汽车坡道3侧壁计算书教案
汽车坡道计算公式2003

汽车坡道计算公式2003
汽车坡道计算公式2003
1. 坡度(Gradient):坡度是指坡道上升或下降的角度,通常用百分比(%)或角度(°)来表示。
对于汽车坡道计算公式,需要将坡度转换为专为表示的参数。
公式1:坡度(%)=((H-L)/L)*100
其中,H为水平距离,L为垂直距离。
2.上坡和下坡:
-上坡:在上坡时,汽车需要克服重力的作用,因此需要计算所需的引擎扭矩。
公式2:引擎扭矩(Nm)=(正对应的重力分量+方向相同的滚动阻力分量)*车轮半径
其中,重力分量等于重力加速度乘以汽车质量,滚动阻力分量等于滚动阻力系数乘以重力加速度乘以汽车质量。
-下坡:在下坡时,汽车必须抵消重力的作用,因此需要计算所需的制动力。
公式3:制动力(Nm)=(负对应的重力分量+方向相同的滚动阻力分量)*车轮半径
其中,负对应的重力分量等于负重力加速度乘以汽车质量。
3. 引擎输出功率(Engine output power):引擎输出功率是指引擎
在单位时间内所作的功,通常以马力或千瓦表示。
在汽车坡道计算中,引
擎输出功率是一个重要参数。
公式4:引擎输出功率(kW)= 引擎输出扭矩(Nm) * 引擎转速(rpm) / 9549
其中,引擎输出扭矩可以通过汽车手册或相关文献获得。
转速通常以
每分钟转数(rpm)来表示。
需要注意的是,这些公式只能作为计算和估算的工具,实际情况可能
会受到许多其他因素的影响,如路面摩擦系数、风阻、空气密度等。
因此,在实际应用中,还需要综合考虑各种因素来准确计算汽车在坡道上的力学
情况。
汽车坡道结构设计

汽车坡道结构设计作者:***1汽车坡道结构形式概述1、建筑形式1)形状:直线型和曲线形2)埋置情况:建筑内式和地下埋置式3)有无顶板:顶板式和敞口式2、结构形式2坡道结构设计流程1、理解设计意图2、构建模型及计算A)设计条件B)荷载统计I. 永久作用统计II. 可变作用统计C)结构计算I. 模型简化II. 计算过程地基承载力验算抗浮验算底板内力计算侧壁内力计算顶板内力计算3、绘制施工图-构造要求4、同其他专业联校5、专业内部校对审核3汽车坡道结构计算原则1、常用资料《建筑结构荷载规范》(GB 50009-2012)《混凝土结构设计规范》(GB50010-2010)《汽车库建筑设计规范》(JGJ 100-98)14SG313《老虎窗、采光井、地下车库(坡道式出入口》16G101-1《混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇混凝土框架、剪力墙、梁、板)》《混凝土结构构造手册》(中国有色工程设计研究总院编)2、组成部分1)侧壁2)底板3)顶板4)止水带5)其他节点3、构建模型及计算1)设计基础资料A. 工程地质勘察报告B. 建筑条件C. 相关水文及气象资料2)计算过程A. 地基承载力验算I. 荷载种类及其组合坡道自重及其上的覆土和活荷载引起的地基反力或地下水浮力。
当地基不是太软弱时,可以测定地基反力为均匀分布。
计算时可以采取荷载除以底板面积。
II. 验算地基反力R0 = 坡道顶荷载坡道全重 / 底板面积坡道内活载≤修正后地基承载力特征值B. 抗浮验算I. 抗浮措施自重抗浮、压重抗浮、基底配重抗浮、抗拔桩抗浮或锚杆抗浮II. 荷载种类及其组合验算Gk/F≥1.05Gk为不含活载在内的坡道自重等永久作用荷载标准值F 为地下水浮力III. 抗浮验算C. 底板内力计算I. 荷载类型及组合恒载作用坡道自重 Pgk=坡道混凝土部分自重坡道垫层自重覆土自重Psk=γHn活载作用室外地面汽车荷载按《建筑结构荷载规范》GB50009-2012按单向板取35KN/㎡;双向板20KN/㎡,并根据附录B进行深度折减,扩散角按35°考虑。
汽车坡道土方方案3

目录一、工程概况 (2)二、边坡放坡稳定性验算: (2)三主要项目施工方法: (2)(一)土方开挖顺序: (2)(二)土方开挖前应具备条件: (2)(三)土方开挖: (3)(四)土方回填: (3)四质量保证措施: (3)五成品保护措施: (4)六安全文明施工措施: (4)(一)安全防护措施: (4)(二)临时用电 (5)(三)机械安全措施 (5)(四)消防保卫措施 (5)(五)现场管理措施 (5)(六)料具管理措施 (6)(七)环境保护管理措施 (6)(八)环境卫生管理措施 (6)北京矿建公司第六项目经理部汽车坡道土方工程施工方案一、工程概本工程是701#写字楼、711#商住楼工程的附属工程(汽车坡道),711#商住楼两条,701#写字楼三条,共计五条。
五条车道的标高最低处为-7.4m。
降水工作已经进行。
五条车道将按照主体结构的施工进度陆续开挖。
二、边坡放坡稳定性验算:暂定土方开挖放坡系数为1:0.75 ,验算方法采用稳定性计算分析法。
根据地质勘探报告查得:土颗粒之间粘聚力c=27.6(平均值)粉质黏土的重度γ=19.5(平均值)=γ.H/c=19.5×7.4/27.6=5.22边坡稳定系数∮s-β曲线及土的c、∮、γ值可以求出稳定的查(简明施工计算手册162页)∮s=60度坡角∮s∴Tg60°=0.58<0.75∴满足稳定要求。
(六)主要劳动力计划用量:测量员:2人壮工:10人(七)主要机械设备用量:反铲挖掘机:1辆运输汽车:2辆三主要项目施工方法:(一)土方开挖顺序:开挖顺序:按照汽车坡道从建筑物内出入路线倒退开挖。
(二)土方开挖前应具备条件:1.通过深井降水,降水未降至设计要求基底-1.5m,并能确保此水位的稳定性。
2.根据建设单位给定的红线和水准点,复测基坑的定位尺寸,合格后方可进行土方开挖。
3.清除施工区域障碍物。
基坑施工所需的临时设施,按施工平面布置图设置就绪,如:水电源、道路、排水等暂设设施。
坡道计算书

