垂线和平行线-知识点整理

合集下载

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳一、知识梳理二、1、平行线的定义:三、在同一平面内不相交的两条直线叫做平行线.四、2、平行的表示:五、用符号“∥”表示,读作“平行于” .六、3、同一平面内两条直线的位置关系:七、平行或相交.八、4、平行公理:九、经过直线外一点,有且只有一条直线与已知直线平行.十、5、平行的传递性:十一、平行于同一直线的两直线平行.十二、6、平行与角的联系:十三、若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.十四、7、垂直定义:十五、如果两条直线相交所成的四个角中有一个角是直角,那么这两条直线互相垂直.十六、其中一条直线叫做另一条直线的垂线.它们的交点叫做垂足.十七、两条线段、射线垂直是指这两条线段、射线所在的直线垂直.十八、8、垂直的表示:十九、用符号“⊥”表示,读作“垂直于” .二十、9、垂直公理:二十一、过一点有且只有一条直线与已知直线垂直.二十二、10、点到直线的距离:二十三、直线外一点到这条直线的垂线段的长度.二十四、11、垂线段的性质:二十五、直线外一点与直线上各点连接的所有线段中,垂线段最短.二十六、12、垂直与角的联系:二十七、若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.二、典型例题例1、概念辨析(1)两条不相交的直线叫做平行线.(2)两条直线不相交就平行.(3)两条射线或线段平行,是指它们所在的直线平行.(4)在同一平面内不相交的两条线段必平行.(5)经过一点,有且只有一条直线与已知直线平行.(6)同一平面内垂直于同一直线的两条直线互相平行.(7) 点A为直线l外一点,点B在直线l上,若AB=5厘米,则点A到直线l的距离为5cm.解析:(1)错误,必须加同一平面内,否则在立体几何中,会出现异面的情况.比如一个正方体,上面和前面相交的棱与右面和后面相交的棱,所在直线就是既不平行也不相交.(2)错误,理由同(1).(3)正确.(4)错误,反例如下图:(5)错误,必须在直线外,否则,如果这个点在直线上,所作直线就与已知直线重合.(6)正确.(7)错误,如下图,当点B在B2处,点A到直线l的距离为5cm,当点B在B1,点A到直线l的距离小于5cm.例2、试画图说明平面内三条直线的位置关系.分析:我们知道,同一平面内的两条直线有相交、平行两种关系.那么到了三条直线,就会出现三条都平行,两条平行,都不平行的情况.在三条都平行的情况外,必然有相交的情况,我们可以从交点数来考虑,即有一个,有两个,有三个交点三种.解答:例3、(1)如图,P是∠AOB外一点,过点P画直线PC∥OA,交OB于点C,过点P画直线PD∥O B,交OA反向延长线于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?(2)如图,P是∠AOB外一点,过点P画直线PC⊥OA,交OA于点C,过点P画直线PD⊥O B,交OB于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?分析:本题不难,主要是根据要求作图,然后发现度数之间的联系,不是相等就是互补,最后,再关注所研究的两个角的位置关系,发现其中一个角的两边与另一个角的两边分别平行,从而得出最后结论.