 动 地 参 与 学 习 活 动 , 等 例 是 是 否有 学 好 数 学 的信 心 , 否 乐 于 与 他 人 合 作 , 否 愿 意 与 同伴 是 是 交 流 各 自的想 法 .是 否 能够 通 过 独 立 思 考 获 得 解 决 问题 的思 路 , 否 能 找 到 有 效 解 决 问 题 的方 法 , 否 能 够 使 用 数 学 语 言 是 是 有 条 理 地 表 达 自己 的思 考 过 程 .是 否 有 反 思 自 己思 考 过 程 的 意识 , 等 。 等 四 、 展 性 评 价在 数 学教 学 中 的反 思 发 ( ) 展 性 评 价 不 应 是 无 原 则 的表 扬 . 应 是 师 生 在 民 一 发 而 主 气 氛 中 的沟 通 。 些 教 师 经 常 引用 一 理 学 上 的 “ 森 塔 尔 效 应 ” 说 明赞 t L , 罗 来 扬 在 教 育 中 的重 要 性 ,坚 持 认 为 在评 价 时 只 能 表 扬 .不 能 批 评 , 能尽量发现“ 只 闪光 点 ” 不 能 指 出 缺 点 与 不 足 。 这 些 无 原 , 则 的评 价 可 能 会 导 致 学 生 出现 基 础 知 识 不 牢 固 、 念 不 清 晰 、 概 努 力 方 向 不 明 确 等 问题 , 可 能 使 学 生 是 非 不 分 、 恶 不 明 。 也 善 评 价 没 有 起 到 激 励 与 促 进 学 生 发 展 的作 用 ,相 反 却 阻 碍 了学 生 的 发 展 , 价 活 动 的信 度 与 效 度 更 无 从 谈 起 。 展 性 评 价 注 评 发 重 评 价 过 程 中 被 评 价 者 对 评 价 信 息 的建 构 ,鼓 励 被 评 价 者 参 与 评 价 。 倡 自我 评 价 与 他 人 评 价 相结 合 , 在 客 观 上 隐 含 了 提 这 评 价 双 方 平 等 交 流 的 基 本 要 求 。评 价 者 与 被 评 价 者 在 民 主 的 气 氛 中沟 通思 想 、 成共 识 . 展 性 评 价 中 师生 双方 的 参 与 和 达 发 互 动 过 程 实 质 上 就 是 人 际 沟 通 的 过程 。 ( ) 展 性 评 价 不 应 是 多 种 评 价 方 式 、 价 主 体 的 简单 二 发 评 相加 。 评 价 的多 元 性 是 发 展 性 评 价 的一 个 整 体 特 征 ,它 不 意 味 着 每 一 个 具 体 评 价 活 动 都 要 使 用 所 有 的方 法 、调 动 所 有 的主 体。 而且 , 价 的 多 元 方 法 与 多元 主体 的使 用 都 应 当 以保 障评 评 价 结 果 的 信 度 和 效 度 为 前 提 , 价 者 对 评 价 目的 的理 解 、 评 评 对 价 标 准 的 把 握 、 评 价 方 法 的 熟 悉 程 度 等 , 会 影 响 到 评 价 的 对 都
解析几何最值和参数范围问题求解策略

解析几何最值和参数范围问题的求解策略解析几何问题常常围绕“形助数”和“数研究形”展开.圆锥曲线的最值和范围问题目标函数化归函数最值求解是通法.若能抓住定义的本质属性和曲线方程的几何特征,往往能寻求到最值问题的简捷解题途径.要充分认识和体验某些几何量的几何意义,重视“形助数”和“数研究形”的简化运算的功能.1(05全国) P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知.0,,=⋅且线与共线与求四边形PMQN 的面积的最小值和最大值.解:本小题主要考查椭圆和直线的方程与性质,两条直线垂直的条件,两点间的距离等基本知识及综合分析能力. 突显依据几何条件的特征构建目标函数,换元化归函数值域求解最值。
