线性规划问题的求解方法

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,很多问题都可以归结为线性规划问题,例如资源分配、生产计划、运输调度等。

下面我们将通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法1、图解法对于只有两个决策变量的线性规划问题,可以使用图解法来求解。

其步骤如下:(1)画出约束条件所对应的可行域。

(2)画出目标函数的等值线。

(3)根据目标函数的优化方向,平移等值线,找出最优解所在的顶点。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10\\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件所对应的可行域:对于$x + 2y \leq 8$,当$x = 0$时,$y = 4$;当$y = 0$时,$x =8$,连接这两点得到直线$x +2y =8$,并取直线下方的区域。

线性规划问题的单纯形法求解步骤

线性规划问题的单纯形法求解步骤

线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。

我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。

1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。

我们将问题转换成数学模型,然后使用数学方法进行求解。

线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。

其中c表示目标函数,A和b表示约束条件。

2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。

但是,在开始优化前我们需要先找到一个基可行解。

基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。

当基可行解找到后,我们就可以开始进行优化。

3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。

进入变量是指,通过操作非基变量可以使得目标函数增加的变量。

我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。

4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。

离开变量是指,通过操作基变量可以使得目标函数增加的变量。

我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。

这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。

5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。

此时,我们将进入变量转变为基变量,离开变量转变为非基变量。

通过这种交换,我们还需要调整我们的基向量。

由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。

6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。

重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。

这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。

线性规划问题求解的基本方法

线性规划问题求解的基本方法

线性规划问题求解的基本方法线性规划是一种重要的数学方法,可用来解决许多实际问题。

它的核心是寻找目标函数下的最优解,同时满足一组线性等式或不等式约束条件。

在实际应用中,我们通常使用线性规划求解器来解决这些问题。

本文将介绍线性规划问题求解的基本方法。

一、线性规划问题的标准形式线性规划问题可以写成如下的标准形式:$$ \begin{aligned} &\text{最小化} \quad \mathbf{c}^T \mathbf{x} \\ &\text{满足} \quad A \mathbf{x} = \mathbf{b}, \mathbf{x} \geq\mathbf{0} \end{aligned} $$其中,$ \mathbf{x} \in \mathbb{R}^n $ 是一个 $ n $ 维向量,$ \mathbf{c} \in \mathbb{R}^n $ 是目标函数的系数向量,$ A \in\mathbb{R}^{m \times n} $ 是约束条件矩阵,$ \mathbf{b} \in\mathbb{R}^m $ 是约束条件的右侧向量。

二、线性规划问题的求解方法1. 单纯形法单纯形法是求解线性规划问题最常用的方法,基本思想是不断循环迭代,利用基变量与非基变量的互换来寻找可行解,并逐步靠近最优解。

具体步骤如下:(1)将标准形式化为相应的单纯形表。

(2)从单纯形表的行中选择一个入基变量,使目标函数值减小。

(3)从入基变量所在列中选择一个出基变量。

(4)用入基变量和出基变量生成一个新的单纯形表。

(5)重复上述步骤直到达到最优解。

单纯形法的优点在于可以找到最优解,但当变量数量增多时,计算时间随之增加。

因此,对于大规模问题来说,单纯形法可能不是最优的求解方法。

2. 内点法内点法是一种比单纯形法更高效的求解线性规划问题的方法。

它选取一个内点作为初始点,逐步靠近最优解。

具体步骤如下:(1)选取一个内点作为初始点。

线性规划的定义及解题方法

线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。

它的实际应用十分广泛,例如管理学、经济学、物流学等领域。

线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。

本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。

一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。

它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。

通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。

在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。

这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。

例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。

这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。

二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。

决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。

2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。

3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。

例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。

4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。

它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。

本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。

二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。

其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。

三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。

2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。

3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。

4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。

5. 分析最优解:对最优解进行解释和分析,得出结论。

四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。

例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。

通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。

2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。

例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。

通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。

3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。

通过构建单纯形表,利用迭代计算的方法求解最优解。

例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。

线性规划问题的两种求解方式

线性规划问题的两种求解方式

线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。

线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。

⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。

解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。

在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。

⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。

从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。

以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。

例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。

每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。

问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。

线性规划的求解算法

线性规划的求解算法

线性规划的求解算法 线性规划(linear programming )是运筹学中的一个重要分支,在现代工业、农业、商业、交通运输、国防军事及经济管理等诸多领域都有着广泛重要的应用。

在数学系的竞赛数学建模中,也多次应用线性规划来建模从而解决实际问题。

在这里介绍单纯性法和对偶单纯形法两种求解线性规划的方法。

一、单纯形法算法主体思想标准线性规划简记如下:LP-max LP-mins.t {0Ax b x =≥ s.t {0Ax b x =≥ 这里只以LP-min 为例。

1、算法思想单纯形法是在已知一个可行基的前提下采用的解决线性规划的算法。

步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。

用R (i )记录单位矩阵I 中元素1的位置。

(2)求{}0min |0,1j j a j n t >≤≤@若t 不存在,则得到最优解;(i),1R i n x a += (i=1,2,...m ).其他j x =0,停。

否则,转到(3)。

(3)求,1min{|0,1}i n it it a a i m a λ+>≤≤@。

若λ不存在,则LP-min 无下届,所以无最优解,停;否则,求,1min (i)|,0,1(s)i n it it a R a i m R a λ+⎧⎫=>≤≤⎨⎬⎩⎭@,转到(4)。

