机械专业英语论文翻译
机械类英语论文及翻译翻译

High-speed millingHigh-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs.1 One of the advantages of high-speed machiningHigh-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved.1.1 Increase productivityHigh-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reduced by 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market.1.2 Improve processing accuracy and surface qualityHigh-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.1.3 Cutting reduce the heatBecause the main axis milling machine high-speed rotation, cutting a shallow cutting, and feed very quickly, and the blade length of the workpiece contacts and contact time is very short, a decrease of blades and parts of the heat conduction. High-speed cutting by dry milling or oil cooked up absolute (mist) lubrication system, to avoid the traditional processing tool in contact with the workpiece and a lot of shortcomings to ensure that the tool is not high temperature under the conditions of work, extended tool life.1.4 This is conducive to processing thin-walled partsHigh-speed cutting of small cutting force, a higher degree of stability, Machinable with high-quality employees compared to the company may be very good, but other than the company's employees may Suanbu Le outstanding work performance. For our China practice, we use the models to determine the method of staff training needs are simple and effective. This study models can be an external object, it can also be a combination of internal and external. We must first clear strategy for the development of enterprises. Through the internal and external business environment and organizational resources, such as analysis, the future development of a clear business goals and operational priorities. According to the business development strategy can be compared to find the business models, through a comparative analysis of the finalization of business models. In determining business models, a, is the understanding of its development strategy, or its market share and market growth rate, or the staff of the situation, and so on, according to the companies to determine the actual situation. As enterprises in different period of development, its focus is different, which means that enterprises need to invest the manpower and financial resources the focus is different. So in a certain period of time, enterprises should accurately selected their business models compared with the departments and posts, so more practical significance, because the business models are not always good, but to compare some aspects did not have much practical significance, Furthermore This can more fully concentrate on the business use of limited resources. Identify business models, and then take the enterprise of the corresponding departments and staff with the business models for comparison, the two can be found in the performance gap, a comparative analysis to find reasons, in accordance with this business reality, the final identification of training needs. The cost of training is needed, if not through an effective way to determine whether companies need to train and the training of the way, but blind to training, such training is difficult to achieve the desired results. A comparison only difference between this model is simple and practical training.1.5 Can be part of some alternative technology, such as EDM, grinding high intensity and high hardness processingHigh-speed cutting a major feature of high-speed cutting machine has the hardness of HRC60 parts. With the use of coated carbide cutter mold processing, directly to the installation of ahardened tool steel processing forming, effectively avoid the installation of several parts of the fixture error and improve the parts of the geometric location accuracy. In the mold of traditional processing, heat treatment hardening of the workpiece required EDM, high-speed machining replace the traditional method of cutting the processing, manufacturing process possible to omit die in EDM, simplifying the processing technology and investment costs .High-speed milling in the precincts of CNC machine tools, or for processing centre, also in the installation of high-speed spindle on the general machine tools. The latter not only has the processing capacity of general machine tools, but also for high-speed milling, a decrease of investment in equipment, machine tools increased flexibility. Cutting high-speed processing can improve the efficiency, quality improvement, streamline processes, investment and machine tool investment and maintenance costs rise, but comprehensive, can significantly increase economic efficiency.2 High-speed millingHigh-speed milling the main technical high-speed cutting technology is cutting the development direction of one of it with CNC technology, microelectronic technology, new materials and new technology, such as technology development to a higher level. High-speed machine tools and high-speed tool to achieve high-speed cutting is the prerequisite and basic conditions, in high-speed machining in the performance of high-speed machine tool material of choice and there are strict requirements.2.1 High-speed milling machine in order to achieve high-speed machiningGeneral use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:General use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:High-speed milling machine must have a high-speed spindle, the spindle speed is generally 10000 ~ 100000 m / min, power greater than 15 kW. But also with rapid speed or in designated spots fast-stopping performance. The main axial space not more than 0 .0 0 0 2 m m. Often using high-speed spindle-hydrostatic