测验常模的建立

合集下载

测验的常模

测验的常模
ln a o , n , 9 5 6 9 y &B c n I c 1 6 :  ̄ .
师培训是教师专业发展 的有效途径之一 ,但种种条 件的限制可能使得某些培训缺乏针对性 ,难以保证 质量 ,也可能使得不同教师得到的培训机会并不均
小 讲 坛
[] 4 联合 国教科 文组织. 学会生存——教 育世界 的今天和
研究 , 逐步 实现教 师 的专业 自主性 发展 。 6提 高培训 的针对 性 , 证教 师培训 的质 量。 . 保 教
[ ]3 1 [ ]教 育部 师范教 育 司. 师专业化 的理 论与数据 教 [ . : 民教 育 出版社 ,0 3 6 6 . M] 北京 人 20. ~ 7 6 [ . C ms hPo si a E ua o fT ah rA 一 2 AW.o . e rf s n l d ct n o ec es 1 1 T e o i .
没 有机 会参加 培训 的教 师也 能从 中受益 ,学校 可 以
的事情 , 只有专家学者和名优教师才能做 , 普通教师
没办法 做 。其 实不 然 。 日常教 育教 学 已经为一 线教 师提 供 了肥 沃 的研 究 “ 土壤 ” 积极 参 与课 题 研究 是 ,
组织部分已受训的教师给尚未接受到培训的教师做
训具有 较 高的质 量和 良好 的效果 , 同时 , 培训 态度 对
与 评

5 . 鼓励教师特别是新教师积极参 与教育教 学课
题 研 究。很 多教 师错误 地认 为课题 研究 是十分 高深
积极的教师给予适当的鼓励 ,对培训持敷衍态度的 教师则给予批评 , 并进行思想教育 ;3 为了让更多 ()
毫 组 絮模表 示具奄 一
一 |
名 小学四年级学生参加语文阅读理解水平测验,

心理测验的常模

心理测验的常模

前面已经讨论过,用原始分数对人进行评 价意义有限,唯有将它们转换成各种转化 后分数或衍生分数后,才能对受测者在测 验上的表现加以参照比较并解释其在心理 运作上的意义。所以,常模在某种程度上 代表一种外在标准,可用来协助评定受测 者在测验上分数的高、低,或表现的优、 劣。
一、测验的常模

2.常模是解释测验结果的关键 由上可知,常模对测验结果的解释起关键 性作用,测验结果的解释是否正确、合理, 依赖常模品质的优劣而定。在建立测验常 模时,最重要的考虑为常模样本(norm sample)或称标准化样本。
二、常模样本的条件

2.常模样本的大小 常模样本的大小是指样本中所包含人数之 多少。原则上,样本中所包含的人数愈多 愈好,因为样本过小时,以统计法所求得 的常模容易引起误差而减低其稳定性,也 就是说,如果另外再采集一个同样大小的 样本,便很可能求出不同的常模。
二、常模样本的条件

另外,在考虑常模样本对总体的代表性时, 不仅应注意其特征的种类,也应重视各特 征上的人口比例,务求常模样本中的人数 比例与总体中之比例相符合,
一、测验的常模

利用这些资料,测验使用者可以很方便地 将该测验上的任何原始分数转换为转化后 分数。常模是标准化测验所必须具备的参 数,通常有关常模的各种资料都是被整理 成数据表,称之为常模表(norm tables),在 测验手册中出示,以供使用测验的人将原 始分数转换为转化后分数时查对。
一、测验的常模
二、常模样本的条件

例如,智力测验上的常模样本在年龄、性 别、区域、职业水平和种族分配上应与总 体特征相符合,因为心理学研究已指出这 些人口特征与智力的发展都具有不同程度 的相关,如果忽视其中任何一种,便会造 成取样上的偏差而减低常模样本的代表性。

建立Cookie Theft测验的中国常模

建立Cookie Theft测验的中国常模
中国康 复理论 与实践 2 1 年 8 02 月第 1 卷第 8 C i Rea iT e rc A g 2 1 Vo . 8 N0 8 8 期 hnJ h bl hoyPat u , 0 2 1 1 , . ,