依据四边形对角线垂直的面积公式,“设而不解整体思维”,用弦长公式切入类比,如图,由条件知MN 和PQ 是椭圆的两条弦,相交于焦点F (0,1),且PQ ⊥MN ,直线PQ 、MN 中至少有一条存在斜率,不妨设PQ 的斜率为k.又PQ 过点F (0,1),故PQ 方程为.1+=kx y 将此式代入椭圆方程得.012)2(22=-++kx x k 设P 、Q 两点的坐标分别为则),,(),,(2211y x y x.,21,22221221k x x k k x x +-=+-=+()()[]212212221221241)()(||x x x x k y y x x PQ -++=-+-=从而,)2()1(82222k k ++=222)1(22||kk PQ ++=亦即 (i )k MN k 1,0-≠的斜率为时当,同上可类比推得.)(2))11(1(22||22kk MN -+-+=故四边形面积||||21MN PQ S ⋅=222214(1)(1)(2)(2)k k k k ++=++.225)12(42222k k k k ++++= 如何研究最值?整体变量观念“换元法”简化, 2214(2),252u u k S k u +=+==+令得1(1)52u-+因为2212u k k =+≥ ;2916,,916,2,1<≤==±=S u S S u k 所以为自变量的增函数是以且时当 (ii )当k =0时,MN 为椭圆长轴,22||=MN 、2||=PQ ,.2||21=⋅=MN PQ S综合(i ),(ii )知,四边形PMQN 面积的最大值为2,最小值为.9162 (05广东)在平面直角坐标系x Oy 中,抛物线y =x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).(Ⅰ)求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由解: 本小题主要考查椭圆和直线的方程与性质,两条直线垂直的条件,两点间的距离,等基本知识及综合分析能力.构建目标函数化归不等式求最值解决。
高中解析几何中的最值问题及其教学策略研究

一
其题意为 : 若点0 和点F 为 椭 圆 + = 1 的中心和左焦点 ,
4 3
、
点P 是椭 圆上的任意点 , 求确 ・ 的最大值. 而对于该 题 , 可以
巧 妙 地 利 用 函数 思 想 进 行 解 答 . 首先 , 通过题 意可 以知F ( 一 1 ,
2 2
一
0 ) , 假设点P ( x , Y ) , 则 可 以得 到 算 式
高 中解 析 几 何 中 的 最 值 问题 及 其 教 学 策 略 研 究
捌 振 飞
( 江 苏 省 通 州 高 级 中学 , 江苏 南通 摘 要: 解 析 几何 是 高 中数 学 的 重要 内容 。 在教 学 过 程 中 要 注 意对 解 析 几 何 最值 问题 进 行 方 法 策略 探 析 , 实现 优 化 解 题 的 目的 . 一 些 解析 几 何 最 值 问题 的典 型 例 题 , 总 结 归 纳 其教 学 策略 , 为 高 中 解析 几何 最 值 问题 提 供 常 用 的 解 答技 巧 与 方 法 . 关键词 : 高 中 解析 几何 最 值 问题 教 学 策 略 2 2 6 3 0 0 )
浅谈如何有效地解决解析几何中的最值问题

由双 曲线的第二定义 知
:, 。
Il d 1 I Nl = ,  ̄
所以I 4 I =I + =I +I I P I P I P I d P I . M F M M
y
C:{ 2
【 =3i y sn0
( 为参数) 0 .
( ) C,C 的方 程为普通 方程 ,并说 明它们 分别表 示什 1化
么 曲线 ;
、
半 =, } }则y , 直 径r1设 j 当 ,
线 Y= 与圆 c相切 时 ,卫 取最值 .
所 以
Байду номын сангаас0
( ) C 上的点 P对应 的参数为 £ ,Q为 C 上 的动点 , 2若 = 2
( ) —Y: 2设 m,
均为参数 方程 ,两 问相 互关联 ,可 以化 参数方程 为熟 悉的普通
方 程 ,于是 问题 获 得 如 下 解 法 .
则 , —m与圆 C相切 时 , — , = Y有最值 ,
所 以
、2 /
解 ( C ( 4+ 一) 1C 昔 ・ :1 - ) ( 3=,z ): + : 手 1
分 析 : 本 题 与 例 3有 类 似 之 处 , 利 用 定 义 及 几 何 特 征 可 买
现 问题 的转 化 .