bearings, air pressure-bearing, mixed ceramic bearings, magneticbearing structure of the form. Spindle cooling general use within the water or air cooled.High-speed processing machine-driven system should be able to provide 40 ~ 60 m / min of the feed rate, with good acceleration characteristics, can provide 0.4 m/s2 to 10 m/s2 acceleration and deceleration. In order to obtain good processing quality, high-speed cutting machines must have a high enough stiffness. Machine bed material used gray iron, can also add a high-damping base of concrete, to prevent cutting tool chatter affect the quality of processing. A high-speed data transfer rate, can automatically increase slowdown. Processing technology to improve the processing and cutting tool life. At present high-speed machine tool manufacturers, usually in the general machine tools on low speed, the feed of the rough and then proceed to heat treatment, the last in the high-speed machine on the half-finished and finished, in improving the accuracy and efficiency at the same time, as far as possible to reduce processing Cost.2.2 High-speed machining toolHigh-speed machining tool is the most active one of the important factors, it has a direct impact on the efficiency of processing, manufacturing costs and product processing and accuracy. Tool in high-speed processing to bear high temperature, high pressure, friction, shock and vibration, such as loading, its hardness and wear-resistance, strength and toughness, heat resistance, technology and economic performance of the basic high-speed processing performance is the key One of the factors. High-speed cutting tool technology development speed, the more applications such as diamond (PCD), cubic boron nitride (CBN), ceramic knives, carbide coating, (C) titanium nitride Carbide TIC (N) And so on. CBN has high hardness, abrasion resistance and the extremely good thermal conductivity, and iron group elements between the great inertia, in 1300 ℃ would not have happened significant role in the chemical, also has a good stability. The experiments show that with CBN cutting toolHRC35 ~ 67 hardness of hardened steel can achieve very high speed. Ceramics have good wear resistance and thermal chemical stability, its hardness, toughness below the CBN, can be used for processing hardness of HRC <5 0 parts. Carbide Tool good wear resistance, but the hardness than the low-CBN and ceramics. Coating technology used knives, cutting tools can improve hardness and cutting the rate, for cutting HRC40 ~ 50 in hardness between the workpiece. Can be used to heat-resistant alloys, titanium alloys, hightemperature alloy, cast iron, Chungang, aluminum and composite materials of high-speed cutting Cut, the most widely used. Precision machining non-ferrous metals or non-metallic materials, or the choice of polycrystalline diamond Gang-coated tool.2.3 High-speed processing technologyHigh-speed cutting technology for high-speed machining is the key. Cutting Methods misconduct, will increase wear tool to less than high-speed processing purposes. Only high-speed machine tool and not a good guide technology, high-speed machining equipment can not fullyplay its role. In high-speed machining, should be chosen with milling, when the milling cutter involvement with the workpiece chip thickness as the greatest, and then gradually decreased. High-speed machining suitable for shallow depth of cut, cutting depth of not more than 0.2 mm, to avoid the location of deviation tool to ensure that the geometric precision machining parts. Ensure that the workpiece on the cutting constant load, to get good processing quality. Cutting a single high-speed milling path-cutting mode, try not to interrupt the process and cutting tool path, reducing the involvement tool to cut the number to be relatively stable cutting process. Tool to reduce the rapid change to, in other words when the NC machine tools must cease immediately, or Jiangsu, and then implement the next step. As the machine tool acceleration restrictions, easy to cause a waste of time, and exigency stop or radical move would damage the surface accuracy. In the mold of high-speed finishing, in each Cut, cut to the workpiece, the feed should try to change the direction of a curve or arc adapter, avoid a straight line adapter to maintain the smooth process of cutting.3 Die in high-speed milling processing ofMilling as a highly efficient high-speed cutting of the new method,inMould Manufacturing has been widely used. Forging links in the regular production model, with EDM cavity to be 12 ~ 15 h, electrodes produced 2 h. Milling after the switch to high-speed, high-speed milling cutter on the hardness of HRC 6 0 hardened tool steel processing. The forging die processing only 3 h20min, improve work efficiency four to five times the processing surface roughness of Ra0.5 ~ 0.6m, fully in line with quality requirements.High-speed cutting technology is cutting technology one of the major developments, mainly used in automobile industry and die industry, particularly in the processing complex surface, the workpiece itself or knives rigid requirements of the higher processing areas, is a range of advanced processing technology The integration, high efficiency and high quality for the people respected. It not only involves high-speed processing technology, but also including high-speed processing machine tools, numerical control system, high-speed cutting tools and CAD / CAM technology. Die-processing technology has been developed in the mold of the manufacturing sector in general, and in my application and the application of the standards have yet to be improved, because of its traditional processing with unparalleled advantages, the future will continue to be an inevitable development of processing technology Direction.4 Numerical control technology and equipping development trend and countermeasureEquip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most basicmeans of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc..Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus.5 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently,such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machining center from 3~5μm, rise to 1~1.5μm, and ultraprecision machining accuracy is it e nter nanometer grade to begin already (0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .5.2 Link and process and compound to process the fast development of the lathe in 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realizethe inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUVoution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.。
机械类专业英语翻译

Flexible and Smart Online Monitoring and Fault Diagnosis System for Rotating Machinery柔性的和智能的在线监测与故障诊断的旋转机械系统AbstractMonitoring the vibration signals of rotating machinery, ulteriorly, assessing the safety of equipment plays a significant role in ensuring the security of equipment and in saving maintenance fee. This paper integrated the idea of “configuration” in the industry control software, developed the “flexible” network-based online monitoring and fault diagnosis system. The network topology, configuration module, database, data acquisition workstation and monitoring components were presented. With the smart data acquisition strategy and strong adaptive monitoring tools, the system can be applied on kinds of rotating machinery, and the practical application of the system was introduced.Keywords – online monitor, flexible system, smart system, configuration, rotating machinery旋转机械振动信号的监测,进一步地说,在确保设备的安全性和节省维修费用上设备安全性的评估起到非常重要的角色。
机械设计专业外文文献翻译

机械设计专业外文文献翻译general。
however。
materials that are easy to machine have high machinability。
while those that are difficult to machine have low XXX。
microstructure。
and mechanical properties。
as well as the XXX。
material。
and wear resistance.XXX factors。
cutting speed。
feed rate。
and depth of cut also play XXX the amount of heat generated in the cutting zone and decreasing the time that the cutting tool is in contact with the XXX。
at high cutting speeds。
tool wear and cutting forces can increase。
which can ce tool life and surface finish quality.Feed rate and depth of cut also XXX the amount of material that is removed and the forces that are generated during cutting。
Higher feed rates and deeper cuts can improve material removal rates。
but they can also increase cutting forces and heat n。
which can ce tool life and surface finish quality.Overall。
机械专业论文中英文

机械专业论文中英文Gearbox Noise —— Correlation with Transmission Error and Influence of Bearing Preload变速箱噪声——相关的传输错误和轴承预压的影响摘要ABSTRACTThe five appended papers all deal with gearbox noise and vibration. The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears. Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study. Eleven test gear pairs were manufactured using three different finishing methods. Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted. The test rig was used to measure gearbox noise and vibration for the different test gear pairs. The measured noise and vibration levels were compared with the predicted and measured transmission error. Most of the experimental results can be interpreted in terms of measured and predicted transmission error. However, it does not seem possible to identify one single parameter,such as measuredpeak-to-peak transmission error, that can be directly related to measured noise and vibration. The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise andvibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated. Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload. The results show that the bearing endplay and preload influence the gearbox vibrations. With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay. Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error. Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances. Static and dynamic transmission error, noise, and housing vibrations were measured. The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque. No correlation was found between dynamic transmission error and noise. Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.论文描述了该试验台是专门设计和建造噪音齿轮测试。
机械专业英语短文带翻译

机械工程师的关键责任之一是设计与分析机械系统。这涉及使用计算机辅助设计(CAD)软件创建系统的详细三维模型,并在不同条件下模拟其性能。通过分析作用于系统组件的力、应力和振动,机械工程师可以优化设计,确保安全、可靠和高效。
Case Study: Designing an Automotive Suspension System
案例研究:汽车悬挂系统设计
例如,让我们考虑一下汽车悬挂系统的设计。悬挂系统负责在保持车辆稳定控制的同时提供平稳的行驶。机械工程师使用CAD软件设计悬挂系统的各个组件,例如弹簧、减振器和控制臂。
在完成初始设计后,工程师将使用有限元分析(FEA)软件对系统进行分析。这样可以模拟系统在不同的道路条件下(如坑洼或减速带)的行为。通过分析组件中的应力和位移,工程师可以确定潜在的设计问题,并进行必要的修改,以改善悬挂系统的性能和安全性。
For example, let's consider the design of an automotive suspension system. A suspension system is responsible for providing a smooth ride while maintaining the stability and control of the vehicle. A mechanical engineer would use CAD software to design the various components of the suspension system, such as the springs, dampers, and control arms.
After the initial design is complete, the engineer would then analyze the system using finite element analysis (FEA) software. This allows them to simulate the behavior of the system under different road conditions, such as potholes or speed bumps. By analyzing the stresses and displacements in the components, the engineer can identify potential design issues and make necessary modifications to improve the performance and safety of the suspension system.
