流体力学 难点分析

流体力学  难点分析
流体力学  难点分析

粘性切应力的计算

粘性切应力的计算常常很复杂。如果流体作一元运动,速度不太大,粘性系数比较大,

边界条件简单,则其速度分布可视为线性变化,这样由式就容易算出。例如,图(a)表示间隙为δ的两个同心圆柱体,外筒固定,内筒以角速度ω旋转。内柱表面的粘

性切应力为。图(b)表示两个同轴圆柱体,间隙为δ,内筒以速度U沿轴线

方向运动,内筒表面的粘性切应力为。

表面张力的计算

在一般工程实际问题中通常不考虑表面张力。但如果涉及到流体计量、物理化学变化等问题,则表面张力通常要加以考虑。

(1)空气中的液滴

如果不考虑重力影响,液体内部压强为常数,由式

可知

又根据对称性知,两个曲率半径相等,这时液滴必为球体,内外压强差为

如果考虑重力影响,则液滴不再是球体,越靠近下方,液滴的曲率半径越小。

(2)液体气泡

液体气泡有内表面和外表面,其半径分别为R1和R2,如图1所示。气泡内气体压强为p,外部空气压强为p0,液体的压强为p1,对于内表面和外表面分别应用式

有:

液膜很薄,内外半径可视为相等,即R1=R2=R,上面两式相加,得

上式也可以这样推证:过球心作一切面将液体球膜分成两部分。对于其中一个半球面,压强差p-p0产生的压力应等于张力,而张力在内外表面均存在,于是:

化简后就得到上式。

(3)毛细液柱

将一根细管插入液体中,由于表面张力的影响,管内液柱将上升h,如图2所示。设液柱表面最低处的液体压强为p,外部大气压强为p0,则

由流体静力学知

因此,毛细液体上升的高度为

(4)铅直固壁上的液面

如图所示,表面张力将使液面弯曲,其爬升的最大高度为h。在弯曲液面上的任一点应用式

有:

式中,R是该点的曲率半径,

设该点得高度为y,则

因此,

,它具有长度的量纲。上式化为

两边同乘,则有

因此

(*),

因此C=1

所以爬升高度为

如果要求液面形状,则可将式(*)变成

为积分上式,作变量代换:

其积分结果为

因此,积分常数x0是

连通器内不同液体的压强传递

公式:

只适用于同一种液体,如果连通器里有若干种液体,则要注意不同液体之间的压强传递关系。

例如,计算如图所示的容器里面液体表面的压强

平面的压力中心

如图(a)所示,挡水平板伸至水面,如果被淹部分的板长为L,则压力中心距板底L/3。但如果平板淹没在水下,如图(b)所示,则压力中心到板底距离并不是L/3。压力中心的坐标可按下式计算:

面积惯性矩可查表,计算一般较为复杂。求压力中心的目的是求合力矩,如果用积分

法,计算往往还简便些。例如,求图(b)中的提升平板闸门所需的力T时,可按下面方法计算:

复杂曲面的压力体

压力体是物面与液面的延伸面所围的空间体积,压力体内不一定有液体。正确的识别压力体,可以使铅直方向的总压力的计算得到简化。

对于复杂物面,压力体应分段计算。总压力在铅直方向的投影值,以朝上为正,朝下为负。例如,对于如图所示的复杂曲面,有:

旋转容器内液体的相对静止

液体随容器作等角速度旋转时,压强分布及自由面的方程式为

恰当地选取坐标原点,可以使上述表达式简化。

解题时,常常用到高等数学的这样一个定理:抛物线所围的体积等于同高圆柱体体积的一半。证明如下:

设抛物线方程为:

当r=R时,z=H,即,如图所示。

式中,正是同高圆柱体的体积。

牛顿迭代法

在实际问题中,常常要求方程式f(x)=0的根。如果是一元二次方程,则可直接利用求根公式。如果是超越方程,则它的解析解很难,甚至不可能求得,这时可使用迭代法,迭代法有很多种,这里介绍一种收敛较快的牛顿迭代法。