坡道板计算书项目名称_____________构件编号_____________日期_____________ 设计_____________校对_____________审核_____________一、基本资料1.设计规范《建筑结构荷载规范》(GB50009—2001)《混凝土结构设计规范》(GB50010—2010)2.几何参数见结构图3.荷载参数混凝土容重: γb = 25.00 kN/m3面层容重: γc1 = 22.00 kN/m3找平层容重: γc2 = 20.00 kN/m3均布活荷载标准值: q = 4.0 kN/m2可变荷载组合值系数: ψc = 0.70可变荷载准永久值系数: ψq = 0.604.材料参数混凝土强度等级: C30混凝土抗压强度设计值: f c = 14.3 N/mm2混凝土抗拉强度标准值: f tk = 2.01 N/mm2混凝土抗拉强度设计值: f t= 1.43 N/mm2混凝土弹性模量: E c = 3.00 × 104 N/mm2钢筋强度等级: HRB335(20MnSi) f y = 300.00 N/mm2钢筋弹性模量: E s = 200000 N/mm2受拉纵筋合力点到坡道板底边的距离: a s = 20mm二、荷载计算过程1.坡道几何参数坡道板与水平方向夹角余弦值: cosα = 0.989坡道的计算跨度: L n = 4200 mm坡道板厚度: T = 200 mm取1m板宽为计算单元2.荷载设计值2.1 均布恒载标准值2.1.1 板自重gk1' = γb ×T × 1000 = 25.00 × 200 /1000 = 5.0 kN/mgk1 = gk1'2.1.2 板面层自重gk 3' = γc1 × C 2 ×1000 = 22.00 × 30 /1000 = 0.66 kN/m gk 3 = gk 3'2.1.3 找平层自重gk 5' = γc2 × C 3 × 1000 = 20.00 × 20 /1000 = 0.40 kN/m gk 5 = gk 5' 永久荷载标准值 gk =( gk 1 + gk 3 + gk 5 )/ cos α = (5.0 + 0.66+ 0.4 )/0.989 = 6.13 kN/m 2.2 均布荷载设计值 由活荷载控制的坡道板荷载设计值: p L = 1.2gk + 1.4q = 1.2 × 6.13+ 1.4 × 4.0 = 13kN/m 由恒荷载控制的坡道板荷载设计值: p D = 1.35gk + 1.4ψc q = 1.35 × 6.13 + 1.4 × 0.70 × 4.0= 12.2 kN/m 最不利的坡道板荷载设计值: p = Max{p L ,p D } = Max{13,12.2}= 13 kN/m三、正截面承载能力计算1.配筋计算 h 0 = T - a s = 200 - 20 = 180 mm 跨中最大弯矩, M max =218pL =1/8×13×24200× 10-6 = 28.67 kN·m1) 相对界限受压区高度ξbεcu = 0.0033 - (f cu,k - 50) × 10-5 = 0.0033 - (30 - 50) × 10-5 = 0.0035 > 0.0033 取εcu = 0.0033按规范公式(7.1.4-1)ξb =β11 +f yE s εcu=0.801 +3002.00 × 105 × 0.00330= 0.552) 受压区高度x按规范公式(7.2.1-1), A s ' = 0, A p ' = 0 M = α1f c bx ⎝⎛⎭⎫h 0 - x2x = h 0 -h 02 -2Mα1f c b= 180 - 1802 - 2 × 28.67 × 1061.00 × 14.3 × 1000= 11.51mm< ξb h 0 = 0.55 ×180 = 99.00mm, 按计算不需要配置受压钢筋3) 受拉钢筋截面积A s 按规范公式(7.2.1-2)α1f c bx = f y A s得 A s =α1f c bx f y=1.00 × 14.3 × 1000 × 11.51300.00= 549mm 24) 验算配筋率ρ = A s bh = 5491000 × 200 × 100% = 0.27% < ρmax = 1.76% 不超筋⎭⎬⎫ρmin = 0.2%ρmin = 0.45 × 1.43/ 300.00 = 0.21% ρmin = 0.210% < ρ满足最小配筋率要求梯段中间截面实际配置受拉钢筋为B 10@140, 每米宽板实际配筋面积为561mm 2四、斜截面承载能力验算V = 0.5pL 0 = 0.5 × 13 × 4200 / 1000 = 27.3kN 1) 复核截面条件 按规范公式(7.5.1)0.25βc f c bh 0 = 0.25 × 1.00 × 14.3 × 1000 × 180 = 643.5 × 103 N V = 27.3 kN < 643.5 kN, 截面尺寸满足要求 2) 验算构造配筋条件按规范公式(7.5.7-2) 取λ = 30.70bh f t = 0.7 × 1.43 × 1000 × 180= 180.18 × 103 N > V = 22.2kN斜截面承载力满足要求五、跨中挠度验算1.荷载效应的标准组合值 p k = gk + q = 6.13 + 4.0 = 10.13 kN/mM k = 18p k L 02 = 18× 10.13 × 42002 × 10-6 = 22.34 kN·m2.荷载效应的准永久组合值 p q = gk + ψq q = 6.13 + 0.60 × 4.0 = 8.53 kN/mM q = 18p q L 02 = 18× 8.53× 42002 × 10-6 = 18.81 kN·m 3.