第10章 线性规划方法3
线性规划法

线性规划法
线性规划(Linear Programming)是数学规划的一种方法,用于确定一组决策变量的最佳值,以实现目标函数的最大
化或最小化。
在线性规划中,决策变量需要满足一组线性约束条件,这
些约束条件可以用一系列线性方程或不等式表示。
目标函
数可以是需要最大化的利润、最小化的成本或其他衡量指标。
线性规划的一般形式如下:
最大化(C^T * X)
满足约束条件:A * X <= B
X >=0
其中,C为包含决策变量的系数矩阵,X为决策变量向量,A为约束矩阵,B为约束约束向量。
线性规划可以通过图形法、单纯形法、内点法等多种方法求解。
求解过程中,需要确定目标函数的最优解,使其满足约束条件。
线性规划在实际应用中非常广泛,例如在生产计划、资源分配、供应链规划等领域,都可以使用线性规划方法进行决策优化。
运筹学线性规划图解法

证明:线性规划 max z =CX s.t. AX=b X≥0 设x(1)≠x(2)为D内任取两点,则Ax(1)=b,Ax(2)=b,x(1) ≥ 0, x(2) ≥ 0,令x为线段x(1) ,x(2)上任一点,既有 x=μx(1)+(1-μ)x(2) (0≤μ≤1) 则 Ax=A[μx(1) + (1-μ) x(2)] (0≤μ≤1) =μAx(1)+Ax(2)-μAx(2) =μb+b–μb=b 又因为 x(1) ≥ 0, x(2) ≥ 0, 0≤μ≤1 所以 x ≥ 0 即 x∈D 证毕
x2 x1+2x2=8
4x2=12
线段Q1Q2上的任意点都是最优解
Q1
Q2 x1
3x1=12
x2 •无可行解 例3:
maxz = 3x1 + 2x2 2x1 + x2 ≤ 2 s.t 3x1 + 4x2 ≥ 12 x , x ≥ 0 1 2
约束条件围不成区域 (又称矛盾方程) x1
•无有限最优解(无界解) 例4:
图解法得出线性规划问题解的几种情况
解的几种情况约束条件图形特点 唯一解 一般围成有限区域,最优值 只在一个顶点达到 无穷多解 在围成的区域边界上,至少 有两个顶点处达到最优值 无可行解 (无 围不成区域 解) 无界解(无解) 围成无界区域 , 且无有限 最优值 方程特点
目标和某一约束 方程成比例 有矛盾方程 缺少一必要条件 的方程
•有唯一解 例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0 画图步骤: 画图步骤 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值 x2
线性规划图解法

.
X = X1 + (1- ) X2 则必定有X = X1 = X2,则称X为S的一个顶点。
.
图解法
Page 24
可以证明,线性规划的可行域以及最优解有以下 性质:
(1)、若线性规划的可行域非空,则可行域必定为一凸集;
(2)、线性规划问题的基本可行解对应于可行域的顶点;
(3)、若可行域有界,线性规划问题的目标函数一定可以在 其可行域的顶点上达到最优,或在可行域的某个顶点(唯一 最优解)或在某两个顶点及其连线上(无穷多最优解)得到。
.
图解法
Page 4
(3)任意给定目标函数一个值作一条目标函数的等值线,并确 定该等值线平移后值增加的方向,平移此目标函数的等值线,使 其达到既与可行域有交点又不可能使值再增加的位置(有时交于 无穷远处,此时称无有限最优解)。若有交点时,此目标函数等 值线与可行域的交点即最优解(一个或多个),此目标函数的值 即最优值。
凸集:如果集合C中任意两个点X1、X2,其连线上的所有点 也都是集合C中的点,称C为凸集。
凸集
顶点
凸集
.
不是凸集
图解法
Page 23
在凸集中,不能表示为不同点的凸组合的点
称为凸集的极点,用严格的定义描述如下。
定义3 设C为一凸集,如果C中不存在任何两个 不同的点X1、X2,使得X成为这两个点连线上的一 个点,即X S,X1 S,X2 S。如果对于0 1,若
2x1+ x2 50 z = 40x1+30x2
4x1+3x2 120
.
图解法
图解法的观察(二)
Page 14
如果可行域为空集,线性规划 问题无可行解;
如果目标函数等值线可以无限制地在可行域内向改善 的方向移动,线性规划问题无界;
线性规划解决最优化问题的数学方法