— .
7 3 — 4 —
DOI 1 . 6 /i n1 0 —7 1 0 20 .1 : 03 9 . s .0 6 9 7 . 1 .8 3 9 js 2 0
Be i es he t a o dsofl n ua a plsw ee c un e Th co e r a ri i n si n x sw e er ga d d asno m s And t e sd ,t otlw r a g ges m e r o t d. e s r sofno m lpa tcpa t n 8i de e r e r e r . h s or sofp ten si nd xe e e u e o t s heva i t he n r s R e u t e t s—ee tr la lt s nI=0.2, D) 8 P} c e a i t n 8 i e sw r s d t e tt ldiy oft o m . s lsTh e tr ts ei bii wa s y ) 9 F=0.9, s=
o y Be igNo ma n vr i , i n 0 8 5 Chn g , in r lU ie st Be ig1 0 7 , ia j y j
Ab t a t Ob e t e T s bi e C o i T e et o hn s oms Meh d 9 n r l at ia t a d 1 ai t wi s c : j ci o et l h t o ke h f T s f rC ie en r . t o s2 oma p r cp ns n p t ns t r v a s h t i 7 e h

教育测量与评价课件(6)(第六章-教育测验的常模及其建立方法)

教育测量与评价课件(6)(第六章-教育测验的常模及其建立方法)
用不大合乎人们表示分数的习惯,故通常把标准分数Z 通过线性变换,转到更大的标
准分数量表上,其一般转换公式为: T a bZ 标准分数常模的建立方法
标准分数常模是指以常模团体在某一测验上实测数据为基础,把原始分 数转换成基本标准分数Z或转换到更大的标准分数T量表上,能够揭示每个测 验分数在常模团体测验分数中的相对地位的一种组内常模。
(2)标准分数Z 量表的单位是相等的,其零点是相对的。因此,不同科 目的Z 分数具有较好的可比性和可加性。
(3)Z 分数本身是关于原始分数X 的一种线性变换,因此,Z 分数不改 变原始分数的分布形态。
百分等级常模的意义与应用
百分等级是一个地位量数,能够反映某个测验分数在一组数据中的相对 地位。它是把学生的原始分数放在该学生所在群体的成绩中进行比较,以确 定学生在群体中的相对地位之高低。
百分等级常模是指基于某个常模团体,为某种测验的原始分数与百分等 级之间建立起对应关系的组内常模类型。
百分等级常模意义直观、容易理解、便于解释,在能力测验和学业测验 中得到广泛的应用、它不仅可用于解释学生在单一能力测验的成绩,以便了 解该生的能力发展在其所属团体中的相对位置,而且对于同时施测的若干个 不同的测验来讲,利用各自的百分等级常模,可以比较学生在不同科目上的 发展状况,克服了原始分数不能直接比较的缺陷。
建立标准分数常模实际上就是根据常模团体的实测数据,利用公式 Z X X
S
和 T a bZ ,在原始分数序列{ Xi }和标准分数之间{ Z i }或标准分数{ T i }之间,
建立起对应关系,从而形成某种测验的标准分数常模转换表。
标准分数 Z 的性质与特点
(1)任何一批原始分数,转化成Z 分数后,这批Z 分数的平均值为0, 标准差为1。Z 大于0,表示测验成绩在平均数之上;Z 小于0,表示测验分 数在平均数之下;Z 为0,则表示测验成绩与平均数相等。

建立大学新生心理测验常模识别学生的心理健康

建立大学新生心理测验常模识别学生的心理健康

Journal of Kunming Medical UniversityCN 53-1221R[收稿日期]2019-07-06[基金项目]云南省哲学社会科学教育科学规划项目(AFSZ18027)[作者简介]彭伟(1985~),男,江西新余人,法学硕士,讲师,主要从事思想政育教育、大学生心理健康教育工作。

邱良武与彭伟对本文有同等贡献。

[通信作者]来松海,E-mail:lsh1972@建立大学新生心理测验常模识别学生的心理健康彭伟1),邱良武2),杨晓娟3),来松海4)(1)江西应用技术职业学院思政部,江西赣州361000;2)昆明医科大学体育部,云南昆明650500;3)云南省交通职业技术学院,云南昆明650500;4)昆明医科大学马克思主义学院,云南昆明650500)[摘要]目的探索心理常模对识别和处理大学新生心理问题的作用。

方法收集某综合大学、医学院校和高职院校共12710名学生SCL-90的结果作为常模,以3所学校2017级5874名新生为研究对象展开相关分析。

结果(1)2017级大学新生总体上心理健康状况良好,只有人际关系敏感和焦虑平均得分与常模间存在显著性差异(<0.05);(2)心理不健康检出率17.43%,仅1.36%的学生需要心理干预;(3)男生的心理健康状况好于女生,差异有统计学意义(<0.05)。