挠度验算 1) 裂缝间纵向受拉钢筋应变不均匀系数ψ: 由规范公式(8.1.3-3), 纵向受拉钢筋的应力: σsk = M k0.87h 0A s=223400000.87 × 180× 561=254.3N/mm 2对矩形截面受弯构件, 有效受拉混凝土截面面积: A te = 0.5bh = 0.5 × 1000 × 180 = 90000 mm 2 按规范公式(8.1.2-4)计算纵向钢筋配筋率: ρte = A s A te = 56190000= 6.23 × 10-3混凝土抗拉强度标准值: f tk = 2.01 N/mm 2按规范公式(8.1.2-2), ψ = 1.1 - 0.65f tkρte σsk= 1.1 - 0.65 ×2.01 × 10006.23 × 254.3= 0.282) 钢筋弹性模量和混凝土弹性模量的比值: αEαE = E s E c= 20000030000 = 6.673) 受压翼缘面积与腹板有效面积的比值: γf ' 对于矩形截面, γf ' = 0.00 4) 纵向受拉钢筋配筋率: ρρ = A s bh 0= 5611000 × 180 = 0.00315) 受弯构件的短期刚度: B s由规范公式(8.2.3-1), B s =E s A s h 021.15ψ + 0.2 +6αE ρ1 + 3.5 γf '= 200000 × 561 × 18021.15 × 0.28 + 0.2 +6 × 6.67 × 0.00311 + 3.5 × 0.00× 10-9 = 5626.83 kN·m 26) 考虑荷载长期效应组合对挠度增大的影响系数: θ根据混凝土结构设计规范8.2.5条规定: ρ' = ρ, 取θ = 1.6 7) 受弯构件的长期刚度: B 根据规范公式(8.2.2), 可得B = M kM q (θ - 1) + M k B s=22.3418.81 × (1.6 - 1) + 22.34× 5626.83 = 3738.28kN·m 28) 跨中挠度: ff = 5384p k L 04B = 5384 × 10.13 × 420043738.28× 10-9 = 11 mm9) 容许挠度: 因计算跨度L 0小于7000mm, 所以容许挠度[L 0] = L 0200 = 4200200= 21.00 mm跨中最大挠度小于容许挠度, 满足要求。
钢桁架坡道施工方案计算书

一、工程概况大连xxx工程设计图纸中的4#坡道将在主体工程完工后施工,故现阶段不能满足汽车行驶进入地下室的需求,需自行设计制作一条行车路线以使汽车能从1#大门驶入地下室各层,此路线的关键部分即是坡道。
行车路线为:先从1#大门处的边坡护壁上通过1#钢架坡道行驶到B2层顶板上,再通过东南角处的回填坡道分别进入B2、B3层,最后从B3层通过2#钢架坡道驶入B4层。
(详见行车路线图)二、1#、2#钢架坡道结构设计1、设计荷载设计上车荷载:载货汽车总重30吨2、结构设计下部为型钢桁架结构,详见结构图上部铺设地沟盖板,选用02J331图集中的B15-11号盖板,详见盖板配筋图。
3、计算书(1)设计上车荷载 30t=3×105N上部盖板选取02J331中B15-11 自重4.28KN取汽车轮距1.5 米中间梁危险状态M=(1/8F’l’+q’l’2/24)×1.2max=(1/8×71.8×103×5.22×103+1/24×8.20×5.222×106)×1.2=67.39×106N·mm=1.2×{75+1 /2×(75+8.2×5)}VA=159.6KNσ=Mmax/W≤f=210N/mm2- 1 -W≥Mmax/F=选用25a普通工字钢 W=mm3梁端抗剪能力验算ν=V/A=159.6kn /48.5×102=32.9N/mm2<fy(2)梁中挠度验算ω= F’l’3/192EI+ q’l’4/384EI=71.8×103×5.223×109/(192×2.06×105×5017×104)+8.20×5.224×1012/(384×2.06×105×5017×104)=7mm<l/400=12.5mm(3)梁整体稳定稳定系数查施工手册φb=0.86Mmax /φBW=67.39×106/(0.86×)=195.4 N/mm2<fy(4)翼缘的局部稳定验算b1/t≤15√235/fy=15.87b 1为翼缘外伸宽度 b1=58t为翼缘平均厚度 t=13∴满足要求(5)立杆稳定计算选择最大立杆长度7m 有效长度lo=0.5×7=3.5m 临界荷载Pcr =π2EI/ Lo2=π2×2.06×105I/35002=0.166Iy>159.6KNIy>mm4取18号普通工字钢 Iy=mm4 h=180mm b=90mm (6)梁对接焊缝验算焊条E43 三级焊缝σ=Mmax /Wx=67.39×106/=168N/mm2<ftw=185 N/mm2- 2 -τ=VSmax /Ixtw=159.6×103/(217×8)=91.9 N/mm2<ftw=125 N/mm2折算应力验算腹板与翼缘连接处应力√(σ12+3τ12)≤1.1ftwσ1=σmax(250-26)/250=168×224/250=150.53 N/mm2τ1=VS1/Ixtw=159.6×103×116×13×125/(5017×104×8)=74.9 N/mm2√(σ12+3τ12)=198.8 N/mm2<1.1×185=203.5 N/mm2∴满足要求三、施工方案1、材料准备(1)钢结构构件由钢架安装委托单位按照设计图自行加工。
近年九年级数学上册 4.4 第2课时 坡度问题教案1 湘教版(2021年整理)

2017九年级数学上册4.4 第2课时坡度问题教案1 (新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017九年级数学上册4.4 第2课时坡度问题教案1 (新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017九年级数学上册4.4 第2课时坡度问题教案1 (新版)湘教版的全部内容。
第2课时坡度问题1。
理解并掌握坡度、坡比的定义.2.学会用坡度、坡比解决实际问题。