线性规划解决最优化问题的数学方法线性规划是一种常见的数学方法,用来解决最优化问题。
它能够帮助我们在给定一组线性约束条件下,找到最优的目标函数值。
在实际应用中,线性规划方法被广泛用于制定优化决策、资源配置、生产计划等领域。
本文将介绍线性规划的基本概念、公式以及解决最优化问题的具体步骤。
一、线性规划的基本概念与公式线性规划的目标是在给定约束条件下,找到使目标函数(也称为优化函数)取得最大或最小值的解。
它包含三个基本要素:决策变量、约束条件和目标函数。
1. 决策变量:决策变量是问题中需要确定的变量,它们可以是实数、整数或布尔变量。
决策变量的取值范围和类型由问题的实际情况决定。
2. 约束条件:约束条件是对决策变量的限制条件,它们可以是线性等式或不等式。
约束条件用于描述问题的限制条件,例如资源约束、技术限制等。
3. 目标函数:目标函数是求解问题的目标,它可以是最小化或最大化一个线性函数。
目标函数的形式通常是关于决策变量的线性组合。
线性规划问题可以用如下的标准形式表示:最小化 Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束:x₁ ≥ 0, x₂ ≥ 0, ... , xₙ ≥ 0其中,Z为目标函数值,c₁, c₂, ... , cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ... , bₙ为约束条件的常数项,x₁, x₂, ... , xₙ为决策变量。
二、线性规划的解决步骤解决线性规划问题一般可以遵循以下步骤:1. 定义问题:明确问题的目标函数、约束条件和决策变量,并将其转化为标准形式。
2. 建立数学模型:根据问题的实际情况,根据标准形式建立数学模型,将问题转化为求解目标函数最大或最小值的数学问题。
线性规划知识点

线性规划知识点一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,如经济学、管理学、工程学等。
本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用案例。
二、基本概念1. 变量:线性规划中的变量是决策的对象,通常用x1、x2、...、xn表示。
2. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c1x1 + c2x2 + ... + cnxn。
3. 约束条件:线性规划的变量需要满足一系列线性约束条件,通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,...,am1x1 + am2x2 + ... + amnxn ≤ bm。
4. 非负约束:线性规划中的变量通常需要满足非负约束条件,即xi ≥ 0。
三、模型构建1. 目标函数的确定:根据问题的具体要求,确定最大化或最小化的目标函数。
2. 约束条件的确定:根据问题的限制条件,确定各个变量的线性约束条件。
3. 变量的非负约束:确定各个变量的非负约束条件。
四、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先画出目标函数的等高线图和约束条件的线性图形,然后找到使目标函数取得最大(最小)值的交点。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
该方法通过迭代计算,逐步找到使目标函数取得最大(最小)值的解。
3. 整数规划方法:当变量需要取整数值时,可以使用整数规划方法进行求解。
该方法通过将线性规划问题转化为整数规划问题,并应用相应的算法进行求解。
五、应用案例假设某公司生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为15元。
公司的生产能力限制为每天生产不超过100个单位的产品A和150个单位的产品B。
另外,公司还有两个约束条件:产品A的生产量不能超过产品B的两倍,产品B的生产量不能超过产品A的三倍。
问如何安排生产计划以最大化利润。
运筹学基础-线性规划(方法)