机械专业毕业论文中英文翻译--在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究

Frictionally excited thermoelastic instability in disc brakes—Transientproblem in the full contact regimeAbstractExceeding the critical sliding velocity in disc brakes can cause unwanted forming of hot spots, non-uniform distribution of contact pressure, vibration, and also, in many cases, permanent damage of the disc. Consequently, in the last decade, a great deal of consideration has been given to modeling methods of thermo elastic instability (TEI), which leads to these effects. Models based on the finite element method are also being developed in addition to the analytical approach. The analytical model of TEI development described in the paper by Lee and Barber [Frictionally excited thermo elastic instability in automotive disk brakes. ASME Journal of Tribology 1993;115:607–14] has been expanded in the presented work. Specific attention was given to the modification of their model, to catch the fact that the arc length of pads is less than the circumference of the disc, and to the development of temperature perturbation amplitude in the early stage of breaking, when pads are in the full contact with the disc. A way is proposed how to take into account both of the initial non-flatness of the disc friction surface and change of the perturbation shape inside the disc in the course of braking.Keywords: Thermo elastic instability; TEI; Disc brake; Hot spots1. IntroductionFormation of hot spots as well as non-uniform distribution of the contact pressure is an unwanted effect emerging in disc brakes in the course of braking or during engagement of a transmission clutch. If the sliding velocity is high enough, this effect can become unstable and can result in disc material damage, frictional vibration, wear, etc. Therefore, a lot of experimental effort is being spent to understand better this effect (cf. Refs.) or to model it in the most feasible fashion. Barber described the thermo elastic instability (TEI)as the cause of the phenomenon. Later Dow and Burton and Burton et al.introduced a mathematical model to establish critical sliding velocity for instability, where two thermo elastic half-planes are considered in contact along their common interface. It is in a work by Lee and Barber that the effect of the thickness was considered and that a model applicable for disc brakes was proposed. Lee and Barber’s model is made up with a metallic layer sliding between twohalf-planes of frictional material. Only recently a parametric analysis of TEI in disc brakes was made or TEI in multi-disc clutches and brakes was modeled. The evolution of hot spots amplitudes has been addressed in Refs. Using analytical approach or the effect of intermittent contact was considered. Finally, the finite element method was also applied to render the onset of TEI (see Ref.).The analysis of nonlinear transient behavior in the mode, when separated contact regions occur, is even accomplished in Ref. As in the case of other engineering problems of instability, it turns out that a more accurate prediction by mathematical modeling is often questionable. This is mainly imparted by neglecting various imperfections and random fluctuations or by the impossibility to describe all possible influences appropriately. Therefore, some effort aroused to interpret results of certain experiments in addition to classical TEI (see, e.g.Ref).This paper is related to the work by Lee and Barber [7].Using an analytical approach, it treats the inception of TEI and the development of hot spots during the full contact regime in the disc brakes. The model proposed in Section 2 enables to cover finite thickness of both friction pads and the ribbed portion of the disc. Section 3 is devoted to the problems of modeling of partial disc surface contact with the pads. Section 4 introduces the term of ‘‘thermal capacity of perturbation’’ emphasizing its association with the value of growth rate, or the sliding velocity magnitude. An analysis of the disc friction surfaces non-flatness and its influence on initial amplitude of perturbations is put forward in the Section 5. Finally, the Section 6 offers a model of temperature perturbation development initiated by the mentioned initial discnon-flatness in the course of braking. The model being in use here comes from a differential equation that covers the variation of the‘‘thermal capacity’’ during the full contact regime of the braking.2. Elaboration of Lee and Barber modelThe brake disc is represented by three layers. The middle one of thickness 2a3 stands for the ribbed portion of the disc with full sidewalls of thickness a2 connected to it. The pads are represented by layers of thickness a1, which are immovable and pressed to each other by a uniform pressure p. The brake disc slips in between these pads at a constant velocity V.We will investigate the conditions under which a spatially sinusoidal perturbation in the temperature and stress fields can grow exponentially with respect to the time in a similar manner to that adopted by Lee and Barber. It is evidenced in their work [7] that it is sufficient to handle only the antisymmetric problem. The perturbations that are symmetric with respect to the midplane of the disc can grow at a velocity well above the sliding velocity V thus being made uninteresting.Let us introduce a coordinate system (x1; y1)fixed to one of the pads (see Fig. 1) thepoints of contact