(重点,难点)一、情境导入在现实生活中,测量某些量可以采取不同的方法,某斜面的截面如图所示,两位同学分别选取不同的点进行测量,从F处进行测量和从A处进行测量的数据如图所示.你能否通过所学知识求得该坡面的铅直高度?二、合作探究探究点一:坡度(坡比)问题【类型一】根据已知条件求坡面距离如图所示,在平面上种植树木时,要求株距(相邻两树间的水平距离)为4m,如果在坡度为0.75的山坡上种树,也要求株距离为4m,那么相邻两树间的坡面距离为()A.5mB。
6mC。
7mD.8m解析:由题知,水平距离l=4m,i=0。
75,∴垂直高度h=l·i=4×0.75=3(m),∴坡面距离为错误!=5(m)。
故选A.方法总结:解此类题,首先根据坡度的定义,求得水平距离或垂直高度,再根据勾股定理,求得坡面距离.【类型二】根据已知条件求坡度一辆汽车从坡底走到坡顶共用30s,车速是2m/s,汽车行驶的水平距离是40m,则这个斜坡的坡度是W。
解析:坡面距离为30×2=60m,水平距离为40m,∴垂直高度为错误!=20错误!(m),∴坡度i=20错误!∶40=错误!∶2.方法总结:根据坡度的定义i=错误!,解题时需先求得水平距离l和垂直高度h,故填错误!∶2。
汽车坡道自行车坡道板计算书

LB-1矩形板计算项目名称_____________日期_____________设计者_____________校对者_____________一、构件编号: LB-1二、示意图三、依据规范《建筑结构荷载规范》 GB50009-2001《混凝土结构设计规范》 GB50010-2010四、计算信息1.几何参数计算跨度: Lx = 7800 mm; Ly = 7800 mm板厚: h = 300 mm2.材料信息混凝土等级: C35 fc=16.7N/mm2 ft=1.57N/mm2 ftk=2.20N/mm2Ec=3.15×104N/mm2钢筋种类: HRB400 fy = 360 N/mm2Es = 2.0×105 N/mm2最小配筋率: ρ= 0.200%纵向受拉钢筋合力点至近边距离: as = 30mm保护层厚度: c = 25mm3.荷载信息(均布荷载)永久荷载分项系数: γG = 1.200可变荷载分项系数: γQ = 1.400准永久值系数: ψq = 1.000永久荷载标准值: qgk = 10.000kN/m2可变荷载标准值: qqk = 2.000kN/m24.计算方法:弹性板5.边界条件(上端/下端/左端/右端):固定/固定/自由/自由6.设计参数结构重要性系数: γo = 1.00泊松比:μ = 0.200五、计算参数:1.计算板的跨度: Lo = 7800 mm2.计算板的有效高度: ho = h-as=300-30=270 mm六、配筋计算(对边支撑单向板计算):1.Y向底板配筋1) 确定底板Y向弯距My = (γG*qgk+γQ*qqk)*Lo2/24= (1.200*10.000+1.400*2.000)*7.82/24= 37.518 kN*m2) 确定计算系数αs = γo*My/(α1*fc*b*ho*ho)= 1.00*37.518×106/(1.00*16.7*1000*270*270)= 0.0313) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.031) = 0.0314) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*16.7*1000*270*0.031/360 = 392mm25) 验算最小配筋率ρ = As/(b*h) = 392/(1000*300) = 0.131%ρ<ρmin = 0.200% 不满足最小配筋要求所以取面积为As = ρmin*b*h = 0.200%*1000*300 = 600 mm2采取方案12@150, 实配面积754 mm22.Y向上端支座钢筋1) 确定上端支座弯距M o y = (γG*qgk+γQ*qqk)*Lo2/12= (1.200*10.000+1.400*2.000)*7.82/12= 75.036 kN*m2) 确定计算系数αs = γo*M o y/(α1*fc*b*ho*ho)= 1.00*75.036×106/(1.00*16.7*1000*270*270)= 0.0623) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.062) = 0.0644) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*16.7*1000*270*0.064/360 = 797mm25) 验算最小配筋率ρ = As/(b*h) = 797/(1000*300) = 0.266%ρ≥ρmin = 0.200% 满足最小配筋要求采取方案12@100, 实配面积1131 mm23.Y向下端支座钢筋1) 确定下端支座弯距M o y = (γG*qgk+γQ*qqk)*Lo2/12= (1.200*10.000+1.400*2.000)*7.82/12= 75.036 kN*m2) 确定计算系数αs = γo*M o y/(α1*fc*b*ho*ho)= 1.00*75.036×106/(1.00*16.7*1000*270*270)= 0.0623) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.062) = 0.0644) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*16.7*1000*270*0.064/360 = 797mm25) 验算最小配筋率ρ = As/(b*h) = 797/(1000*300) = 0.266%ρ≥ρmin = 0.200% 满足最小配筋要求采取方案12@100, 实配面积1131 mm2七、跨中挠度计算:Mk -------- 按荷载效应的标准组合计算的弯矩值Mq -------- 按荷载效应的准永久组合计算的弯矩值1.计算标准组合弯距值M k:Mk = M gk+M qk = (qgk+qqk)*Lo2/24= (10.000+2.000)*7.82/24= 30.420 kN*m2.