结论建立大学新生心理测验常模对识别和处理大学新生心理不健康具有实效性。

[关键词]大学新生;心理常模;心理健康;SCL-90[中图分类号]R395-4[文献标志码]A [文章编号]2095-610X (2020)01-0048-04Establishing Mental Norm for Freshmen to Identify Students'Mental HealthyPENG Wei 1),QIU Liang-wu 2),YANG Xiao-juan 3),LAI Song-hai 4)(1)Jiangxi College of A pplied Technologe ,Ganzhou Jiangxi 341100;2)Dept.of Physical Education ,Kunming Medical University ,Kunming Yunnan 650500;3)Yunnan Jiaotong College ,Kunming Yunnan 650500;4)School of Marxism ,Kunming Medical University ,Kunming Yunnan 650500,China )[Abstract ]Objective To explore the role of mental norms in identifying and dealing with the unhealthy psychology of freshmen .Methods This study collected the results of SCL-90of 12710students from a comprehensive college ,Medical College and Vocational College as the norm.The results of correlation analysis were carried out with 5874freshmen of two colleges in 2017.Results (1)Freshmen of Grade 2017were in good mental health on the whole.There was only significant difference in the average scores of interpersonal sensitivity and anxiety between the subjects and the norm (<0.05).(2)The detection rate of mental health was 17.43%and only 1.36%of students need psychological intervention;(3)Mental health of boys was better than that of girls and therewas significant difference (<0.05).Conclusions Establishing the norm of freshmen's psychological test is effective in identifying and dealing with freshmen's mental health[Key words ]Freshman ;Mental norm ;Mental health ;SCL-90刚刚步入大学校门的新生,不论是校园及人际环境,还是学习方法;也不论是个人目标、家庭期望,还是自我定位,都发生了巨大的变化。

艾森克人格测验(EPQ)T分表与常模之欧阳学创编

艾森克人格测验(EPQ)T分表与常模之欧阳学创编

一、简介和记分艾森克人格测验(EPQ)艾森克人格测验是由英国心理学教授艾森克及其夫人编制,从几个个性调查发展而来。

相对于其它以因素分析法编制的人格问卷而言,它所涉及的概念较少,施测方便,有较好的信度和效度,是国际上最具影响力的心理量表之一。

EPQ由P、E、N、L四个量表组成,主要调查内外向(E)、神经质(N)、精神质(P)三个维度。

艾森克认为个性可分析出三个维度,其中E维因素与中枢神经系统的兴奋、抑制的强度密切相关,N维因素与植物性神经的不稳定性有密切相关。

艾森克认为遗传因素对三个维度均有影响。

正常人也具有神经质和精神质,这两者又可以通俗地说成是情绪稳定性和倔强性,而不是暗指神经症和精神病。

但是高级神经的活动如果在不利因素影响下也可能向病理方面发展。

L量表是测验受试者的“掩饰”倾向,同时也有测量受试者的社会幼稚水平的作用。

EPQ的成人版,适用于16岁以上的成人。

综上所述,本测验从内/外倾性、情绪性、精神质三个维度对人的人格进行评定,从而评价一个人的内/外向性格、自我控制程度、环境适应性等人格因素。

艾森克的三个人格维度不但经过许多数学统计上的和行为观察方面的分析,而且也得到实验室内多种心理实验的考察和证实,被广泛应用于医学、司法、教育等领域,适合初中及以上年龄的人群测试。