surface between the pad and disc having y1 = 0. Furthermore, let acoordinate system (x2; y2)be fixed to the disc with y2=0 for the points of the midplane. We suppose the perturbation to have a relative velocity ci with respect to the layer i, and the coordinate system (x; y)to move together with the perturbated field. Then we can writeV = c1 -c2; c2 = c3; x = x1 -c1t = x2 -c2t,x2 = x3; y = y2 =y3 =y1 + a2 + a3.We will search the perturbation of the uniform temperature field in the formand the perturbation of the contact pressure in the formwhere t is the time, b denotes a growth rate, subscript I refers to a layer in the model, and j =-1½is the imaginary unit. The parameter m=m(n)=2pin/cir =2pi/L, where n is the number of hot spots on the circumference of the disc cir and L is wavelength of perturbations. The symbols T0m and p0m in the above formulae denote the amplitudes of initial non-uniformities (e.g. fluctuations). Both perturbations (2) and (3) will be searched as complex functions their real part describing the actual perturbation of temperature or pressure field.Obviously, if the growth rate b<0, the initial fluctuations are damped. On the other hand, instability develops ifB〉0.2.1. Temperature field perturbationHeat flux in the direction of the x-axis is zero when the ribbed portion of the disc is considered. Next, let us denote ki = Ki/Qicpi coefficient of the layer i temperature diffusion. Parameters Ki, Qi, cpi are, respectively, the thermal conductivity, density and specific heat of the material for i =1,2. They have been re-calculated to the entire volume of the layer (i = 3) when the ribbed portion of the disc is considered. The perturbation of the temperature field is the solution of the equationsWith and it will meet the following conditions:1,The layers 1 and 2 will have the same temperature at the contact surface2,The layers 2 and 3 will reach the same temperature and the same heat flux in the direction y,3,Antisymmetric condition at the midplaneThe perturbations will be zero at the external surface of a friction pad(If, instead, zero heat flux through external surface has been specified, we obtain practically identical numerical solution for current pads).If we write the temperature development in individual layers in a suitable formwe obtainwhereand2.2. Thermo elastic stresses and displacementsFor the sake of simplicity, let us consider the ribbed portion of the disc to be isotropic environment with corrected modulus of elasticity though, actually, the stiffness of this layer in the direction x differs from that in the direction y. Such simplification is, however, admissible as the yielding central layer 3 practically does not take effect on the disc flexural rigidity unlike full sidewalls (layer 2). Given a thermal field perturbation, we can express the stress state and displacements caused by this perturbation for any layer. The thermo elastic problem can be solved by superimposing a particular solution on the general isothermal solution. We look for the particular solution of a layer in form of a strain potential. The general isothermal solution is given by means of the harmonic potentials after Green and Zerna (see Ref.[18]) and contains four coefficients A, B, C, D for every layer. The relateddisplacement and stress field components are written out in the Appendix A.在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究摘要超过临界滑动盘式制动器速度可能会导致形成局部过热,不统一的接触压力,振动分布,而且,在多数情况下,会造成盘式制动闸永久性损坏。
机械工程专业英语_原文翻译

5.1 IntroductionConventional machining is the group of machining operations that use single- or multi-point tools to remove material in the form of chips. Metal cutting involves removing metal through machining operations. Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools. Most machining has very low set-up cost compared with forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.5.1 译文传统机械加工是一组利用单刃或者多刃刀具以切屑形式去除材料的加工方式。
金属切削意味着通过机械加工去除金属。
传统的机械加工都是利用不同的刀具在车床、钻床和铣床上进行的。
与成型加工、锻压和铸造工艺相比,大多数机械加工的生产准备成本都较低,然而如果是大批量生产,其成本要高得多。
当对零件的尺寸公差和光洁度要求较高时,机械加工是很有必要的。
5.2 Turning and LatheTurning is one of the most common of metal cutting operations. In turning, a workpiece is rotated about its axis as single-point cutting tools are fed into it, shearing away excess material and creating the desired cylindrical surface. Turning can occur on both external and internal surfaces to produce an axially-symmetrical contoured part. Parts ranging from pocket watch components to large diameter marine propeller shafts can be turned on a lathe.Apart from turning, several other operations can also be performed on lathe.axially ['æksiəli] adv.轴向地symmetrical [si'metrikəl] a. 对称的cylindrical [si'lindrikl] a.圆柱形的contoured ['kɔntuəd] a.显示轮廓的,与某种形体轮廓相吻合的译文:在金属切削加工操作中,车削是最常见的一种。
机械工程专业英语原文翻译哈工版

2、应力和应变在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。
如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此,它们共同作用部件的载荷易于使部件变形同时在材料里面产生相应的内力。
有很多不同负载可以应用于构件的方式。
负荷根据相应时间的不同可分为:(a)静态负荷是一种在相对较短的时间内逐步达到平衡的应用载荷。
(b)持续负载是一种在很长一段时间为一个常数的载荷, 例如结构的重量。
这种类型的载荷以相同的方式作为一个静态负荷; 然而,对一些材料与温度和压力的条件下,短时间的载荷和长时间的载荷抵抗失效的能力可能是不同的。
(c)冲击载荷是一种快速载荷(一种能量载荷)。
振动通常导致一个冲击载荷, 一般平衡是不能建立的直到通过自然的阻尼力的作用使振动停止的时候。
(d)重复载荷是一种被应用和去除千万次的载荷。
(e)疲劳载荷或交变载荷是一种大小和设计随时间不断变化的载荷。
上面已经提到,作用于物体的外力与在材料里面产生的相应内力平衡。
因此,如果一个杆受到一个均匀的拉伸和压缩,也就是说, 一个力,均匀分布于一截面,那么产生的内力也均匀分布并且可以说杆是受到一个均匀的正常应力,应力被定义为应力==负载P /压力A,因此根据载荷的性质应力是可以压缩或拉伸的,并被度量为牛顿每平方米或它的倍数。
如果一个杆受到轴向载荷,即是应力,那么杆的长度会改变。
如果杆的初始长度L和改变量△L 已知,产生的应力定义如下:应力==改变长△L /初始长L因此应力是一个测量材料变形和无量纲的物理量,即它没有单位;它只是两个相同单位的物理量的比值。