解答:(1)当P是∠AOB外一点,∠AOB+∠CPD=180°当P是∠AOB内一点,∠AOB=∠CPD发现:若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.(2)当P是∠AOB外一点,∠AOB=∠CPD当P是∠AOB内一点,∠AOB+∠CPD=180°发现:若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.三、思维提升例1、网格作图(1)利用图(1)中的网格,利用直尺过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于______.分析:网格作图是今后的重点内容,我们应该引起足够的重视,(1)对于作平行,有2种作法,第一种观察线段AB是横2竖4的长方形对角线,那么,过要画的点P,也应该是构造横2竖4的长方形对角线.第二种,采用平移的方法,从点A平移到点P,需要向右4格再向下1格,那么点B也要同样平移,然后将线段两端延长,变成直线.对于作垂直,则和平行相反,过点P需要构造横4竖2的长方形对角线.(2)我们可以保持EF不动,将AB,CD平移,注意,有2种情况.(3)对于网格图形的面积,我们通常可以采用割补法,割,把大图形分成几个小图形,计算面积和,补,把大图形再补成一个更大的,可直接计算面积的图形,减去周围几个小图形的面积和.本题适合用补的方法.解答:例2、垂线段再认识如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;(1)请找出图中所有的垂线段,并说明这条垂线段的长度是哪个点到哪条直线的距离.(2)线段PC、PH、OC这三条线段大小关系是______.(用“<”号连接)分析:要找垂线段,首先要找出所有的垂足,因为垂线段是直线外一点到垂足的距离.这里的垂足显然只有P,H,那么点O,点C,可以和点P,点H组成垂线段.要说明垂线段长度是哪个点到哪一条直线的距离,那么必然选择的是垂线段的两个端点中,不是垂足的那个点,到垂足所在的另外一条与垂线段垂直的直线的距离.解答:(1)OP,OP的长度是点O到直线PC的距离.CP,CP的长度是点C到直线OB的距离.OH,OH的长度是点O到直线PH的距离.CH,CH的长度是点C到直线PH的距离.PH,PH的长度是点P到直线OC的距离.(2)PH<PC<OC.例3、思考类作图同一平面内已知线段AB长为10cm,点A、B到直线l的距离分别为6cm和4cm,符合条件的直线l有_______条?分析:显然,同学们都能想到作线段AB的垂线,将线段AB分成6cm,4cm两部分.但其实,在线段AB的两侧还有两条,分别以A、B为圆心、6cm和4cm为半径作圆,当所画的直线与两个圆分别都只有一个交点时,也符合题意,这样的直线有两条,即共有3条.到了初三,我们会知道,这三条线就是所画的两个圆的切线.解答:如图,三条红色的直线即为所求.变式如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.分析:我们可以先找线,再确定点,先找出到l1距离为2的直线,到12距离为1的直线,显然,它们的交点,就满足题意.画图后,不难发现到l1距离为2的直线有2条,到12距离为1的直线有2条,这4条直线两两相交,有4个交点,这4个交点就是"距离坐标"是(2,1)的点.解答:如图,到l1距离为2的直线是2条蓝色直线,到12距离为1的直线是2条红色直线,四个交点即为所求.。