如下图表示一条曲线y=f(x),现求该曲线与x轴的交点,即f(x)=0的解。设(x0,y0)是曲线上的一个点,y0=f(x0),如果∣y0∣比较小,则x0可视为方程f(x)=0的一个近似解。为了求出精度较高的解,可以过点(x0,y0)作曲线的切线,显然,该切线的斜率是f′(x0),设这条切线与x轴交于点(x,0),则

显然,x是方程f(x)的一个比x0更精确的根,重复以上计算就得到精度很高的根。这种求根的方法称为牛顿迭代法。

伯努利方程

①伯努利方程的两种形式

伯努利方程有两种形式:沿流线的伯努利方程,用于求某点的速度;过流断面的所谓总流的伯努利方程,用于求断面的平均速度。

②伯努利方程中的压强

伯努利方程中的压强可以是绝对压强,也可以是相对压强。

③缓变流

在管流中,如果某处的流线平直,流线的曲率半径很大,则该处的流动称为缓变流。缓变流有一个特点:沿流线法向,位置水头与压强水头之和是一个常数。

在总流的两个截面上应用伯努利方程时,这两个截面必须处在缓变流中。此时,

可以在截面上任意一点取值,对于管流,常在管轴线上取值。

如图(a)表示孔口出流,应用总流的伯努利方程时,应选择水面0-0和射流最小截面1-1进行有关计算。对于图(b)所示的闸下出流,截面0-0应在闸门上游足够远处,因为闸门上游近处属急变流。

动量方程

①动量方程的投影式

动量方程式是矢量式,使用时应选择一个适宜的坐标系,并写出动量方程的分量式。

②动量方程与其它方程的联立

用动量方程求解实际问题时,未知数比较多,要联立连续性方程和伯努利方程,问题才能得以求解。

③控制面上的压力计算

应用动量方程的一个重要目的,就是求解为固定某一物体所需的外力,为此,控制面上的压强必须使用相对压强

如图(a)所示,平面水流射向一块垂直放置的平板,忽略重力作用,试求为固定平板所需的外力F。

先分析平板受力,如图(b):左方受动水压强p,右方受大气压强p a,平板面积为A,固定平板所需的外力为

取图(c)所示的控制体,它与平板接触的面积A的压强为p,其它控制面上的压强为大气压强p a,面积A上的压强p分解为相对压强p-p a和大气压强p a。由于控制面(封闭面)上压强的合力为零,因此控制面上的力实际上只有(p-p a)A,这个力的大小正好就是固定平板所需的外力F。对于控制体,动量方程为

在计算控制面压力的时候,考虑了面A1、A2的压强,不过这两个面上的相对压强都是零。

动量矩方程

公式

表示定常运动的动量矩方程。

对于图(a)所示的水泵叶轮,控制面可选择内轮和外轮,由于叶片的存在,我们观察到的控制面上的速度与时间有关,但动量矩与时间无关,属定常问题。对于图(b)所示的洒水器,控制面如图中虚线所示,控制面上的速度分布与时间有关,但动量矩与时间无关。

∏定理中基本物理量的选择

基本物理量的选择是量纲分析的关键问题之一,其要求是3个基本物理量的量纲要相互独立。

设基本物理量为U1、U2、U3,它们均为有量纲的物理量,选定[L]、[T]、[M]为基本量纲,写出U1、U2、U3的量纲关系式。

要使U1、U2、U3的量纲相互独立,则要求指数行列式

例如,若U1、U2、U3分别表示长度、速度、加速度时,有

则长度、速度、加速度三者在量纲上是不独立的。

若U1、U2、U3分别表示长度、时间、质量时,有

则长度、时间、质量三者在量纲上是独立的。

沿程损失系数的计算

在计算管流沿程水头损失时,要求出λ的值。已知管流的雷诺数Re和相对粗糙度Δ/d求λ的方法有两种。一种是在莫迪图上用插值法求得,精度较差;另一种是用经验公式。在实用中,常使用柯列勃洛克公式,该公式对光滑区、过渡粗糙区和粗糙区均适用。事实上,莫迪图就是根据该公式的计算结果绘制出来的。柯列勃洛克公式是一个隐式,即

当已知Re和Δ/d求λ时,可使用牛顿迭代法。

令:

,,

超越方程

其解可用牛顿迭代法求出:

式中

工业管道的沿程损失系数的值约为λ=0.02~0.03,计算时可选取λ=0.03作为初值,几次迭代后就可以得到精度极高的值。

泄漏管路的沿程水头损失

如图所示的一泄漏管路,管段长为l,入口流量为Q0,出口流量为Q1,管壁有孔隙,沿程有流体漏出,设单位长度上泄漏流量为q,则

容易算得距离入口为x处的截面上的流量为

在管流微段dx上,沿程水头损失为

式中,A是管流截面积。由于Q(x)沿程变化,总的水头损失用积分求得。设λ沿程不变,则

并联管路

如果在主干管的两个节点之间并列地连接几条管道,这样的管路称为并联管路,如图(a)所示。

并联管路通常不计及局部水头损失,计算中按长管处理。

在图(b)中,主干管的节点A,B之间出现三管并联的管路。这种并联管路的水力特征

是:管1,2,3的水头损失相等,它们都等于节点A,B的压强水头的差值,而三条管道的

流量的和等于主干管的流量,即

对于图(b)中的管路,有

管网的水力计算

由若干条管道组成的闭合环路称为管网。如果已知各管的参数,求各管的流量,则这种就算称为管网的水力计算。

如图所示的是一种最简单的管网,显然,

现在我们规定环路的方向为逆时针方向,

管1,2的流动方向与环路方向一致,而管

3,4的流动方向与环路方向相反。

上式可改写为

即环路上各管的水头损失的代数和等于零。各管的水头损失由正、负之分。如果流动方向与环路方向一致,则h f为正,反之为负。这样,一条管道的沿程水头损失可表示为

式中

显然,h f与V同号。若h f为正,则流速V与环路方向同向,若h f为负,则流速与环路方向反向。

如果各管道的流量Q i是精确解,则环路上的总水头损失等于零,这称为环路闭合条件,即

实际上各管流量是未知的,用上式不能直接解出,这是可使用迭代法,其步骤如下:

①根据各节点的连续性条件,估算各管的流量。

对于图中所示的各节点,连续性方程是

此处规定流出节点的流量为正值,流入节点的流量为负值。作为初值,可设各管的流量的绝对值均为0.5Q。

②初设的Q i 不满足闭合条件,应作修正。设各管均增加一个微量修正值△Q 。修正后的流量Q i +△Q 满足闭合条件,即

这里我们略去了二阶微量,由上式得到修正值:

经若干次修正后,可选用适当的参考量K 0、Q 0,将算式无量纲化,即

收 缩 喷 管 的 计 算

如果不考虑热交换和摩擦损失,喷管的流动属于等熵流动。等熵流动的公式很多,但需要背记的公式只有少数几个。现以收缩喷管的质量流量Q=ρu A 的计算为例加以说明。

设气流的滞止参数为p 0、T 0,收缩喷管出口截面积为A ,出口外面的环境压强(背压)p e 已知,求喷管的质量流量,计算步骤为

①计算临界压强

,如果

,则喷管出口压强p =p e 。

②由等熵关系求出口温度和密度:

③求出口温度计算出口速度:

④按计算质量流量。

另外,如果

,则喷管出口压强,质量流量按计算。

拉伐尔喷管的计算

拉伐尔喷管的计算与收缩喷管的计算相似。但要注意,拉伐尔喷管的出口压强总是与背压相等的。

,则喉部达临界状态,质量流量按计算。

如果出口压强

如果出口压强

,则整个拉伐尔喷管内出现的都是亚音速流。质量流量

的计算与上述的收缩喷管的计算方法相同。

滞止状态和临界状态

气流的滞止状态是指速度为零的地方的热力学状态,参数用下标0表示:

,。

滞止参数是描述可压缩流的一个参数,在实际流动中可能出现,也可能不出现。滞止参数的物理意义是:如果用一根小管将某点的气流等熵的引至一个容器中,则容器内的压强、温度就是气流中该点的滞止压强p0和滞止温度T0。

临界状态是指速度u和当地音速c相等的那点的热力学状态,参数用下标*号表示:

,。

临界参数的物理意义与滞止参数的物理意义类似。

滞止参数与临界参数都是描述可压缩流的参数,其关系式为:

拉伐尔喷管内的正激波

气体在拉伐尔喷管作等熵流动时,出口压强的解由两个值,大值对应于亚音速等熵流动,小值对应于超音速等熵流动。如果出口压强介于这二者之间,则在扩散管内将发生激波,如图所示。

发生激波时,激波上下游都是等熵流,但从Ma1变到Ma2时是突变过程,即在激波上游,Ma<1。喉部的Ma*=1和激波前的Ma1满足等熵关系,Ma1和Ma2满足激波关系,Ma2变到Ma3也满足等熵关系。整个流动过程是绝热过程,如果流动过程是绝热过程,如果波前总温是T01,波后总温是T02,则有T01=T02。

由速度势求流函数

设有速度分布u=x-4y,v= -4x-y。显然这个速度场满足不可压缩流体的连续

性方程和无旋条件,因此存在速度势和流函数。下面用两种方法求解

(1)待定函数法

因为

所以

用同样方法还可以得到

(2)复位势法

当然,只有

都存在时才能用这种方法。

求速度环量及流量的简便方法

(1)封闭线的流量

根据流体不可压缩原理,如果封闭线所围区域既无点源也无点汇,则该封闭线上的流量必然为零;如果该区域有一个点源Q1,有一个点汇Q2,则该封闭线的流量是Q1-Q2;如果该区域内有若干个点源和点汇,则通过该封闭线的流量等于这些点源强度之和减去这些点汇强度之和。

(2)封闭线的速度环量

流体力学的应用

重庆理工大学 关于流体力学应用的论文 重庆理工大学 2012年03月01日

流体力学的应用 【摘要】 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 【关键词】流体力学流体阻力牛顿流体涡流 【正文】 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学在生产生活中的应用很广泛,例如航空航天航海技术、

水利工程、环境保护以及生活中很多不起眼的小物件也利用了流体力学的基础知识。 例如生活中常见的高尔夫球,高尔夫球运动起源于15世纪的苏格兰,不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。 一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5,相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

大学工程流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室二○○六年静水压强实验1.同一静止液体内的测压管水头线是根什么线?测压管水头指z p ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当p B 0 时,试根据记录数据,确定水箱内的真空区域。 p B 0 ,相应容器的真空区域包括以下三个部分: (1)过测压管2 液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而 言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管 4 中,该平面以上的水体亦为真 空区域。 (3)在测压管5 中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4 液面高于小水杯液面高度相等。3.若再备一根直尺,试采用另外最简便的方法测定0 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5 油水界面至水面和油水界面至油面的垂直高度h和h0 ,由式w h w 0h0 ,从而求得0 。4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体容量;d 为测压管的内径;h 为毛细升高。常温的水, 0.073N m ,0.0098N m3。水与玻璃的浸润角很小,可以认为cos 1.0。 于是有 h 29.7 d (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10 mm时,毛细影响可略而不计。另外,当水质 不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角较大,其h 较普通玻璃管小。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5 及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2 及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5 个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5 与水箱之间不符合条件(4),相对管5 和水箱中的液体而言,该水平面不是水平面。

我对流体力学的认识

我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体

力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 流体力学的研究方法 进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 现场观测是对自然界固有的流动现象或已有工程的全尺寸流动

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

国内外流体力学研究机构

国内外流体力学研究机构 分类:标签:字号大中小订阅 .北京航空航天大学流体力学研究所 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 . 美国布朗大学流体机械研究中心 了解流体机械的诸多方面 .美国公司技术服务中心 美国一个著名的计算流体服务机构,解决计算和工程问题的专家 .英国大学研究中心 主要介绍的在各个领域的应用。 .欧洲流体湍流及燃烧研究协会(, ) 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 .美国国家航空和宇宙航行局 的各项动态和进展,信息很多。 . 加拿大计算流体力学学会( ) 介绍计算流体力学的进展和应用 . 免费软件下载中心( ) 免费软件下载() . 美国普林斯顿大学空气动力学实验室( ) 进行流体力学的前沿研究 . 澳大利亚大学湍流研究所( ) 进行湍流的理论和实验研究及应用 . 美国大学超音速中心( )