一般来说,在实践中,在荷载作用下材料的延伸是非常小的, 测量的应力以*10-6的形式是方便的, 即微应变, 使用的符号也相应成为ue。
从某种意义上说,拉伸应力与应变被认为是正的。
压缩应力与应变被认为是负的。
因此负应力使长度减小。
当负载移除时,如果材料回复到初始的,无负载时的尺寸时,我们就说它是具有弹性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Influence of Hot Press Forming Techniques on Properties ofVehicle High Strength SteelsCHANG Ying, MENG Zhaohuan, YING Liang, LI Xiaodong , MA Ning, HU Ping( Scho ol of Automotive Engineering , State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology , Dalian 116024, Liaoning, China)Abstract:Based on the combination of materials science andmechanicalengineering ,hotpress forming process of the vehicle high strength steels was analyzed. The hot forming processinclud -ed: heating alloy srapidly to austenite micr ostructures, stamping and cooling timely,maintaining pressur eand quenching . The results showed that most of austenite micr ostructure w as changed into uniform mar tensite by the hot press form ing while the samples were heatedat 900 。
C and quenched. The optimal tensile strength and yield streng th were up to 1530 MPa and 1000 MPa, respectively, and the shape deformation reached about 23% . And springback defect did not happ -en in the samples.Key words: high streng th steel; lightw eight ; hot forming ; martensiteAs an effective economical energy measure, the lightw eight dev elo pment dir ection of automo -bile has become one of the most important research subjects in the automotive industry. There are three major ways to achieve automobile light weight : optimizing vehicle frames and struc- tures; making vehicle bodyor f rame of new and alternativ ematerials to reduce the vehicle mass ( The high and ultra high strength steel can be used as alternative materials because of its thinner thickness) ; adopting advanced manufacturing techniques for the sake of automobile light wei- ght , such as thickness-gradient high strength steel (HSS) or metal based compound plates by con -tinuous pressing or hot press forming [ 1] . Although HSS has been applied in some domestic top grade vehicles, the key producing technologies have always been dominated by foreign compan- ies, such as Acelor Company, so as to raise the product cost obviously. By domestic self-designed hot press forming techniques and water-cooling mould, the automo bile HSS can be produced to subst itute foreign vehicle parts.In general, with the enhancement of steel blank,s mechanical strength, its formability is worsened dramatically. It is difficult to apply the traditional cold stamping technolog y into the f ield of pressing HSS. Thus, the hot stamping technology of martensit icsteel blank is applied as a new technology , which combines metal thermoplast ic forming metho d and water-cooling mould quenching principle. In this paper, boro n steel blank was formed and water-cooling mould was quenched simultane ously during the process of hot stamping . Comparedwith original automobile pearlite steel[ 2] , the automobile HSS obtained by advanced hot press forming technique can reduce about 30% of the total vehicle mass and achieve complex g eomet ries, high security and mechanical st reng th. The r easo n is that austenite microstructure with optimal plast icity and ductility can be obtained by hot press forming at high temperature[ 3- 5] , and the HSS with both excellent mechanical properties and light weight willbe obtainedafter being formed and quenched[ 6- 8] . The application of hot-formed thinner HSS plates will becoman important measure to realize vehicle light weight.1 Experimental SetupIn order to form HSS at high temperature, and to avoid cracks and springback, thesam -ples need rapid heating and transform completely into stabl eaustenite microst ructure. And then, samples are pressed and cooled in self-made water-cooling mould.Forthe obtained HS -S sample, its shape-freezing character or no spring back defect is anobvious advantage, and most of microst ructure in the sample is martensite. The thicknessof sample is 1.6 mm, and the main elements of HSS in this experiment are show n inTable 1.Table 1 Main elements of material in the experimen22MnB5 C Mn Cr Si B P S Al Minimum 0.220 1.200 0.110 0.002 0.002 - - 0.020 Maximum 0.250 1.400 0.200 0.005 0.005 0.020 0.005 0.050 Actual ex perimental procedure included: 1) set different heat t reatment temperatures in ther ange of750 to 1 000℃; 2) put the sample into the heat treated furnace to beheated for 4 min at a certain temperature; 3) remove it by mechanical hand and put it intothe hot forming moulds to be pressed quickly ;4) simultaneously, it was water-cooled atabout 30℃/s in the mound. The mechanical properties of sample were analyzed by tensiletest system and the microstructure appear ance was analyzed by metal lographic analysis device.The shape and size of test sample are show n in Fig. 1.Fig 1 The shape and size of specimen2 Results and DiscussionMechanical propert ies of HSS ( boron steels)with different thicknesses ( 1.0mm,1.6mm,2.0mm,2.5 mm,3.0 mm and4.0 mm, respectively) were checked (GBT16865-1997 was consulted, and samples were selected along 0℃, 45℃and 90℃ rolling direction respec -tively ) . The unidirectional tensile tests (based on the metal tensile testing standard of GBT228-2002 ) were finished. Compared with USIBOR1500, the valuesof basic mechanical properties for HSS w ith dif ferent thicknesses in the experiment areshown in Fig 2.Fig 2 shows that after water-cooling quenching , the