初中数学易考知识点平行线和垂直线的性质

初中数学易考知识点平行线和垂直线的性质

初中数学易考知识点平行线和垂直线的性质在初中数学中,平行线和垂直线是比较基础且常被考察的知识点。

掌握平行线和垂直线的性质对于解题和理解几何概念都非常重要。

接下来,本文将分别介绍平行线和垂直线的性质。

一、平行线的性质平行线是指不相交的两条直线在平面上延伸时永不相交的直线。

下面是平行线的几个性质:1. 平行线的定义两条直线在平面上平行的定义为:它们不相交且在同一平面上延伸时永不相交。

2. 平行线的判定方法(1)同位角相等法:若两条直线与一条直线相交时,同位角相等,则这两条直线是平行线。

(2)对顶角相等法:若两条直线与一条直线相交时,它们成一对对顶角的角度相等,则这两条直线是平行的。

3. 平行线的性质(1)平行线上的任意两条直线与第三条直线的交线所形成的内错角和外错角互补,即和为180°。

(2)平行线上的任意一条直线与一条横截线相交时,同位角相等,内错角和外错角互补。

二、垂直线的性质垂直线是指两条直线相交时,相交的角度为90°,称为垂直。

下面是垂直线的几个性质:1. 垂直线的定义两条直线垂直的定义为:它们的交角度量为90°。

2. 垂直线的判定方法(1)两条直线的斜率之乘积为-1时,这两条直线是垂直的。

(2)两条直线的角度为90°时,这两条直线是垂直的。

3. 垂直线的性质(1)垂直线上的任意一条直线与平行于另一直线的直线相交时,所形成的角度为直角,即90°。

(2)两条垂直线上的任意一条直线与第三条直线相交时,所形成的内错角和外错角互补。

三、平行线和垂直线的应用平行线和垂直线的性质在几何学和实际生活中有着广泛的应用。

1. 平行线的应用平行线的性质可以应用于建筑、绘图、设计等领域。

例如,在绘制透视图时,平行线的应用可以使得图像显得更加逼真,立体感更强。

2. 垂直线的应用垂直线的性质可以应用于测量与角度相关的问题,如建筑物的竖直度、平面图的编制等。

总结起来,初中数学中平行线和垂直线是非常重要的概念。

平行线和垂直线知识点

平行线和垂直线知识点

平行线和垂直线知识点在几何学中,平行线和垂直线是两个基本的概念。

它们在直线和平面的研究中具有重要的意义。

本文将介绍平行线和垂直线的定义、性质以及它们之间的关系。

一、平行线的定义和性质平行线是指在同一个平面上永远不会相交的直线。

具体而言,对于两条直线l和m,如果它们在同一个平面上且不相交,我们可以说直线l与直线m是平行的,记作l ∥ m。

根据平行线的定义,我们可以得出以下性质:性质1:如果一条直线与两条平行线相交,那么它将分成两个相对应的锐角和两个相对应的钝角。

性质2:平行线具有传递性,即如果直线l与直线m平行,直线m 与直线n平行,那么直线l与直线n也平行。

性质3:如果两条平行线分别与第三条直线相交,那么相应的对应角是相等的。

性质4:如果两条直线分别与一组平行线相交,那么对应角是相等的。

二、垂直线的定义和性质垂直线是指两条直线形成的角度为90度的直线。

具体而言,对于两条直线l和m,如果它们相交且所成的角度为90度,我们可以说直线l与直线m是垂直的,记作l ⊥ m。

垂直线具有以下性质:性质1:一条直线与平面上的一条垂直线相交,则它与该垂直线所成的角度为90度。

性质2:如果两条直线互相垂直,那么它们是共面的。

三、平行线和垂直线的关系平行线和垂直线是两种不同的情况,但它们之间存在一些重要的关系。

性质1:如果两条平行线被一条横切线相交,那么所成的对应角是相等的。

性质2:如果两条直线互相垂直,那么它们的斜率乘积为-1。

性质3:如果一条直线与一组平行线相交,那么它所成的角度与这组平行线的对应角度相等。

性质4:如果两条直线互相垂直,那么它们的方向余弦的乘积为0。

以上是平行线和垂直线的一些基本定义和性质。

这些概念在几何学中占有重要地位,不仅在纸上的学习中有用,也在实际生活中的测量和建筑等领域有广泛的应用。

对于学习几何学的人来说,掌握这些知识点是必不可少的。

总结:通过本文的介绍,我们了解到平行线和垂直线的定义、性质以及它们之间的关系。

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结在小学数学中,平行与垂直是几何图形中的重要概念,对于孩子们理解空间和图形关系起着基础性的作用。

接下来,让我们一起深入了解这两个关键的知识点。

一、平行(一)平行的定义平行是指在同一平面内,永不相交的两条直线。

这里需要特别注意“在同一平面内”这个前提条件,如果不在同一平面,即使两条直线不相交,也不能称为平行。

(二)平行线的特点1、平行线之间的距离处处相等。

比如,两条平行的铁轨之间的距离,无论在哪个位置测量,都是相同的。

2、平行线永远不会相交。

(三)如何判断两条直线是否平行1、观察法:直观地看两条直线是否保持相同的距离且不相交。

2、借助工具:比如使用直尺和三角板,将三角板的一条直角边与其中一条直线重合,直尺靠紧三角板的另一条直角边,然后平移三角板,如果三角板的直角边与另一条直线重合,那么这两条直线平行。