计算准永久组合弯距值M q:Mq = M gk+ψq*M qk = (qgk+ψq*qqk)*Lo2/24= (10.000+1.0*2.000)*7.82/24= 30.420 kN*m3.计算受弯构件的短期刚度 Bs1) 计算按荷载荷载效应的两种组合作用下,构件纵向受拉钢筋应力σsk = Mk/(0.87*ho*As) 混规(7.1.4-3)= 30.420×106/(0.87*270*754) = 171.753 N/mm σsq = Mq/(0.87*ho*As) 混规(7.1.4-3)= 30.420×106/(0.87*270*754) = 171.753 N/mm2) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积: Ate = 0.5*b*h = 0.5*1000*300= 150000mm2ρte = As/Ate 混规(7.1.2-4)= 754/150000 = 0.503%3) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψk = 1.1-0.65*ftk/(ρte*σsk) 混规(7.1.2-2)= 1.1-0.65*2.20/(0.503%*171.753) = -0.556因为ψ不能小于最小值0.2,所以取ψk = 0.2ψq = 1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2)= 1.1-0.65*2.20/(0.503%*171.753) = -0.556因为ψ不能小于最小值0.2,所以取ψq = 0.24) 计算钢筋弹性模量与混凝土模量的比值αEαE = Es/Ec = 2.0×105/3.15×104 = 6.3495) 计算受压翼缘面积与腹板有效面积的比值γf矩形截面,γf=06) 计算纵向受拉钢筋配筋率ρρ = As/(b*ho)= 754/(1000*270) = 0.279%7) 计算受弯构件的短期刚度 BsBsk = Es*As*ho2/[1.15ψk+0.2+6*αE*ρ/(1+ 3.5γf')](混规(7.2.3-1)) = 2.0×105*754*2702/[1.15*-0.556+0.2+6*6.349*0.279%/(1+3.5*0.0)]= 2.050×104 kN*m2Bsq = Es*As*ho2/[1.15ψq+0.2+6*αE*ρ/(1+ 3.5γf')](混规(7.2.3-1)) = 2.0×105*754*2702/[1.15*-0.556+0.2+6*6.349*0.279%/(1+3.5*0.0)]= 2.050×104 kN*m24.计算受弯构件的长期刚度B1) 确定考虑荷载长期效应组合对挠度影响增大影响系数θ当ρ'=0时,θ=2.0 混规(7.2.5)2) 计算受弯构件的长期刚度 BBk = Mk/(Mq*(θ-1)+Mk)*Bs (混规(7.2.2-1))= 30.420/(30.420*(2.0-1)+30.420)*2.050×104= 1.025×104 kN*m2Bq = Bsq/θ (混规(7.2.2-2))= 2.050×104/2.0= 1.025×104 kN*m2B = min(Bk,Bq)= min(10247.612,10247.612)= 10247.6125.计算受弯构件挠度f max = (q gk+Ψq*q qk)*Lo4/(384*B)= (10.000+1.0*2.000)*7.84/(384*1.025×104)= (10.000+1.0*2.000)*7.84/(384*1.025×104)= 11.288mm6.验算挠度挠度限值fo=Lo/250=7800/250=31.200mmfmax=11.288mm≤fo=31.200mm,满足规范要求!八、裂缝宽度验算:1.跨中X方向裂缝1) 计算荷载效应My = (qgk+ψq*qqk)*Lo2/24= (10.000+1.0*2.000)*7.82/24= 25.350 kN*m2) 光面钢筋,所以取值v i=0.73) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=25.350×106/(0.87*270*754)=143.128N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*300=150000 mm2ρte=As/Ate 混规(7.1.2-4)=754/150000 = 0.0050因为ρte=0.0050 < 0.01,所以让ρte=0.016) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2)=1.1-0.65*2.200/(0.0100*143.128)=0.101因为ψ=0.101 < 0.2,所以让ψ=0.27) 计算单位面积钢筋根数nn=1000/dist = 1000/150=68) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=6*12*12/(6*0.7*12)=179) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1) =1.9*0.200*143.128/2.0×105*(1.9*25+0.08*17/0.0100)=0.0502mm ≤ 0.30, 满足规范要求2.