1.每一项都规定了答“是”或“不是”。

如果规定答“是”某人选择此项便计1分,如果选择了“不是”便不记分;同理,如果规定答“不是”,在选择了“不是”时计1分,选择了“是”不计分。

最后统计四个量表的总分,即为每上量表的原始分(粗分)。

可以通过手工计算,也可通过套板计算出原始分,每个量表的分值在0分到最高分之间。

2.P、E、N、L的满分分别为23、21、24、20分。

很少有人得满分。

也很少有人得0分,大多数位于0—满分之间。

3.得出的粗分,还要换算成标准分(T分)。

根据被试在各量表上获得的原始总分(粗分),按年龄和性别常模换算出标准T分,便可分析出被试的个性特点。

第四章教育测验结果的整理与解释

第四章教育测验结果的整理与解释
33
• E= W1 P1%+ W2 P2%+ W3 P3% • =40×80%+40×50%+20×20% • =32+20+4 • =56(分)
34
第五节 标准分数在我国高考中的试点应用
• 一、建立标准分数制度是高考标准化的重 要环节
• 高考引入标准化考试的改革试验始于1985年 – 标准化考试阶段 – 分数的解释和使用标准化阶段
40
第六节 教育测验分数的解释
• 一、测验分数的理解
• 1.解释测验分数的类型 – 叙述、溯因、预测、评价
• 2.资料处理的方法 – 机械的处理与非机械的出来
• 3.资料的来源 – 测验资料与非测验资料
41
二、解释测验分数意义的原则
• 1.主试应充分了解测验的性质与功能; • 2.对导致测验结果的原因的解释应慎重,谨防片面
17
• 一、标准分数的概念
– (一)概念 – 将原始分数与平均分的距离以标准差为单位
表现出来的结果即为标准分数。 Z XX S
18
• (二)特点
– 一批原始分数转换为一批Z分数后,这批Z分数的均 值为0,标准差为1。Z分数大于0,表示测验成绩在 平均分之上。 Z分数小于0,表示测验成绩在平均分 之下。
– 标准分数Z量表是等距量表。 – 在一般情况下,Z分数的取值范围在-3到+3之间。
19
• 二、原始分数向标准分数的转换
– (一)线性转换的标准分数
– 公式如下:
Z XX S
– 式中:X为任一原始分数,X 为平均分,S为原
始分数的标准差。
20
• 例:学生甲在某次语文考试中的得分为72分, 全班的平均成绩为60分,标准差为12分。求甲 的标准分数?

人才测评概念篇之“常模”

人才测评概念篇之“常模”

⼈才测评概念篇之“常模”⼈才测评概念篇之“常模”最近因⼯作需要,经常会接触到⼀些统计术语,其中频度最⾼的,要算“常模”⼀词。

当然,这个也是⼈才管理中常⽤词语,可能有些⼈会觉得,如果你是做⼈才管理,尤其是⼈才测评的,⽽你竟然不知道什么是“常模”,那么你就只能算是门外汉了。

当然,此类看法稍微有些夸⼤,但是对于⼈才测评来说,常模的确是⽐较重要的⼀个概念,他决定你是否明⽩对标的准确性,对于甄别⼀个测评⼯具的好坏也有⽐较重要的意义和价值,这不亚于测评⼯具的信效度,毕竟国内不少测评⼯具的信效度有被臆造的嫌疑在。

之所以想谈谈“常模”,是因为⾃⼰的专业背景,其次是发现很多⼈均对常模有误读,⽽有些⾃诩是对“常模”很熟悉的⼈其实未必真的懂得“常模”的真实概念,哪怕他已经在TM界混了多年。

