线代第三章习题解答
线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T Tααα=--=-- 求1223αα+ 解:∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=-----1[12,4,8,8,4][3,1,2,2,1]4T T=-----=-∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]TTTαα+=-+-=2.设 12[2,5,1,3],[10,1,5,10],T Tαα==3123[4,1,1,1],3()2()5()0Tααααααα=--++-+=并且求 α解:∵ 1236325αααα=+-[6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24],T T TT=+--=∴ [1,2,3,4].Tα=3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关解:不正确.如:[][]121,2,3,4T Tαα==,虽然 12000,αα+=但12,αα线性无关。
(2) 如果存在m 个不全为零的数12,,,,m k k k L 使11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。
解: 不正确. 如[][]11121,2,2,4,1,2,TTk αα====存在k 使 121220,,.αααα+≠但显然线性相关(3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都不能由其余向量线性表出. 解: 正确。
(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。
(4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。
解:不正确。
例如:[][][]1230,0,0,0,1,0,0,0,1,TTTααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。
线性代数第3章_线性方程组习题解答

习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T)0,0,1,0,2(1-=ξ,T)0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)Tξ=-和2(2,4,0,1)T ξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α, ,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证 (1)反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.(2)反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r nr n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。
线性代数习题答案第三章

所以当1时 方程组有无穷多解此时,增广矩阵为
B~ 方程组的解为
或 (k1 k2为任意常数) 18 证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT
使T 证明 必要性 由R(A)1知A的标准形为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r
第三章 矩阵的初等变换与线性方程组
1 把下列矩阵化为行最简形矩阵 (1) 解 (下一步 r2(2)r1 r3(3)r1 )
~(下一步 r2(1) r3(2) ) ~(下一步 r3r2 ) ~(下一步 r33 ) ~(下一步 r23r3 ) ~(下一步 r1(2)r2 r1r3 ) ~ (2) 解 (下一步 r22(3)r1 r3(2)r1 ) ~(下一步 r3r2 r13r2 ) ~(下一步 r12 ) ~ (3) 解 (下一步 r23r1 r32r1 r43r1 ) ~(下一步 r2(4) r3(3) r4(5) ) ~(下一步 r13r2 r3r2 r4r2 ) ~ (4) 解 (下一步 r12r2 r33r2 r42r2 ) ~(下一步 r22r1 r38r1 r47r1 ) ~(下一步 r1r2 r2(1) r4r3 ) ~(下一步 r2r3 ) ~ 2 设 求A 解 是初等矩阵E(1 2) 其逆矩阵就是其本身 是初等矩阵E(1 2(1)) 其逆矩阵是 E(1 2(1))
线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。
《线性代数》第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解:∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4T T=-----=-∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]TTTαα+=-+-=2.设 12[2,5,1,3],[10,1,5,10],T T αα==3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α解:∵ 1236325αααα=+-[6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24],T T TT=+--=∴ [1,2,3,4].T α=3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ==== 时, 11220m m k k k ααα+++= 成立, 则向量组12,,m ααα 线性相关解:不正确.如:[][]121,2,3,4T Tαα==,虽然 12000,αα+=但12,αα线性无关。
(2) 如果存在m 个不全为零的数12,,,,m k k k 使11220,m m k k k ααα+++≠ 则向量组12,,,m ααα 线性无关。
解: 不正确. 如[][]11121,2,2,4,1,2,TTk αα====存在k 使121220,,.αααα+≠但显然线性相关(3) 如果向量组12,,,m ααα 线性无关,则其中任何一个向量都不能由其余向量线性表出. 解: 正确。
(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m ααα 线性相关,与题没矛盾。
(4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。
解:不正确。
例如:[][][]1230,0,0,0,1,0,0,0,1,TTTααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。
线性代数课后习题详细解答 (袁晖坪版)第三章 线性方程组

1 2 3 1⎞ 1 1 −4 1 ⎟ ⎟ 得 r ( A) ≠ r ( A) ,因此原方程组 0 −6 −3 10 ⎟ ⎟ 0 0 0 3⎠
无解。 ⎛ 1 −2 3 −4 4 ⎞ ⎜ 0 1 −1 1 −3 ⎟ ⎟ (3) 由方程组的增广矩阵 A = ( A, β ) = ⎜ ⎜1 3 0 1 1 ⎟ ⎜ ⎟ ⎝ 0 −7 3 1 −3 ⎠