故 (+刚, 手i) 一 4 2 s . 2c n
C 为 直 线 一2 , y一7=0 , 到 G 的距 离 d=T - ・ V3
解 由 曲音一 =知 =,= :双 线 手 1 1b9 6 2,
所 以 c =2 , 5 ) 5 ,0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 解析几何范围最值问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值.[满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·(-2)-(-2)-2|22+(-1)2=45=4 55.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2· (x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=4 10.于是,△ABP 面积的最大值为12×4 10×4 55=8 2.二、函数法求最值【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.(1)由e =ca=a 2-b 2a 2= 23,得a =3b ,椭圆C :x 23b 2+y 2b2=1,即x 2+3y 2=3b 2,设P (x ,y )为C 上任意一点,则|PQ |= x 2+(y -2)2= -2(y +1)2+3b 2+6,-b ≤y ≤b .若b <1,则-b >-1,当y =-b 时,|PQ |max = -2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去), 若b ≥1,则-b ≤-1,当y =-1时,|PQ |max = -2(-1+1)2+3b 2+6=3,得b =1.∴椭圆C 的方程为x 23+y 2=1.(2)法一 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤ 3.由题意可得S△AOB=12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤12, 当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为22, 则1m 2+n 2=22,得m 2+n 2=2,又m 23+n 2=1,解得m 2=32,n 2=12,即存点M 的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22满足题意,且△AOB 的最大面积为12.(12分)法二 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤3,又设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧mx +ny =1x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2=1-m 23代入①整理得(3+2m 2)x 2-6mx+m 2=0,则Δ=8m 2(3-m 2)≥0,∴⎩⎨⎧x 1+x 2=6m3+2m 2,x 1x 2=m23+2m2,②而S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ,当∠AOB =90°,S △AOB 取得最大值12,此时·=x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 23-m 2,∴x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 23-m 2=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0, 把②代入上式整理得2m 4-9m 2+9=0,解得m 2=32或m 2=3(舍去),∴m =±62,n =±1-m 23=±22,∴M 点的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22,使得S △AOB 取得最大值12.老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.三.定义法求最值在求解有关圆锥曲线的最值问题时, 通常是利用函数的观点, 建立函数表达式进行求解。
但是, 一味的强调函数观点, 有时会使思维陷入僵局。
这时, 若能考虑用圆锥曲线的定义来求解, 问题就显得特别的简单。
例1、如图,M 是以A 、B 为焦点的双曲线222x y -=右支上任一点,若点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是( )A 、)++∞ B 、)+∞C 、-D 、)+∞分析:此题的得分率很低,用函数观点求解困难重重。
若能利用双曲线的第一定义,则势如破竹。
解法如下:连结MA ,由双曲线的第一定义可得:2MB MC MA a MC +=-+2MA MC =+-= 当且仅当A 、M 、C 三点共线时取得最小值。
如果此题就到此为止,未免太可惜了!于是笔者进一步引导学生作如下的探究:(1)如果M 点在左支上,则点M 到点C (3,1)与点B 的距离之和为S ,则S 的取值范围是多少?(2)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ⎛⎫⎪⎝⎭与点B 的距离之差为S ,则S的最大值是多少?(3)如果M 是以A 、B 为焦点的椭圆22143x y +=上任一点,若点M 到点1,12C ⎛⎫⎪⎝⎭与点B 的距离之和为S ,则S的取值范围是多少?分析:连结MA ,由椭圆的第一定义可得:()22MB MC a MA MC a MA MC +=-+=--,当且仅当A 、M 、C 三点共线时取得最大、最小值,如上图所示。
对于抛物线,也有类似的结论,由于较简单,在此就不一一列举了。
练习1、如图,椭圆C 的方程为2222 1 (0)y x a b a b+=>>,A 是椭圆C 的短轴左顶点,过A 点作斜率为-1的直线交椭圆于B 点,点P (1,0), 且BP ∥y 轴,△APB 的面积为92. (1)求椭圆C 的方程;(2)在直线AB 上求一点M ,使得以椭圆C 的焦点为焦点,且过M 的双曲线E 的实轴最长,并求此双曲线E 的方程.分析:同样, 此题若采用函数观点, 问题(2)将变得复杂化!若能利用双曲线的第一定义,则解答就容解易得多了。
简解:(1) ,2921=⋅=∆PB AP S APB 又∠PAB =45°, AP =PB ,故AP =BP =3.∵P (1,0),A (-2,0),B (1,-3)∴ b=2,将B (1,-3)代入椭圆得:222191b b a=⎧⎪⎨+=⎪⎩ 得 212a =,所求椭圆方程为221 124y x +=(2)设椭圆C 的焦点为F 1,F 2,则易知F 1(0,-F 2(0,),直线AB 的方程为:20x y ++=,因为M 在双曲线E 上,要双曲线E 的实轴最大, 只须||MF 1|-|MF 2||最大,设F 1(0,-)关于直线AB 的对称点为1'F(-2,-2),则直线'12F F 与直线的交点为所求M , 因为'12F F的方程为:(30y x ++-=,联立(3020y x x y ⎧++-=⎪⎨++=⎪⎩ 得M (1,3-)又'2a =||MF 1|-|MF 2||=||M 1'F |-|MF 2||21|'|F F ≤=,故2,6''max ==b a ,故所求双曲线方程为:221 62y x -=2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162=的焦点P 为其一个焦点,以双曲线191622=-y x 的焦点Q 为顶点。
(1)求椭圆的标准方程;(2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ⋅的取值范围。
解:(1)抛物线x y 162=的焦点P 为(4,0),双曲线191622=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为12222=+by a x ,由已知有a>b>0,且a=5,c=4 916252=-=∴b ,∴椭圆的标准方程为192522=+y x (2)设),(00y x M ,线段CD 方程为135=+yx ,即353+-=x y )50(≤≤x点M 是线段CD 上,∴35300+-=x y )50(0≤≤x),1(00y x AM +=,),1(00y x BM -=,12020-+=⋅∴y x AM ,将35300+-=x y )50(0≤≤x 代入得BM ⋅1)353(202-+-+=x x BM AM ⋅⇒85182534020+-=x x 34191)3445(253420+-=x500≤≤x ,BM AM ⋅∴的最大值为24,BM AM ⋅的最小值为34191。