介绍超音速材料,实验测量及超音速的计算 . 美国流体动力学研究中心( () ) 流体力学研究中心 . 美国大学流体力学研究实验中心(教授领导)( ) 主要研究涡,湍流和分离流动及其应用 . 荷兰科技大学流体力学实验室( ) 流体力学和热传导的科研和教育机构,主要研究涡,湍流及空气动力学 . 美国公司() 研究流体力学,热力学,自动控制和测量设备的工业公司研究领域包括,实验,理论及流体机械设备 .瑞士机械及机械处理工程能源系统试验室( , , ) 内容:研究建筑物内的空气流动,燃烧,能源和环境问题。 .瑞士机械及机械处理工程涡轮机械试验室( , , ) 提供研究及人员信息的摘要。 .瑞士机械工程压力机械及流体力学实验室(, , ) 介绍流体力学实验室()在方面的工作。 .瑞士机械及机械处理工程实验室( , ) 流体力学,能源系统,燃烧,涡轮机械等。 .英国大学航空学院计算中心, , 算法研究,类牛顿方法,加速收敛,跨音速激波控制,高超音速加热,激波边界层干扰,湍流模型,超音速涡流等。 提供,超级计算机或高性能机的计算软件 .美国航空软件开发公司( )

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

流体力学问答题

第一章流体及其物理性质 1.试述流体的定义,以及它与固体的区别。 2.与气体有哪些共同的特性?它们各有什么不同的特性?试分别举例说明,在空气和水中相同与不同的一些流体力学现象。 3.何谓连续介质?引入连续介质模型的目的意义何在? 4.流体的密度、比容以及相对密度之间有何关系?这三者的单位如何? 5.流体的压缩性与膨胀性可以用哪些参量来描述? 6.完全气体的状态方程是什么?请说明方程中每一个参量的意义。 7.何谓不可压缩流体?在什么情况下可以忽略流体的压缩性? 8.何谓流体的粘性?流体的粘度与流体的压强和温度的关系如何? 9.流体的粘性力与固体的摩擦力有何本质区别? 10.试述牛顿内摩擦定律,根据此定律说明,当实际流体处于静止或相对静止状态时,是否存在切向应力?11.何谓理想流体?引入理想流体模型的意义何在? 12.试述表面张力的定义,及其产生表面张力的机理。 13.何谓附着力,何谓内聚力?试分析水和水银在毛细管中上升或下降的现象。 14.作用在流体上的力可以分为哪两种? 第二章流体静力学 1.试述流体静压强的两个重要特性。 2.静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么? 3.何谓流体的平衡状态与相对平衡状态?它们对应的平衡微分方程有何相同之处与不同之处? 4.试写出欧拉平衡微分方程式,叙述该方程的适用范围以及方程中每一项的物理意义。 5.何谓质量力有势?试写出重力的势函数。 6.不可压缩流体处于平衡状态时,对作用在它上面的质量力有什么要求? 7.试写出静止流体的压强差公式,并叙述其物理意义,此公式对于相对静止流体是否适用? 8.试写出静止流体的等压面的微分方程式,此方程式对于相对静止流体是否适用? 9.试述等压面的重要性质。 10.流体静力学的基本方程式的物理意义和几何意义各是什么? 11.何谓绝对压强、计示压强与真空?它们之间有何关系? 12.静压强的计量单位有哪几种?它们的换算关系如何? 13.在一U型管中,盛有两种不相溶的、不同密度的液体,试问,在同一水平面上的液体压强是否相同?为什么? 14.叙述帕斯卡原理,试举例说明它在工程中的应用。 15.相对平衡液体的静压强分布规律,是否满足静力学基本方程?为什么? 16.液体随所在圆柱形容器,绕轴作等角速度旋转后,液面将发生怎样的变化?它与旋转角速度有什么关系?变化后液面各点的静压强是否相同?为什么? 17.相对平衡的液体的等压面形状与什么因素有关? 18.试写出静止液体作用在平面上和曲面上的总压力计算公式。 19.一般情况下,平面图形的压力中心D为什么总在其形心C的下方?在什么情况下,这两者重合。20.何谓压力体?压力体由哪些面围成的?