r3 − 2 r2 r2 ↔ r3 r3 + 3r2
1 r3 ×( − ) 6 r2 + 3 r3 r1 − r3
r1 − r2
r2 − 2 r1 r3 − 2 r1
4 ⎧ x1 = − x4 , 4 ⎧ ⎪ 3 ⎪ x1 + 3 x4 = 0, ⎪ ⎪ ⎪ x = − x4 , 得 ⎨ x2 + x4 = 0, ,所以 ⎨ 2 ( x4为自由未知量) ,令 x4 =k ,得原方程组 2 ⎪ ⎪ x = −2 − x4 2 ⎪ x3 + x4 = −2; ⎪ 3 3 3 ⎩ ⎪x = x ⎩ 4 4 4 ⎧ ⎪ x1 = − 3 k , ⎪ ⎪ x = −k , 得通解为: ⎨ 2 (k ∈ R) 2 ⎪ x = −2 − k ⎪ 3 3 ⎪x = k ⎩ 4
11 1 ⎧ ⎪ x1 = 5 + k1 + 5 k 2 , ⎪ ⎪ x2 = k1 , 得原方程组得通解为: ⎨ (k1 , k2 ∈ R) ⎪x = 2 + 2 k ⎪ 3 5 5 2 ⎪x = k ⎩ 4 2 (5) 由方程组的增广矩阵: 1 1 1 1 0⎞ 2 −5 r 1 ⎛1 ⎛1 1 1 1 1 0⎞ r ⎜ ⎟ r3 − r2 ⎜ ⎟ A = ( A, β ) = ⎜ 3 2 1 1 −3 0 ⎟ → ⎜ 0 −1 −2 −2 −6 0 ⎟ ⎜ 5 4 −3 3 −1 0 ⎟ ⎜ 0 0 −6 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎠
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 行列式习题3.13-1-6.用定义计算行列式(1)()2,1,0,,,0000000222211114=≠=i d c b a d c b a d c b a D i i i i解:设444⨯=ija D 则4D 中第1行的非0元为113111,b a a a ==,故11,3j =同法可求:2342,4;1,3;2,4j j j ===∵4321,,,j j j j 可组成四个4元排列 1 2 3 4,1 4 3 2,3 2 1 4,3 4 1 2,故4D 中相应的非0项有4项,分别为2211d b c a ,,2211c b d a -2211d a c b -,2211c a d b 其代数和即为4D 的值,整理后得 ()()122112214d c d c b a b a D --=(2)010...0002 0000...000 0n D n =M M MM解:由行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑L L L仅当12,,,n j j j L 分别取2,3,…,n-1,n,1 时,对应项不为零,其余各项都为零12121()(231)1212231(1)(1)(1)(1)(1)12(1)!n n n j j j n n j j nj n n n n D a a a a a a a n n ττ---=-=-=-⋅=-⋅L L L L L习题3.23.2-2.证明(1)0sin cos 2cos sin cos 2cos sin cos 2cos 222222=γγγβββααα证明:22222222222222132222222cos sin cos sin cos cos sin cos sin cos sin cos cos sin cos sin cos sin cos cos sin c c αααααααβββββββγγγγγγγ-=-+-左0= (2) 322)(11122b a b b a a b ab a -=+证明:23222212()()2()11001c c a ab ab b b a a b b a b a b c c a ba b b a b a b a b --------==---左右=-=3)(b a(3) 121211221100001000001n n n n n n n n x x x a x a x a x a x a a a a a x-------=+++++-+L L M M MO M M L L L证明: 按最后一行展开,得1211000000010001000(1)(1)0001000010010001n n n n x x a a x x x ++----=-+-----L L LL O M M M M M O M M L L LL 左321220000100000000100(1)(1)000100000000100001n n n x x x x a a x x +----+-++----L L LL L M M M OM M M M M O M M L L LL211000010()(1)00010000n x x x a x x--++--L LM MM O M M L L 222222121221(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x a x x a x ----=-+-+-++-++-L 2211221n n n n n n a a x a x a x a x x ----=++++++=L 右3=2-3.计算下列行列式 (1)11111100((1))((1))0x a a a x a a x a x a x n a x n a a a xa a xx a-=+-=+--L L L L L LM M O M M M O M M M O M LLL])1([)(1a n x a x n -+-=-(2)()()()()()()111(1)211111111()1(1)(1)111111nnnn n n n n n n n n nnna a a n a a a n a a a n D a a a n a a a n a a a n ---++---------==-------L L L LM MOMMM O ML L LL(最后一行(n+1)行依次与第n,n-1,…,2,1行交换,经过n 次交换;再将新的行列式的最后一行(即原来的n 行)依次换到第二行,经过n-1次交换;。
最后一共经过(1)(1) (212)n n n n ++-+++=次换行。
使原行列式化为范德蒙德行列式) ()()[]∏∏∏≤<≤≤<≤≤<≤++-=--=----=nj i nj i nj i n n n n i j j i i a j a 0002)1(2)1()()()1()1((3)11111121111111(21)00n n nnn nn n nnn n a b a b a b a b D c a c d c d c d c d d -----=ONONN O N O按展开1121112(1)2(1)111121000(1)0n n n n nn n n n n n n n n b a b c a b a d D c b D c d c d --+-----+-=-ONN O)1(2)(--=n n n n n D b c d a∵11112d c d a D -= ∴∏≤≤-=ni i i iin b c da D 12)((4) 解:按第一列展开行列式n D ,得1110...00000000...0000000(1)000...0000000 00000n n nn n x y x y y x y x x y D x y x y x y y yx x x y +--==+⋅-L L L L M M M M M M MM M M M M M L L LL1111(1)(1)n n n n n n x x y y x y -+-+=⋅+⋅-⋅=+-⋅(5)当1n =时,111D a b =- 当2n =时,11121121121211221222*********112112122211()()11a b a b aa b b a b ab b a D a b a b a a b b a b a b b a a a b b a a b b a a -----==-=------=--=--当3n ≥时1112111211121212222222122212212n n n n n nn n n n n n n n n n n na b a b a b a a b a b b a b a b a b a b a b a a b a b b a b a b D a b a b a b a a b a b b a b a b --------------==--------L L L L LLM MM M MM M MM LLL12121111222222211221111002,3,...11nni i n n n n n n n n na b b a b a b a a c b c a b b a b a b a a b b i n a b b a b a b a a ---------=++==----LLLL LLM M M M M M M M M LLL习题3.33-3-1利用伴随矩阵求下列矩阵逆阵 (1)cos sin sin cos A θθθθ-⎡⎤=⎢⎥⎣⎦111122122:10cos ,sin ,sin ,cos A A A A A A θθθθ-=≠∴==-==解存在。
1*cos sin cos sin cos sin ,sin cos sin cos sin cos A θθθθθθθθθθθθ--⎡⎤⎡⎤⎡⎤=∴=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦()1212342541B -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦12110021342321 2.1465415146---=-==∴---解:detB=其逆矩阵存在111213212223313233*14133226140124202101361,132312321421671A A A A A A A A A B B -=-=-=-=====-=---⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,,,,,,,,,(3)a b c d ⎡⎤⎢⎥⎣⎦,其中0ad bc -≠ 解:0a b ad bc c d=-≠ ∴逆矩阵存在.又11122122,,,A d A c A b A a ==-=-=故 11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ 3-3-2 设矩阵2513A ⎡⎤=⎢⎥⎣⎦,4621B -⎡⎤=⎢⎥⎣⎦, 求AB ,1A -,1B - 解:18716103AB -==-, 0A ≠Q ,1A -∴存在.由13512A --⎡⎤=⎢⎥-⎣⎦,所以135112A --==- 又0B ≠Q 1B -∴存在,且11612416B -⎡⎤=⎢⎥-⎣⎦,故11/166/1611/81/416B -==-- 3-3-3. 设A 为可逆矩阵,证明*11*()()A A --=证明:A Q 可逆,∴0A ≠且逆矩阵为1A -, *A A A I =Q *1A A A -∴=由于0A ≠,1A -可逆且11*1()()A A AI ---= 可得1*1()A A A-=另一方面,由 *1*11()A A A AA I A--==由矩阵可逆定义知,*A 可逆,且*11*()()A A --=3-3-4. 设0kA =,证明:121()k I A I A A A ---=++++L证明: 若AB I =,则1B A -= 212121()()k k k k I A I A A AI A A A A A A A ----++++=+++----L L Lk I A I =-= ∴原式得证3-3-5设方阵A 满足220A A I --=,证明A 及2A I +都可逆,并求11,(2)A A I --+解: 221202()2()2A A I A A I A A I I A A I I --=⇒-=⇒-=⇒⋅-= 显然A 可逆且11()2AA I -=- A Q 可逆 0A ≠ 且22202A A I A A I --=⇒=+, 2220A A A I ==+≠ 即2A I +可逆, 由22112()(2)A I A A A I --+=⇒=+,于是由220A A I --=得,(2)(3)40(2)(3)4A I A I I A I A I I +-+=⇒+-=-1(2)[(3)]4A I A I I ⇒+--=, 故 11(2)(3)4A I I A -+=-3-3-6.用克拉姆法则解方程组(1)1231212321213x x x x x x x x +-=⎧⎪+=-⎨⎪-+=⎩解:211300102102103311111111D -==-==---11114001101104311311D -=-=-=-- 221134210121131D -=-==--3211420020202112110113611113113313D =-=-=-==------312123411233D D D x x x D D D-∴======- 3-3-7. 问λ取何值时,123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ 有非零解?解:3212412023122372111113D c c λλλλλλλ----=-+---- 1212(3)(72)2312λλλλλ----=----(3)[(1)(3)4](72)[(1)2]λλλλλ=---+---+2(3)[74(72)](3)(2)λλλλλλλ=--+--=--当0D =时,即(3)(200λλλ--=时,有非0解 即 0λ=,3λ=或2λ=时,有非0解习题3.43-4-1求矩阵的秩与标准形矩阵()121313322122229611232382131413141212212212212064413142382096610321314100022032201010033000000000000r r r r r r r r r r i r -+↔-++-+-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-−−−→-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎢⎥⎢⎥⎢-−−−→-−−−→−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣⎦⎤⎥⎢⎥⎢⎥⎦2∴秩为(2)321221423124141254211211211210105021187010800321413010150020r r r r r r r r r r r r r +↔-++----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3212101001001010210102001001001000000000c c +⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥→→−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦为标准形。