上端支座跨中裂缝1) 计算荷载效应M o y = (qgk+ψq*qqk)*Lo2/12= (10.000+1.0*2.000)*7.82/12= 50.700 kN*m2) 光面钢筋,所以取值v i=0.73) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=50.700×106/(0.87*270*1131)=190.837N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*300=150000 mm2ρte=As/Ate 混规(7.1.2-4)=1131/150000 = 0.0075因为ρte=0.0075 < 0.01,所以让ρte=0.016) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2)=1.1-0.65*2.200/(0.0100*190.837)=0.3517) 计算单位面积钢筋根数nn=1000/dist = 1000/100=108) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=10*12*12/(10*0.7*12)=179) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1) =1.9*0.351*190.837/2.0×105*(1.9*25+0.08*17/0.0100)=0.1174mm ≤ 0.30, 满足规范要求3.下端支座跨中裂缝1) 计算荷载效应M o y = (qgk+ψq*qqk)*Lo2/12= (10.000+1.0*2.000)*7.82/12= 50.700 kN*m2) 光面钢筋,所以取值v i=0.73) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=50.700×106/(0.87*270*1131)=190.837N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*300=150000 mm2ρte=As/Ate 混规(7.1.2-4)=1131/150000 = 0.0075因为ρte=0.0075 < 0.01,所以让ρte=0.016) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2)=1.1-0.65*2.200/(0.0100*190.837)=0.3517) 计算单位面积钢筋根数nn=1000/dist = 1000/100=108) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=10*12*12/(10*0.7*12)=179) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1) =1.9*0.351*190.837/2.0×105*(1.9*25+0.08*17/0.0100)=0.1174mm ≤ 0.30, 满足规范要求。
汽车坡道施工方案定稿

汽车坡道施工方案定稿
随着城市发展和人口增加,汽车成为日常出行的必需品。
为了方便车辆进出和
停放,汽车坡道的施工显得尤为重要。
本文将介绍一种汽车坡道施工方案,旨在提高坡道的可靠性和耐久性。
施工前准备
在进行汽车坡道施工前,需要进行一系列的准备工作。
首先,需要清理坡道施
工区域,确保地面平整且无杂物。
其次,测量坡度和长度,根据需要调整施工方案。
最后,准备好所需的建筑材料和施工工具。
施工步骤
1.打桩定位:根据设计方案,在坡道两端打桩定位,确定施工范围。
2.挖掘基础:利用挖掘机等设备,按照设计要求挖掘坡道基础,确保
深度和宽度符合要求。
3.铺设防水层:在基础挖掘完成后,铺设防水层,以防止地下水渗透
导致坡道损坏。
4.浇筑混凝土:在防水层完成后,开始浇筑混凝土,确保坡道坚固和
耐久。
5.整平表面:等待混凝土凝固后,利用机械设备对坡道表面进行整平
处理,消除凹凸不平。
6.涂装标线:最后,在坡道表面绘制标线,标示停车位和行车方向,
提高使用效率。
施工注意事项
•在施工过程中,要注意安全措施,确保施工人员和周围环境的安全。
•需要定期对坡道进行检查和维护,保持坡道的良好状态,延长使用寿命。
•根据实际情况,可以增加辅助设施,如防撞柱和防滑垫,提高坡道的安全性和舒适性。
结语
汽车坡道的施工是一项复杂而重要的工程,需要精心设计和施工。
本文介绍的
汽车坡道施工方案旨在为汽车使用者提供更加便捷和安全的停车环境。
希望这种施工方案能够得到广泛应用,并为城市交通出行提供更好的保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坡道侧壁计算书汽车坡道(底标高-4.600)荷载示意如图1。
地面活荷载取10 kN/m2,其中H1=2.75m,H2=-1.25m,H3=H-H1-H2=3.8m,H=5.3m1、侧压力计算1)地面活荷载:标准值q1k=0.5×10=5 kN/m22)水位以上土压力:标准值q2k=0.5×18×2.75=24.75kN/m23)水位以下土压力:标准值q3k=0.5×12×(5.3-2.75)=15.3kN/m24)水压力:标准值q4k=10×(5.3-2.75)=25.5kN/m21 荷载示意2、弯矩计算按照单跨梁进行计算,计算简图如图2。