我甚⾄发现⼀些著名咨询公司的顾问,其实对常模的概念也是不完全正确的。

写此⽂,也当是⾃⼰知识的印记,以防⽇后遗忘。

常模的定义-常模(英⽂称之为Norm),对应到统计概念中,是⼀个标准正态分布的概念。

其在⼈才测评中的主要功效是“对标”。

常模从字⾯上来解析的话,可以理解为可以进⾏对标的标准组,“常”表明此分布具有通俗性及代表意义,“模”表明是⼀个相对固定的分布。

(呵呵,此处必须感叹⼀下中⽂的博⼤精深。

)从百度中搜索得常模的概念为“常模是⼀种供⽐较的标准量数,由标准化样本测试结果计算⽽来,即某⼀标准化样本的平均数和标准差。

它是⼈才测评⽤于⽐较和解释测验结果时的参照分数标准。

测验分数必须与某种标准⽐较,才能显⽰出它所代表的意义。

”个⼈认为此概念稍微有点学术,我认为“常模,就是某⼀个测评的特定⼈群的测评结果⽽拟合出来的标准正态分布,可以供后续的测评结果进⾏直接的对标使⽤”。

下⾯我会从常模的获得⽅式来对常模进⾏更通俗的说明,希望有助于⼤家的理解。

常模的建⽴-在⼤多数测评⼯具的量表研发完成后,均需要进⾏⼀系列的统计验证,证明此⼯具具有统计的意义,⽽⼤伙熟悉的信效度是这个时候的主要测验指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019/发展常模
许多心理特质是随时间(年龄)变化而 发展的。
将被测者的成绩与各种发展水平人群平 均表现相比较,这种常模即发展常模, 该量表亦称年龄量表。
2019/8/23
9
(一)发展顺序量表
测验条目(能力或行为)按 出现的早晚排列,完成该条 目说明达到相应的年龄水平。
各百分位单位不相等,不能加、减、乘、除
原始分转换为百分等级时,靠近中央的分数其差异被夸大, 靠近两极的分数其差异被缩小。(见后附表) 不同被试之间不能精确比较
标准分常模换算及解释时需要注意的问题
计算非线性转换的标准分数时,要求所测特质本质上应是 常态分布。
来自不同测验的离差智商,只有标准差相同或相近时,才 可进行比较
葛塞尔婴幼儿发育量表:包 括运动水平、适应性、语言、 社会性四个方面。
2019/8/23
10
(二)智力年龄
一个人在采用年龄量表方式编制的智力测验上得到 的分数,简称智龄。
计算方法
每个条目代表一定的年(月)龄,将所通过的条目折 算出月龄,然后相加计算出智力年龄。如比内量表。 以标准化样本每个年龄组平均原始分数作为常模,被 试者从测验中得到原始分数与其比较,从而确定智龄。
(二)非线性转换的标准分: z’分数
当原始分不成常态分布,需进行转换使之成为常态分 布 转换方法(百分等级法)
1、对每个原始分计算累计百分比 2、在常态曲线面积表中,求出对应于该百分比的 z分数 转换后的z分数称为z’分数
2019/8/23
19
常见的标准分形式
基本形式 z分:z=(X–X)/SD
X 为任一原始分 X 为样本平均数 SD 为样本标准差
比内量表智龄计算举例
计算公式 IQ=MA(心理年龄)/CA(实足年龄)×100
2019/8/23
11
心理年龄的分数计算
确定基础年龄
全部题目都通过的那组题目所代表的年龄
确定心理年龄
将在所有更高年龄水平上通过的题目,用月份计算,加在基 础年龄上
某儿童6岁组题目全部通过,7岁组通过4题, 8岁组通 过3题, 9岁组通过2题。(1936年陆志韦修订版)
举例:(WAIS-RC) 16岁被试算术分测验得分为15分,常模平均值为 12.73、标准差3.55,其量表分是多少?
23
注意事项
发展常模换算及解释时需要注意的问题
只适用于所测特质随年龄发生系统变化的情况 只适用于在典型环境下生长的儿童 发展量表的单位在各年龄并不相等,因为各年龄发展速度 不同
百分位常模换算及解释时需要注意的问题
因为抽样误差与样本大小成反比,理论上样本越大 越好,但也要考虑具体条件的允许。
样本的数量
总体数目小,全部作为样本。 总体数目较大,样本也要大,30~100人。 全国常模2000~3000人。
样本的代表性
(四)标准化样组是一定时空的产物
2019/8/23
4
三、取样的方法
取样即从目标人群中选择有代表性的样本
累加面积 100% 96% 89% 77% 60% 40% 23% 11% 4%
本段中值与平均点距离 大于2.0SD 1.5SD 1.0SD 0.5SD 0SD 0.5SD 1.0SD 1.5SD 大于2.0SD
22
2019/8/23
标准十分
1~10分的十级分数量表,平均值为5、标准差为1.5。 卡特尔16PF
2019/8/23
26
常模标准分转换表
在实际工作中,测验编制者会采用某种标准分 公式计算出与原始分相对应的标准分,并编制 成原始分转换标准分等值表,附在手册上方便 使用。
每个测验采用何种标准分,以及量表分的平均 值和标准差均可从测验手册中查到。
举例(C-WYCSI)
4岁城市儿童,言语分量表得分42分,常模平 均值为49.94、标准差11.58,其言语IQ是多 少?
从121名学生中抽40人作为调查样本
K=121÷40≈3
若首位是第8号,则每隔3位抽一个,即8、11、14……
2019/8/23
5
(三)分组抽样