线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
线性规划化问题的简单解法

简单线性规划问题的几种简单解法依不拉音。
司马义(吐鲁番市三堡中学,838009)“简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。
简单的线性规划是指目标函数只含两个自变量的线性规划。
简单线性规划问题的标准型为:1112220(0)0(0),(),0(0)m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤⎧⎪++≥≤⎪∈=+⎨⎪⎪++≥≤⎩L约束条件 目标函数 ,下面介绍简单线性规划问题的几种简单解法。
1. 图解法第一步、画出约束条件表示的可行区域,这里有两种画可行区域的方法。
⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。
⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)表示的区域在直线Ax+By+C =0的上方;若B>0(<0),则不等式Ax+By+C <0(>0)表示的区域在直线Ax+By+C =0的下方。
(即若B 与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B 与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方)用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。
第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这个可以用下面的两种办法解决。
⑴y 轴上的截距法:若b >0,直线y a b x z b=-+所经过可行域上的点使其y 轴上的截距最大(最小)时,便是z 取得最大值(最小值)的点;若b <0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z 取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。
线性规划教案

线性规划教案一、引言线性规划是运筹学中的一种优化问题求解方法,它可以用来解决多种实际问题,如生产计划、资源分配、投资决策等。
本教案旨在介绍线性规划的基本概念、求解方法和应用案例,帮助学生理解和掌握线性规划的原理和应用。
二、教学目标1. 理解线性规划的基本概念,包括目标函数、约束条件、可行解等。
2. 掌握线性规划的求解方法,包括图形法、单纯形法等。
3. 能够应用线性规划解决实际问题,如生产计划、资源分配等。
4. 培养学生的逻辑思维能力和数学建模能力。
三、教学内容1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
1.2 约束条件:线性规划的决策变量需要满足一系列线性等式或不等式,称为约束条件。
1.3 可行解:满足所有约束条件的解称为可行解。
2. 线性规划的图形法2.1 二元线性规划的图形解法:通过绘制目标函数和约束条件的图形,确定最优解的方法。
2.2 三元或多元线性规划的图形解法:通过绘制等高线图,确定最优解的方法。
3. 线性规划的单纯形法3.1 单纯形表格法:通过构造单纯形表格,通过迭代计算找到最优解的方法。
3.2 单纯形法的基本步骤:初始化、选择主元、计算新的单纯形表格、迭代计算等。
4. 线性规划的应用案例4.1 生产计划问题:如何安排生产计划,使得利润最大化。
4.2 资源分配问题:如何合理分配资源,满足各项需求。
4.3 投资决策问题:如何选择最佳投资组合,最大化收益。
(可以根据实际情况增加或修改案例内容)四、教学方法1. 讲授法:通过讲解线性规划的基本概念和求解方法,帮助学生理解和掌握知识点。
2. 实例演示法:通过具体的应用案例,演示线性规划的解题过程,培养学生的应用能力。
3. 讨论互动法:引导学生参与讨论,思考问题,提高学生的思维能力和合作能力。
4. 练习和作业:布置练习和作业,巩固学生的知识和技能。
五、教学评估1. 课堂表现:观察学生在课堂上的学习态度、参与度和表达能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划的一般模型; 线性规划解的概念与理论; 线性规划的求解方法; 线性规划的软件求解方法; 线性规划的应用案例分析。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
2
一、线性规划的一般模型
1. 问题的提出
设某企业现有 m 种资源 Ai (i 1, 2, , m) 用于生产
现在要解决的问题: (1)如何求出第一个基可行解? (2)如何判断基可行解是否为最优解? (3)如何由一个基可行解过渡到另一个基可行解?
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
11
三、线性规划的求解方法
2、线性规划的MATLAB求解
j 1
n
决策变量所受的约束条件为 max z c j x j
n
aij x j bi
(i 1, 2,
j1
x
j
0
( j 1, 2,
, n)
, m)
j 1
s.t.
n j 1
aij
xj