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

中空纤维膜接触器的计算流体力学模拟

中空纤维膜接触器的计算流体力学模拟 杨毅,王保国× (清华大学化学工程系,北京 100084) 摘要:本文利用随机顺序添加算法(Random Sequential Addition, RSA)建立中空纤维膜组件壳层三维几何模型,研究膜组件壳层复杂结构条件下的流体力学特征,进行组件壳层流动的数值模拟。结果表明,高雷诺数有利于组件壳层传质。较低的填充密度下,组件壳层对流作用明显,有利于减少死区,充分利用膜接触面积。另一方面,增加填充密度有利于提高相际接触面积,但会降低对流在传质中的作用,并造成成本的提高和膜丝表面积的浪费。 关键词:计算流体力学;中空纤维膜接触器;传质;填充密度 中图分类号:TQ028.8 文献标识码:A 文章编号: 引言 中空纤维膜组件壳层的复杂几何特征给研究其中的流体流动造成了很大困难。然而,液体在膜组件壳层的流动状态对组件的分离性能具有直接的影响,对其的定量描述是组件及相关过程设计的重要步骤。目前定量描述中空纤维膜组件的分离性能主要有数学模型和经验关联式两种方法。前者利用的数学模型大致可分为四类,即I. 只考虑单根膜丝及其内部(管层)流场分布的模型[1-5] II. 只考虑单根膜丝并考虑其内侧和外侧(管层和壳层)流场分布的模型[6] III. 考虑膜丝规则分布的膜组件的壳层流场分布的模型[7,8];IV. 考虑膜丝随机分布的膜组件的壳层流场分布的模型[9-12]。数学模型法大多基于简化的几何特征及流动状态假设,无法体现壳层的沟流、死区以及湍流等重要因素对组件分离性能的影响。另一种研究思路是建立特定类型膜组件的经验关联式。然而就膜组件的几何特征而言,文献中存在的关联式适用范围较小,对其应用造成很大的局限[13]。 计算流体力学可以很好地解决上述方法研究壳层流动时遇到的问题。但是,由于能够体现中空纤维膜组件壳层复杂结构特征的三维几何模型的建立较为困难,尚无利用计算流体力学方法研究膜组件壳层流动的报道。本文利用随机顺序添加(RSA)算法在Gambit软件中建立中空纤维膜接触器的三维几何模型,并着重研究膜丝填充密度对组件分离性能的影响。1 数学模型 1.1几何模型 本文采用RSA算法在三维建模软件Gambit 中建立了小型聚丙烯中空纤维膜气-液接触器的几何模型,并在轴向上体现了拧转和弯曲两种膜丝放置的非理想结构特征。模型采用了非结构化网格划分,在接近壁面及膜丝处采用了较为细致的网格结构(图1)。 图1 本次模拟采用的几何模型及截面非结构化网格示意图Fig. 1 Module geometry used in the simulation and the unstructured mesh of the cross-section 1.2流体控制方程及边界条件 本文模拟稳态层流状态下中空纤维膜组件进行富氧水的氧气解吸时壳层的流体流动状况。建立组件的几何模型后,用FLUENT求解流场的连续性方程、动量传递方程组以及氧气组分的输运方程。

生活中的流体力学

当我们观察生活时可以发现,我们生活在一个流体的世界里。生活离不开流体,同样我们也离不开流体。鹰击长空,鱼翔浅底;许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握与运用了流体力学的原理,让其行动变得更灵活快捷。 您发现没有,高尔夫球的表面做成有凹点的粗糙表面,而不就是平滑光趟的表面,就就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面就是做成光滑的,后来发现表面破损的旧球反而打的更远。原来就是临界Re数不同的结果。高尔夫球的直径为41、1毫米,光滑球的临界RE数为3、85×E5,相当于自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当于临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。乒乓球运动时分离则属于层流分离。 同样在游泳的时候,也受到流体的作用。游泳就是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时

间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转 动太大,空中移臂时间宜短等。 游泳者游进时受到相反方向的阻力作用。游泳的阻力包括水的摩擦阻力、波浪阻力与物体的形状阻力。设流线型物体的阻力为1,那么其她形状物体的阻力就大几倍甚至100倍。推进力就是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就就是靠臂绕肩关节与腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩与髋最远的手与脚的速度最大。臂划水的作用面就是手掌与前臂,腿打、踢水的作用面主要就是脚面与小腿前侧;腿蹬夹水的主要作用面则就是脚与小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。 在我们身边来来往往飞驰的汽车,更就是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部就是陡峭的,称为箱型车,阻力系数(CD)很大,约为0、8。实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