当总体数目较大,无法进行编号,而群体又具多样性 时采样 先分组,再在组内随机抽样
(四)分层抽样
制定常模是最常用的方法 先按某种(或几种)变量分层,然后在每层中随机抽 取一定样本,组合成常模样本。 A、分层比例抽样 B、分层非比例抽样
测验常模的建立
2019/8/23
1
第一单元 常模团体
一、常模团体的性质
1、是具有共同特征的人所组成的一个群体, 或者该群体的一个样本。 用一个标准的、规范的分数表示,以提供比较 的基础。
一个测验可能有多个常模团体 WAIS-RC:分城乡、分年龄共16个常模团体 MMPI:分男、女性别两个常模团体 EPQ(成人):分性别、分年龄12个常模团体
标准10分=5+1.5 (X–X)/SD 或标准10分=5+1.5z
举例:(16PF) 30岁女性被试乐群性得分为15分,常模平均值为 10.90、标准差3.23,其量表分是多少?
标准二十分
1~19分的分数量表,平均值为10、标准差为3。 韦氏智力量表
标准20分=10+3 (X–X)/SD 或标准20分=10+3z
智龄:6+4 ×2+ 3×2+2×2=6岁+18月=7岁6个月
2019/8/23
12
(三)年级当量
又称年级量表 测验结果说明属哪一年级的水平 如:算术6年级水平、阅读是4年级水平等 在教育成就测验中最常用 团体常模通常是各年级常模样本的平均原始分 数。 其单位通常为10个月间隔
2019/8/23
13
常用标准分 Z分数
Z=A+Bz
A 为量表的平均数(根据需要指定的常数) B 为量表的标准差(根据需要指定的常数) z 为基本形式的z分
举例:
韦氏智力量表智商的平均值为100(A),标准差为15(B)。某 人的全量表分高于常模1个标准差,问其FIQ应为多少? 115(IQ)=100+15×1
2019/8/23
2019/8/23
25
(二)离差智商
是一种以年龄组为样本计算而得 的标准分数,为了使其与传统的 比率智商基本一致,一般研究者 将离差智商的平均值定为100。 韦克斯勒智力量表的标准差定在 15 IQ=100+15 (X–X)/SD 或 IQ=100+15z 斯坦福-比内量表的标准差定在16 IQ=100+16 (X–X)/SD 或 IQ=100+16z
二、百分位常模
百分位常模包括百分等级、百分点、四分位数 和十分位数。
(一)百分等级
百分等级是应用最广泛的表示测验分数的方法 百分等级指出的是个体在常模团体中所处的位置 百分等级的计算
未分组资料 PR=100-(100R-50)/N
R 指某人原始分排列的顺序数 N 指样本总人数 举例:小东在30名同学中语文成绩是80分,排列第5 名,其百分等级多少? PR=100-(100×5-50)/30=85 分组资料的百分等级求法,意义与未分组一样
20
T分数
T分数由麦克尔于1939年提出,有纪念推孟和桑代克 之意 T分数目前表示任何常态化和非常态化的转换标准系 统,量表分平均值固定为50,量表分标准差固定为10。 许多人格问卷均采用T分量表,如MMPI、EPQ
T=50+10 (X–X)/SD 或 T=50+10z
50(A)为T分数(量表分)的平均值 10(B)为T分数(量表分)的标准差
2019/8/23
16
(三)四分位数和十分位数
四分位数和十分位数只是百分位数(百分 等级)的两个变式。
举例
百分位数(百分等级):将量表分成100等 份
四分位数:将量表分4等份,1~25%、 26~50%、51~75%和76~100%四段。 十分位数:将量表分成10份,1~10%为第一 段,91~100%为第十段。
标准九分
1~9分的九级分数量表,平均值为5、标准差为2。
标准9分=5+2 (X–X)/SD 或标准9分=5+2z
2019/8/23
21
标准九分和常态曲线面积的关系以及与平 均数的距离
标准九分 9 8 7 6 5 4 3 2 1
2019/8/23
本段面积 4% 7% 12% 17% 20% 17% 12% 7% 4%
2019/8/23
27
以100为平均数不同标准差条件下每一组距正态 曲线下个案百分比
分组分数 130以上 120~129 110~119 100~109 90~99 80~89 70~79 70以下
总计
2019/8/23
SD=12 0.7 4.3 15.2 29.8 29.8 15.2 4.3 0.7
100.0
百分数分布
SD=14 SD=16
1.6
3.1
6.3
7.5
16.0
15.8
26.1
23.6
26.1
23.6
16.0
15.8
6.3
7.5
1.6
3.1
100.0
100.0
SD=18 5.1 8.5 15.4 21.0 21.0 15.4 8.5 5.1
100.0
28
2019/8/23
29
WAIS-RC智商和百分位的关系(城市)
2019/8/23
2
常模团体对于编制测验时的意义
常模的选择基于对实测对象的总体认识 一般程序:确定一般总体→确定目标总体→确定样本
一般总体:准备评价的对象群体 目标总体:准备采样的范围人群 常模样本:根据总体性质(如性别、年龄、文化程度等)确 定的、有代表性的样本
相关文档
最新文档