Pk1=5+0.5x18x1.5=18.5kN/m2 P1=1.35q1k=24.975kN/m2Pk2=q1k + q2k +q3k+q4k=70.55kN/m2 P2=1.35q2k=95.243kN/m2参照《建筑结构静力计算手册》,可以得到单位宽度外墙弯矩:M B‘k=-83.51kN.mM B=-112.75kN.mM max‘k=40.82kN.mM max =55.11kN.m2计算简图3、外侧配筋计算混凝土强度等级 C35, f cu,k= 35N/mm2, f c= 16.72N/mm2, f t= 1.575N/mm2钢筋材料性能: f y= 360N/mm2, E s= 200000N/mm2,弯矩设计值 M = 112.75kN·m矩形截面,截面尺寸 b×h = 1000×250mm, h0= 200mm正截面受弯配筋计算相对界限受压区高度ξb=β1 / [1 + f y / (E s·εcu)]= 0.8/[1+360/(200000*0.0033)] = 0.518 单筋矩形截面或翼缘位于受拉边的T形截面受弯构件受压区高度 x 按下式计算: x = h0 - [h02 - 2M / (α1·f c·b)]0.5= 200-(2002-2*112750000/1/16.72/1000)0.5= 37mm ≤ξb·h0= 0.518*200 = 104mmA s=α1·f c·b·x / f y= 1*16.72*1000*37/360 = 1726mm2相对受压区高度ξ = x / h0= 37/200 = 0.186 ≤ 0.518配筋率ρ= A s / (b·h0) = 1726/(1000*200) = 0.86%最小配筋率ρmin= Max{0.20%, 0.45f t/f y} = Max{0.20%, 0.20%} = 0.20%A s,min= b·h·ρmin= 500mm2取Φ18@150+(Φ14@150)(A s =2859mm2)4、外侧裂缝验算矩形截面受弯构件,构件受力特征系数αcr= 1.9,截面尺寸 b×h = 1000×250mm 纵筋根数、直径:第 1 种:7Φ18,第 2 种:7Φ14,受拉区纵向钢筋的等效直径 d eq=∑(n i·d i2) / ∑(n i·υ·d i) = 16.3mm,带肋钢筋的相对粘结特性系数υ = 1受拉纵筋面积 A s= 2859mm2,钢筋弹性模量 E s= 200000N/mm2最外层纵向受拉钢筋外边缘至受拉区底边的距离 c s= 30mm,纵向受拉钢筋合力点至截面近边的距离 a s= 39mm,h0= 211mm混凝土轴心抗拉强度标准值 f tk= 2.2N/mm2按荷载准永久组合计算的弯矩值 M q= 83.51kN·m设计时执行的规范:《混凝土结构设计规范》(GB 50010-2010),以下简称混凝土规范最大裂缝宽度验算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte= A s / A te(混凝土规范式 7.1.2-4)对矩形截面的受弯构件:A te= 0.5·b·h = 0.5*1000*250 = 125000mm2ρte= A s / A te= 2859/125000 = 0.02287在荷载准永久组合下受拉区纵向钢筋的应力σsq,按下列公式计算:受弯:σsq= M q / (0.87·h0·A s) (混凝土规范式 7.1.4-3)σsq= 83510000/(0.87*211*2859) = 159N/mm2裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 7.1.2-2 计算:ψ = 1.1 - 0.65f tk / (ρte·σsq) = 1.1-0.65*2.2/(0.02287*159) = 0.706最大裂缝宽度ωmax,按混凝土规范式 7.1.2-1 计算:ωmax=αcr·ψ·σsq·(1.9c s + 0.08d eq/ ρte ) / E s= 1.9*0.706*159*(1.9*30+0.08*16.3/0.02287)/200000= 0.122mm ≤ωlim= 0.2mm,满足要求。
5、内侧配筋计算混凝土强度等级 C35, f cu,k= 35N/mm2, f c= 16.72N/mm2, f t= 1.575N/mm2钢筋材料性能: f y= 360N/mm2, E s= 200000N/mm2,弯矩设计值 M = 55.11kN·m矩形截面,截面尺寸 b×h = 1000×250mm, h0= 200mm正截面受弯配筋计算相对界限受压区高度ξb=β1 / [1 + f y / (E s·εcu)]= 0.8/[1+360/(200000*0.0033)] = 0.518 单筋矩形截面或翼缘位于受拉边的T形截面受弯构件受压区高度 x 按下式计算: x = h0 - [h02 - 2M / (α1·f c·b)]0.5= 200-(2002-2*55110000/1/16.72/1000)0.5= 17mm ≤ξb·h0= 0.518*200 = 104mmA s=α1·f c·b·x / f y= 1*16.72*1000*17/360 = 800mm2相对受压区高度ξ = x / h0= 17/200 = 0.086 ≤ 0.518配筋率ρ= A s / (b·h0) = 800/(1000*200) = 0.40%最小配筋率ρmin= Max{0.20%, 0.45f t/f y} = Max{0.20%, 0.20%} = 0.20%A s,min= b·h·ρmin= 500mm2取Φ14@150(As =1078mm2)6、内侧裂缝验算矩形截面受弯构件,构件受力特征系数αcr= 1.9,截面尺寸 b×h = 1000×250mm 纵筋根数、直径:第 1 种:7Φ14,受拉区纵向钢筋的等效直径 d eq=∑(n i·d i2) / ∑(n i·υ·d i) = 14mm,带肋钢筋的相对粘结特性系数υ = 1受拉纵筋面积 A s= 1078mm2,钢筋弹性模量 E s= 200000N/mm2最外层纵向受拉钢筋外边缘至受拉区底边的距离 c s= 30mm,纵向受拉钢筋合力点至截面近边的距离 a s= 37mm,h0= 213mm混凝土轴心抗拉强度标准值 f tk= 2.2N/mm2按荷载准永久组合计算的弯矩值 M q= 40.82kN·m设计时执行的规范:《混凝土结构设计规范》(GB 50010-2010),以下简称混凝土规范最大裂缝宽度验算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte= A s / A te(混凝土规范式 7.1.2-4)对矩形截面的受弯构件:A te= 0.5·b·h = 