《高等流体力学》复习题

《高等流体力学》复习题 一、基本概念 1. 什么是流体,什么是流体质点? 2. 什么是流体粘性,静止的流体是否具有粘性,在一定压强条件下,水和空气的粘性随着温度的升高 是如何变化的? 3. 什么是连续介质模型?在流体力学中为什么要建立连续介质这一理论模型? 4. 给出流体压缩性系数和膨胀性系数的定义及表达式。 5. 简述系统与控制体的主要区别。 6. 流体静压强的特性是什么?绝对压强s p 、计示压强(压力表表压)p 、真空v p 及环境压强(一般 为大气压)a p 之间有什么关系? 7. 什么是理想流体,正压流体,不可压缩流体? 8. 什么是定常场,均匀场,并用数学形式表达。 9. 分别用数学表达式给出拉格朗日法和欧拉法的流体加速度表达式。 10. 流线和迹线有何区别,在什么条件下流场中的流线和迹线相重合? 11. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么? 12. 试述伯努利方程()2 2p V Z C g g ψρ++=中各项的物理意义,并说明该方程的适用条件。 13. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系? 14. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) 15. 平面流动中用复变位势描述的流体具有哪些条件(性质)? 16. 伯努利方程2 2p V Z Const g g ρ++=对于全流场均成立需要基于那些基本假设? 17. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?stokes 假设的基本 事实依据是什么? 18. 为推出牛顿流体的本构方程,Skokes 提出了3条基本假设,分为是什么? 19. 作用在流体微团上的力分为那两种?表面应力ij τ的两个下标分别表示?ij τ的正负如何规定? 20. 从分子运动学观点看流体与固体比较有什么不同? 21. 试述流体运动的Helmhottz 速度分解定律并给出其表达式。 22. 流体微团有哪些运动形式?它们的数学表达式是什么? 23. 描述流体运动的基本方法有哪两种?分别写出其描述流体运动的速度、加速度的表达式。

2015级-清华大学化学工程系

化学工程系 化学工程与技术 一、适用学科、专业:化学工程与技术(一级学科,工学门类,学科代码:0817) 涵盖13个学科方向:传递现象与分离工程、多相反应与催化工程、过程系统工程、化工热力学、能源化学工程、生态化工与清洁生产技术、材料化学工程及膜技术、超临界流体技术、环境生物技术、生物医药工程、生物化工、安全科学与工程、资源化工。 二、培养方式 1. 实行导师负责制。必要时系内成立指导小组,由指导小组组长主要负责。跨学科或交叉学科培养博士生时,应从相关学科中聘请合作导师共同指导。 2. 博士生应在导师或指导小组指导下,学习有关课程,查阅文献资料,参加学术交流,确定具体课题,独立从事科学研究,取得创造性成果。 三、知识结构及课程学习的基本要求 1. 知识结构的基本要求 要求掌握本学科所需的坚实的数理知识和化学知识,系统而深入的化学工程、传递过程、反应工程、化工热力学、生物化工、分子生物学、材料化工等专业知识;广博的知识面,一定的学科综合知识,学科前沿知识和相关交叉学科的知识,为学位论文的创造性奠定坚实的理论基础。 2. 课程学习及学分组成: (1)普通博士生 攻读博士学位期间,需获得学位要求学分不少于15,其中公共必修课程4学分,学科专业要求课程学分不少于5,学术与职业素养课程1学分,必修环节5学分。选修或补修课程学分计入非学位要求学分。课程设置见附录。 (2)直博生 攻读博士学位期间,需获得学位要求学分不少于30,其中公共必修课程5学分,学科专业要求课程学分不少于19,学术与职业素养课程1学分,必修环节5学分。考试学分不少于25。选修或补修课程学分计入非学位要求学分。课程设置见附录。 四、主要培养环节及有关要求 1. 制定个人培养计划 博士生入学后两周内,研究生院和相关院系开设新生学科专业教育系列讲座以加强研究生综合素质培养。 博士生入学后三个月内,在导师指导下完成个人培养计划。内容包括:研究方向、课程学习、文献阅读、选题报告、科学研究、学术交流、学位论文及实践环节等方面的要求和进度计