tensile strength and yieldstrength of samples ( except the one w ith thickness of 4.0 mm )reached 1 500 MPa and 1000 MPa, respect ively. The values of the strength were twice bet ter than those of samples before quenching , and nearly the same to those of the plates of thickness 1.75 mm from Acelor Company ( USIBOR1500 shown in Fig 1) .Fig2 Tensile and yield strength of high strength steels with different thicknesses before and after quench –ingGenerally , hot press forming of samples is operated above transition temperature of martensite micro structure. The heating temperature in this experiment was in the range of 750 to 1000 ℃because it took 3 s or so for the samples to be delivered in the air. And then, based on analyzing tensile strengths Rm of samples after hot-forming at different temperatur -es and quenching , the optimal temperature can be found. It is shown in Fig3.Fig3 Curve of tensile strength vs preheating temperature From Fig 3, it is obvious that the value of tensile strength Rm only reaches 900 MPa at 750℃; the optimal value is 1530 MPa at 900℃, and the value will fall as temperature is set above 900℃. Based on analy zing microstructure and Fe-Fe3 C phase diagram, samples lay in the transition region of ferrite austenite microstr ucturecoexistence at 750℃. At this moment , austenite has appeared in microstructure of samples, and it can be transformed into martensite microstructure through water-cooling.So the mechanical properties, such as tensile strength and yield strength, will be improved. That is to say ,tensile strength of samples is a little hig her than that of original ones ( Rm is 600 MPa or so) . The content of austenite becomes larger as temperature is raised,and the tensile str ength will be improved gradually .As far as 22MnB5 steel is concerned, the austenitizing temperature is about 880℃. As Fig3 shows, if samples are heated rapidly to 900℃and air cooled for 3, austenite microstr uctures are obtained completely . Then samples are hot formed and water-cooling quenched, the fraction of martensite microstructure in samples is more than 95% , so the curve shows a peak. How ever, as temperature exceeds 900℃, because superheat degree is too large, microg rains grow so large that the tensile strength will decrease. Thus high tem- perature austenite microstructure (obtained as samples w ere heated rapidly) and grain refinement are the main factors to determine the mechanical properties of high strength steel -s. In this paper, different from that in the lab,the interact ion mechanisms of molding and w ater-cooling system on samples produced in the production line can objectively show the manufacturing properties and microst ructure character of products in mass.A s far as the samples are concerned, A is the initial and untreated sample;B is the sample which was heated at 900℃for 4 min;C is the sample after heat treatment and water-coo ling quenching. The deformation of A, B and C are 32% , 24% and 6% or so, respectively . Generally , A is composed of main pearlite and a small amount of ferrite, thetoughness of which is better than martensite, so its deformation is relatively better. B is com -posed with the high-temperature transitional microstructure of austenite, whose toughness is also better than martensite, and deformation is larger than the latter. C is composed of over 95% martensite and little austensite. Owing to its higher strength, toughness and plasticity of martensite are lower, that is to say , deformation of C is the lowest In Fig 4, when the sample was heated for 4 min and stretched at 900℃, stress-strain curve and testforce displacement curve were obtained respect ively.From Fig4 ( a) , after being heated up to 900℃,the microst ructure of sample has been completely turned into austenite. T he value in the elastic deformation stage of curvew ill tend towards the yield point , following the axial test force gradually being increased. That is to say, the obvious plastic deformation of sample will beg in after the yield point .When it is continuously stretched till the peak point of curve, the necking of sample will occur. Passing the peak, the st ress-strain relat ionship will become more complex . From Fig 4 ( b) , after the corresponding peak, the test force will be reduced, along with the decreasing cross-sectional area of sample till the f racture. It can be seen that the appropriate toughness and plastic deformation proper ties of austenitizing sampleat 900℃will help HSS be hot- formed to complicate vehicle parts. It is an effective measure to form HSS with room-temperature martensite microstructure character, and itis a theoretical basis to design the hot-forming process for HSS in the article.The vehicle hot forming parts and the original cold forming parts are practically contrasted. There areobvious differences both in the springback defect and in the formability, as shown in Fig5.From Fig5, it shows that the hot-forming parts havehig her accuracy, almost no shape distortion, and no springback defect . But the cold-forming parts will exhibit deformationdefects, crimping,large spring back and twisted grooves obviously,which can destroy the yield of products seriouslyw hich can destroy the yield of products seriously .Therefore, instead of tradit ional cold forming , the vehicle-high strength steels which are produced by hot forming have become an inevitable trend. In addition, the compositions of samples are shown inTable 