0.5*1000*250 = 125000mm2ρte= A s / A te= 1078/125000 = 0.00862在最大裂缝宽度计算中,当ρte< 0.01 时,取ρte= 0.01在荷载准永久组合下受拉区纵向钢筋的应力σsq,按下列公式计算:受弯:σsq= M q / (0.87·h0·A s) (混凝土规范式 7.1.4-3)σsq= 40820000/(0.87*213*1078) = 204N/mm2裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 7.1.2-2 计算:ψ = 1.1 - 0.65f tk / (ρte·σsq) = 1.1-0.65*2.2/(0.01*204) = 0.399最大裂缝宽度ωmax,按混凝土规范式 7.1.2-1 计算:ωmax=αcr·ψ·σsq·(1.9c s + 0.08d eq/ ρte ) / E s= 1.9*0.399*204*(1.9*30+0.08*14/0.01)/200000= 0.131mm ≤ωlim= 0.2mm,满足要求。
7、配筋结果根据承载力计算和裂缝验算结果,底标高-5.100坡道以上竖向钢筋为外侧Φ18@150+(Φ14@150),内侧Φ14@150汽车坡道(底标高-2.83)荷载示意如图1。
地面活荷载取10 kN/m2,其中H1=1.2m,H2=2.75m,H3 =H-H1-H2=0.78m,H=4.73m1、侧压力计算1)地面活荷载:标准值q1k=0.5×10=5 kN/m22)水位以上土压力:标准值q2k=0.5×18×2.75=24.75kN/m23)水位以下土压力:标准值q3k=0.5×12×0.78=4.68kN/m24)水压力:标准值q4k=10×0.78=7.8kN/m21 荷载示意2、弯矩计算按照单跨梁进行计算,计算简图如图2。
Pk1=q1k=5kN/m2 P1=1.35q1k=6.75kN/m2Pk2=q1k + q2k +q3k+q4k=42.23kN/m2 P2=1.35q2k=57.01kN/m2参照《建筑结构静力计算手册》,可以得到单位宽度外墙弯矩:Mx‘k=-108.47kN.mMx‘=-146.44kN.m2计算简图3、外侧配筋计算混凝土强度等级 C35, f cu,k= 35N/mm2, f c= 16.72N/mm2, f t= 1.575N/mm2钢筋材料性能: f y= 360N/mm2, E s= 200000N/mm2,弯矩设计值 M = 146.44kN·m矩形截面,截面尺寸 b×h = 1000×250mm, h0= 200mm正截面受弯配筋计算相对界限受压区高度ξb=β1 / [1 + f y / (E s·εcu)]= 0.8/[1+360/(200000*0.0033)] = 0.518 单筋矩形截面或翼缘位于受拉边的T形截面受弯构件受压区高度 x 按下式计算:x = h0 - [h02 - 2M / (α1·f c·b)]0.5= 200-(2002-2*146440000/1/16.72/1000)0.5= 50mm ≤ξb·h0= 0.518*200 = 104mmA s=α1·f c·b·x / f y= 1*16.72*1000*50/360 = 2325mm2相对受压区高度ξ = x / h0= 50/200 = 0.25 ≤ 0.518配筋率ρ= A s / (b·h0) = 2325/(1000*200) = 1.16%最小配筋率ρmin= Max{0.20%, 0.45f t/f y} = Max{0.20%, 0.20%} = 0.20%A s,min= b·h·ρmin= 500mm2取Φ18@150(+Φ18@150)(As =3563mm2)4、裂缝验算矩形截面受弯构件,构件受力特征系数αcr= 1.9,截面尺寸 b×h = 1000×250mm 纵筋根数、直径:第 1 种:7Φ18,第 2 种:7Φ18,受拉区纵向钢筋的等效直径 d eq=∑(n i·d i2) / ∑(n i·υ·d i) = 18mm,带肋钢筋的相对粘结特性系数υ = 1受拉纵筋面积 A s= 3563mm2,钢筋弹性模量 E s= 200000N/mm2最外层纵向受拉钢筋外边缘至受拉区底边的距离 c s= 30mm,纵向受拉钢筋合力点至截面近边的距离 a s= 39mm,h0= 211mm混凝土轴心抗拉强度标准值 f tk= 2.2N/mm2按荷载准永久组合计算的弯矩值 M q= 108.47kN·m设计时执行的规范:《混凝土结构设计规范》(GB 50010-2010),以下简称混凝土规范最大裂缝宽度验算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte= A s / A te(混凝土规范式 7.1.2-4)对矩形截面的受弯构件:A te= 0.5·b·h = 0.5*1000*250 = 125000mm2ρte= A s / A te= 3563/125000 = 0.0285在荷载准永久组合下受拉区纵向钢筋的应力σsq,按下列公式计算:受弯:σsq= M q / (0.87·h0·A s) (混凝土规范式 7.1.4-3)σsq= 108470000/(0.87*211*3563) = 166N/mm2裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 7.1.2-2 计算:ψ = 1.1 - 0.65f tk / (ρte·σsq) = 1.1-0.65*2.2/(0.0285*166) = 0.797最大裂缝宽度ωmax,按混凝土规范式 7.1.2-1 计算:ωmax=αcr·ψ·σsq·(1.9c s + 0.08d eq/ ρte ) / E s= 1.9*0.797*166*(1.9*30+0.08*18/0.0285)/200000= 0.135mm ≤ωlim= 0.2mm,满足要求。