流体力学核心期刊

页码,1/3 吉林大学牡丹园站 -- Construction精华区文章阅读 发信人: arwang (旺旺), 信区: Construction 标 题: 流体力学核心期刊 发信站: 牡丹园新站 (Sun Dec 21 09:18:46 2003) 流体力学核心期刊 Journal of Fluid Mechanics = 流体力学杂志 . 英国.527C0001 International Journal of Heat and mass Transfer = 国际传热与传质杂志 \ 英国 .525C0006 AIAA Journal = 美国航空与航天学会志 . 美国.877B0001 The Physics of Fluids, A = 流体物理学,A辑 . 美国.527B0002 Fluids Dynamics = 流体动力学 ( 英译苏刊). 美国.527B0054 Journal of Engineering Physics = 工程物理杂志(英译苏刊). 美国.534B0053 Journal of Heat transfer,Transactions of the ASME = 传热杂志,ASME汇刊 . 美 国.725B0001 The Physics of Fluids, B = 流体物理学,B辑 . 美国.527B0002 International Journal for Numerical Methods in Fluids = 国际流体力学数值方法 杂志 . 英国.527C0004 Fluid MechanicsSoviet Research = 苏联流体力学研究(英译苏刊) . 美国.527B005 2 International Journal of Multiphase flow = 国际多相流杂志 . 英国.527C0003 Zeitschrift fur Angewandte Mathematik und Mechanik = 应用数学与力学杂志 . 德 国.519A0001 Magnetohydrodynamics = 磁流体动力学(英译苏刊). 美国.527B0053 Journal of Applied Mechnaics and Technical physics = 应用力学与技术物理杂志( 英 译苏刊). 美国.529B0052 Journal of Fluids Engineering, Transactions of the ASME = 流体工程杂志,ASME 汇刊 . 美国.780B0001 Physical Review , A = 物理评论,A辑 . 美国.530B0002 Soviet PhysicsDOKLADY = 苏联物理学报告(英译苏刊). 美国.530B0070 International Journal of Heat and Fluid Flow = 国际热与流体流杂志 . 英国.527 C0053 Journal of Non-Newtonian Fluid Mechanics = 非牛顿流体动力学杂志 . 荷兰.527LB 0053 International Communications in Heat and Mass Transfer = 国际传热与传质通讯 . 英 国.725C0056 Heat Transfer Soviet Research = 苏联传热研究 . 美国.725B0054 Physical Review Letters = 物理评论快报 . 美国.530B0003 International Journal of Engineering Science = 国际工程科学杂志 . 英国.710C0 009 Journal of Computational Physics = 计算物理杂志 . 美国.539B0002 Waerme-und Stoffuebertragung = 热力学与流体力学 . 德国.710E0008 Physica,D = 物理,D辑 . 荷兰.530LB001 High Temperature = 高温(英译苏刊). 美国.534B0052 JSME International Journal, II = 日本机械工程师学会国际杂志,II辑 . 日本.780 D0063 Fluid Dynamics Research = 流体动力学研究 . 荷兰.527LB001 Journal of the Physical Society of Japan = 日本物理学会志 . 日本.530D0002 Computers and Fluids = 计算机与流体 . 英国.--─738C0074 Heat Transfer-Japanese Research = 日本传热研究 . 美国.525B0055 Chemical Engineering Science = 化学工程科学 . 英国.810C0004 Physics Letters, A = 物理快报,A辑 . 荷兰.530LB004 Thermal Engineering = 热力工程(英译苏刊). 英国 .721C0058 AIChE Journal美国化学工程师协会会志 . 美国.810B0001 Applied Mathematics and Mechanics = 应用数学与力学(英译苏刊). 美国.ISSN 00 66-5479 Applied Scientific Research = 应用科学研究 . 荷兰.500LB002 Comptes Rendus de l Acadecie des Sciences , Serie II = 法国科学院报告,II辑 . FRA.500F0003 Numerical Heat Transfer = 数值传热 . 美国.725B0059 Rheologica Acta = 流变学学报 . 德国.526E0051

相关文档
最新文档