(4)sjsj sta a a ⇐,(j=1,2....n+1) ij ij sj it a a a a ⇐-,(i=0,1,2...m;i ≠s;j=1,2,....,n+1), (s)t R ⇐,转到(2).二、对偶单纯形法对偶单纯形法是在已知一个正则基的条件下的求解线性规划的方法。

步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。

线性规划问题的解法与应用

线性规划问题的解法与应用

线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。

其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。

解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。

本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。

一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。

普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。

具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。

因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。

普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。

然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。

二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。

与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。

首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。

然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。

双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。

尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。

三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。

相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。

具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。

这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。

除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[x,fval]=linprog(f,A,b,Aeq,beq,LB,UB)
注:这里x、b不要求非负
例3.1
max S 3x1 x2 s.t. x1 2 x2 8 x1 6 x 0, i 1, 2 i
例3.2
max S 80 x1 45 x2 s.t. 20 x1 5 x2 400 15 x1 10 x2 450 x 0, i 1, 2 i
注:x,b不要求非负
格式为:x=linprog(f,A,b,Aeq,beq) [x,fval]=linprog(f,A,b,Aeq,beq)
3.求解线性规划问题
min S f * X s.t. AX b AeqX beq LB X UB
格式为:x=linprog(f,A,b,Aeq,beq,LB,UB)
例3 max=8*x+5*y+4*z; x+y+z<=9; 8*x+5*y+4*z<=45; x<=1; y<=5; z<=5; @gin(x); @gin(y); @gin(z); 例4 model: max=5*x1+7*x2; x1+x2<=20; 3*x1+7*x2<=80; end
例5 model: max=3*x1+2*x2; 2*x1+3*x2<=14; 2*x1+x2<9; @gin(x1); @gin(x2); end 例6 model: max=x1+x2; 3*x1+2*x2+x3<=10; 2*x2+x4<=5; @gin(x1); @gin(x2); end
s.t.
P75 T2(6)
min S x1 3x2 x3 2 x1 x2 x3 8 2 x x 2 1 2 x1 2 x2 xi 0, i 1, 2,3
s.t.
P75 T2(10)
min S 2 x1 x2 x3 x4 2 x1 x2 3x3 x4 6 x x 2x x 2 1 2 3 4 x1 x2 x3 x4 7 xi 0, i 1, 2,3, 4
s.t.
二、利用LINGO软件求解
1. max或min后面跟着等号=; 2. 不区分大小写字母,变量必须以字母开头; 3. 模型中已经假设所有的变量非负; 4. 变量可以放在约束条件的右边,数字可在左边; 5. 每个语句都以分号“ ;”结尾; 6. 以感叹号“ !”开始的是说明语句。 例1 max=3*x1+2*x2; x1+2*x2<=200; 3*x1+x2<=240; 例2 min=4*x+9*y; 9*x+7*y>=56; 7*x+20*y>=70;
model: !线性规划运输问题p169例子; sets: supply/1..5/:gy; demond/1..6/:xq; link(supply,demond):c,x; endsets data: c=30 28 3 10 25 18 27 4 11 2 17 9 5 12 1 22 8 16 13 21 19 15 23 7 20 14 29 26 6 24; gy=10 15 25 40 10; xq=9 17 22 33 14 5; enddata [obj] min=@sum(link:c*x); @for(supply(i):[supply_con] @sum(demond(j):x(i,j))=gy(i)); @for(demond(j):[demond_con] @sum(supply(i):x(i,j))=xq(j)); end
例3.6
max S 3 x1 x2 2 x3 4 2 x1 x2 x3 x x x 6 1 2 3 x4 2 x1 3 x 2 x3 10 1 xi 0, i 1, 2,3, 4
s.t.
P75 T2(5)
min S 3x1 2 x2 x3 2 x1 x2 x3 5 4 x 3x x 3 1 2 3 x1 x2 x3 2 xi 0, i 1, 2,3
例3.3
max S 2 x1 3x2 2 x3 x4 s.t. x1 2 x2 3x3 2 x4 5 x1 x2 2 x3 x4 10 x 0, i 1, 2,3, 4 i
例3.5
max S 6 x1 3x2 x3 s.t. x1 x2 2 x3 1 2 x1 x2 2 x3 3 x 0, i 1, 2,3 i
一、利用MATLAB软件中的linprog 命令求解
min S 1.求解线性规划问题 格式为:x=linprog(f,A,b)
2.求解线性规划问题
f * X s.t. AX b
[x,fval]=linprog(f,A,b)
min S f * X s.t. AX b AeqX beq
例7 !线性规划运输问题p169例子; model: sets: supply/1..5/:gy; demond/1..6/:xq; link(supply,demond):c,x; endsets data: c=30 28 3 10 25 18 27 4 11 2 17 9 5 12 1 22 8 16 13 21 19 15 23 7 20 14 29 26 6 24; gy=10 15 25 40 10; xq=9 17 22 33 14 5; enddata [obj] min=@sum(link:c*x); @for(supply(i):[supply_con] @sum(demond(j):x(i,j))=gy(i);); @for(demond(j):[demond_con] @sum(supply(i):x(i,j))=xq(j);); end
相关文档
最新文档