ቤተ መጻሕፍቲ ባይዱ
bi (i
1,2,, m)
称之为问题的约束条件。
x j 0 ( j 1,2,, n)
2020/8/12
基向量与非基向量:如果基为 B (aij )mm (P1, P2 ,, Pm ) ,
则称向量 Pj (a1j ,a2 j ,,amj)T ( j 1,2,,m) 为基向量,其它称
为非基向量;
基变量与非基变量:与基向量对应的决策变量
x j ( j 1,2,, m) 称为基变量,其它的变量称为非基变量。
c2
cn
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
3
一、线性规划的一般模型
1. 问题的提出
建立数学模型:设产品 B j 产量为 x j ( j 1,2,, n) ,称之
为决策变量,所得的利润为 z ,则要解决的问题的目标是使得(利
n
润)函数 z c j x j 有最大值,称为目标函数。
0
A (aij ) mn 为 系 数 矩 阵 ;
Pj (a1j , a2 j ,, amj )T ( j 1,2,, n)
为约束方程组的系数向量。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
5
一、线性规划的一般模型
3 .线性规划模型的标准型
标准型: max z C X
max (min) z C X
数学建模方法及其应用(3)-- 韩中庚
4
一、线性规划的一般模型
2 .线性规划模型的一般形式
分量形式:
向量形式
n
max (min) z c j x j j 1
n
aij x j (, )bi (i 1,2,, m)
s.t. j1
max (min) z C X
s.t.
n
Pj x j
(, )b
(2)如果线性规划问题的可行域有无界,则问题可 能无最优解;若有最优解也一定在可行域的某个顶
点上达到。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
10
三、线性规划的求解方法
1、单纯形法的基本思想
寻求问题的一个基可行解(即可行域的顶点);检 查该基可行解是否为最优解;如果不是,则设法再 求另一个没有检查过的基可行解,如此进行下去,直到 得到某一个基可行解为最优解为止。
A X b
A X (, )b
s.t.
X
0
s.t.
X
0
标
准
(1)最小化问题:令 z z ,则 maxz min z C X ;
化
(2)约束条件为不等式:对不等号“ () ”的约束
方 条件,则在“ () ”的左端加上(或减去)一个非负变 法 量(称为松弛变量)使其变为等式。 : ( 3 ) 对 无 约 束 的 变 量 : 如 x (,) , 则 令
2 、线性规划解的基本理论
定理 1 如果线性规划问题存在可行解,则其可行域
n
D X Pj x j b, x j 0 是凸集。
j1
定理 2 线性规划问题的任一个基可行解 X 必对应于
可行域 D 的一个顶点。
定理3 (1)如果线性规划问题的可行域有界, 则问题的最优解一定在可行域的顶点上达到。
x x x ,使得 x, x 0 ,代入模型即可。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
6
二、线性规划解的概念与理论
1 .线性规划解的概念
(1)解:
max (min) z C X
s.t.
A X (, )b
X
0
可行解:满足约束条件的解 X (x1, x2 ,, xn )T ;
j1
X
0
x j 0 ( j 1,2,, n)
矩阵形式
max (min) z C X
C (c1, c2 ,, cn ) 为 系 数 向 量 ; X (x1 , x2 ,, xn )T 为决策向量; b (b1 , b2 ,, bm )T 为常数向量;
A X (, )b
s.t.
X
可行域:可行解的全体构成的集合,记为 D ;
最优解:使目标函数达到最大的可行解。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
7
1. 线性规划解的概念
(2)基
基:设系数矩阵 A (aij )mn 的秩为 m ,则称 A 的某个 m m 阶非奇异子矩阵 B( B 0) 为线性规划问题的一个基。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
8
1. 线性规划解的概念
(3)基解:设问题的基为
max z C X
B (aij )mm (P1 , P2 ,, Pm )
将约束方程组变为
s.t.
n
Pj x j b
j 1
m
n
Pj x j b Pj x j
X
0
j 1
j m 1
n 种产品 Bj ( j 1, 2, , n) ,
每种资源的拥有量 和每种产品所消耗
产品 资源
B1
A1
a11
的资源量,以及单 位产品的利润如下 表,试问如何安排 生产计划使得该企
A2
a 21
Am
a m1
利润
c1
业获利最大?
B2 Bn 总 量
a12
a1 n
b1
a 22
a2 n
b2
am2
a mn
bm
令 x j 0( j m 1,, n) , 则 称 解 向 量
X (x1, x2 ,, xm ,0,,0)T 为问题的基解。
(4)基可行解:满足非负约束条件的基解称为基
可行解。
(5)可行基:对应于基可行解的基称为可行基。
2020/8/12
数学建模方法及其应用(3)-- 韩中庚
9
二、线性规划解的概念与理论