1, based on not only the contribution for formability and microst ructure, but also the cost .For example, component boron as a component of sample can reduce the energy-gradient on the grain boundary because it is easily adsorbed on grain boundary to fill the defect of lower energy. Whileaustenitizing temperature is decreased by water-cooling system,ḁ-phase ferrite is easily to be nucleated on the grain boundaries. But the nucleation and growth of ferrite and bainite will become slower because of the low erenergy gradient on the grain boundaries, and are beneficial to make austenite stable; if the co ntent of boronor processing parameters are unsuitable, component boron would be precipitated to super saturation on the grain boundaries and become the new nucleus of precipitating phase which makes ener gy gradient larger, causing the harden ability of samples to fall.( a) Stressst rain curve; ( b) Test force displacement curveFig 4 Curves of stress-strain and test force displacement for stretching test In the production line, the precipitation and growth of mixed phase will be prohibited effectively by controlling temperature and heating rate. The sample is heatedto 900℃and held for 4 min. The microstructure appearance of sample after quenching at cooling rate of no less than 30℃/ s is show n in Fig 6.Fig5 Picture of hot forming and cold forming vehicle partsIn Fig6 ( a) , the main micro structur e of initial sample, w hich has not been hot formed and water-cooling quenched, is composed offerrite, pearlite and a small amount of carbide. Its tensile strength Rm and yield strength are only 653MPa and 500MPa, respectively . Fig6 ( b) shows that most microstructure of sample after quenching is strip-shapemartensite, the content of which is over 95% , and there are no cracks and other stress defects. The reason is that the sample was evenly heated and water-cooled during the whole process; based on “C”curve, even and close-row lath martensite microsructure obtained is also due to the optimal water-cooling rate, so the content of residual phase is very little; in addition, the complete close-row microstructure shows that residual stress ( including thermal stress and phase transformation stress, etc. )has been released completely, and there is no microgap in the micrograins so as to benef it sample for higher security and better mechanical propert ies.T he domestic research of vehicle HSS is mostly limited to do in the lab, but advanced automated manufacturing technologies are difficult to be realized in the lab. In this paper ,the properties’targets of HSS produced by practical production line are satisfactory, and the technical process also meets the demands of mass production(a) Original HSS microstructure before hot forming and quenching; (b) Obtained HSS microstructure after hot formingand quenching.Fig6 Microstructure appearance of HSS sample bef ore and after hot forming and quenching3 Conclusions1) In the production line, as HSS is heated rapidly to 900℃and held for 4 min, the tensile strength can reach the optimal value of 1530 MPa.If temperature is too low , austenite transformation will be incomplete; on the contrary , if temperature is too high, micrograin will grow too large. Both of them will reduce the tensile strength.2) T hanks to the appropriate toughness and plastic deformation properties of austenitizing HSS at high temperature, 22MnB5 steels ( HSS) can be favorably hot formed into complex and accurate automotive parts.3) T he optimal water-cooling rate during quenching can make HSS achieve the ideal microstructure of more than 95% martensite and a very small amount of residual austenite, and help stress-relieving procedure accomplish effectively. It is also the guarantee for HSS parts to possess high strength and no defects, such as cracks andcrimping.References:[ 1] Schieβl G, Pos schn T , Heller T , etal. Manufacturing a Roof Frame From Ultra High Strength Steel Materials by Hot Stamping [ C] IDDRG In ternational Deep Drawing Research Group 2004 Conference. Sindelfingen: [ s. n. ] , 2004: 158.[ 2] TANG Zhiyong, J IANG Haitao, TANG Di, etal. Study on the Continuous Cooling Transformation of Austenite of 27MnC rB5 Steels [ J ] . Hot Working Technology, 2007, 36( 20) : 41.[ 3] FAN Junf eng, CHEN Ming. A Study on the Road of Vehicle Lightw eight in Chin a [ J] .Casting2006, 55( 10) : 995 ( in Chinese) .[ 4] CHEN He-qin g, PENG C hengyun, WEI Liangqing. High Strength Steels and Applicati on of Them to Vehicle Manufacturing [ J ] . Mould and Die Project, 2007 ( 8) : 88 ( in Chinese) .[ 5] LIN Jianping, W ANG Liying, TIAN Haob in, etal. Research and Devel opment of the Hot Press Form -ing of Ultra High Strength Steel [ J] . Metal Casting Forgin g Welding Technology, 2008,37( 21) : 140 ( in Chinese) .[ 6] XING Zhongwen, BAO Jun, Y ANG Yuying, etal. Hot Press Forming Experiment al Research onthe Quenchenable Boron St eel [ J] . Materials Science and Technology, 2008, 16( 2) : 172.[ 7] Marion Merklein , Jrg en Lecher, Vera Gödel, et al. Mech anical Properties and Plastic Anisotropyof the Quenchenable High Strength Steel 22MnB5 at Elevated Temperatures [ J ] . Key Engineering Materials, 2007, 344: 79.[ 8] Geigera M, Merkleinb M, H off C. Basic Investigations on the Hot Stamping Steel 22MnB5 [ J] . Advanced Materials Research, 2005, 6( 8) : 795.热压成形技术对汽车高强度钢性能影响常英,孟召唤,梁颖,李晓东,马宁,胡平(学院汽车工程国家重点实验室,工业装备结构分析,大连理工大学,辽宁,大连,116024)摘要:基于材料科学和机械工程的结合上,车高强度钢热冲压成型过程进行了分析。