(四)平行在生活中的应用1、街道上的斑马线:每一组横线都是互相平行的。

2、建筑物中的窗户边框:它们的对边通常是平行的。

二、垂直(一)垂直的定义当两条直线相交成直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

(二)垂直的特点1、垂线是直线,垂线段是线段。

2、点到直线的距离中,垂线段最短。

(三)如何判断两条直线是否垂直1、可以使用量角器测量两条直线相交的角是否为 90 度。

2、观察两条直线相交的情况,如果形成了明显的直角,那么它们互相垂直。

(四)垂直在生活中的应用1、旗杆与地面:旗杆通常是垂直于地面的。

2、墙角:两面墙相交形成的角通常是直角,即互相垂直。

三、平行与垂直的关系平行和垂直是两种不同的位置关系。

两条直线要么平行,要么相交,而垂直是相交的一种特殊情况。

四、相关的数学练习(一)判断类题目给出一些直线的图形或描述,让学生判断是否平行或垂直。

(二)作图类题目要求学生根据给定的条件,画出平行线或垂线。

(三)应用类题目通过实际生活中的场景,如建筑、道路等,让学生找出其中平行或垂直的例子,并进行相关计算。

平行线与垂直线知识点总结

平行线与垂直线知识点总结

平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。

它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。

本文将对平行线和垂直线的定义、性质以及相关定理进行总结。

一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。

用符号“//”表示两条平行线。

2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。

- 平行线的斜率相等:两条平行线的斜率是相等的。

- 平行线具有传递性:若直线a//b,b//c,则a//c。

3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。

- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。

- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。

- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。

- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。

- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。

二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。

2. 性质:- 垂直线之间的角度为90度。

- 垂直线的斜率乘积为-1。

- 垂直线上的任意线段之间距离相等。

3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。

- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。

- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。

- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。

- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。

总结:平行线和垂直线是几何学中十分重要的概念。

平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。

我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。

小学数学三年级上册——平行线和垂直线知识要点

小学数学三年级上册——平行线和垂直线知识要点

小学数学三年级上册——平行线和垂直线知识要点本文档旨在总结小学三年级上册关于平行线和垂直线的知识要点,以帮助学生更好地理解和应用这些重要概念。

一、平行线1. 定义:两条直线在同一平面内,且不会相交的直线被称为平行线。

2. 表示方式:平行线可以用符号∥表示。

3. 判断方法:- 两条直线的斜率相等且不为无穷大。

- 两条直线有一条公共点,且在该点的同一侧延长,不会相交。

4. 性质:- 平行线之间的距离始终保持相等。

- 平行线与同一直线的交角大小始终相等。

二、垂直线1. 定义:两条直线在同一平面内,且夹角为90°的直线被称为垂直线。

2. 表示方式:垂直线可以用符号⊥表示。

3. 判断方法:- 两条直线的斜率相乘等于-1。

- 两条直线相交时,交角为90°。

4. 性质:- 垂直线之间的交点必为直角。

- 垂直线与同一直线的交角大小始终为90°。

三、平行线和垂直线的运用1. 平行线和垂直线在几何形状中的作用:- 平行线可用于构造平行四边形、矩形等几何形状。

- 垂直线可用于构造正方形、直角三角形等几何形状。

2. 平行线和垂直线在图形判断中的应用:- 通过判断直线的斜率或交角可以确定是否为平行线或垂直线。

- 通过平行线和垂直线的性质,可以解决一些与线段、角度相关的问题。

四、总结本文档概述了小学三年级上册关于平行线和垂直线的重要知识要点,包括定义、表示方式、判断方法和性质。

这些知识将有助于学生更好地理解几何形状的构造和图形判断。

通过巩固和应用这些知识,学生可以提高数学能力和解决问题的能力。

《平行四边形和梯形》垂线和平行线-知识点整理

《平行四边形和梯形》垂线和平行线-知识点整理

垂线和平行线1、垂直与平行:(1)在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

如下图一:“直线A和直线B是平行线;直线A的平行线是直线B”(2)如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

如下图二:“直线A和直线B相互垂直;直线A 是直线B的垂线;点C是垂足。

”2、画垂线:(1)过直线上一点画这条直线的垂线方法?把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。

(2)过直线外一点画这条直线的垂线方法?把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔沿这条边画直线就可以了。

(3)把直线外一点A与直线上任意一点连接,所画线段哪个最短?小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”3、画平行线:(1):怎样画平行线?可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。

(2):在两条平行线之间画几条与平行线垂直的线段,这些线段的长度特点?小结:两条平行线之间的距离是相等的。

下图中,直线AB和直线CD平行,123三条线段垂直于AB,CD,则123条线段相等。

经验之谈:记住两个非常重要的结论,一、直线外一点到直线的线段中垂线段最短;二、两条平行线之间的距离是相等的。

平行四边形和梯形1、平行四边形:两组对边都平行的四边形叫平行四边形从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。

垂足所在的边叫做平行四边形的底。

特征:(1)对边平行(2)对边相等(3)对角相等(4)邻角和为180度(5)容易变形,它不具有稳定性。

2、梯形:(1)梯形:一组对边平行而另一组对边不平行的四边形叫梯形梯形有上底和下底,从上底到下底的垂线叫梯形的高,两边叫梯形的腰。

平行线与垂直线的性质知识点总结

平行线与垂直线的性质知识点总结

平行线与垂直线的性质知识点总结平行线与垂直线是几何学中重要的基本概念。

它们在空间中的特性及应用广泛存在于各个领域,包括建筑、工程、地理测量等。

本文将对平行线与垂直线的性质进行总结,并介绍它们的定义、判定方法以及一些常见的应用。

一、平行线的性质1. 定义:在平面上,如果两条直线不相交且在同一个平面内,那么这两条直线被称为平行线。

符号表示为"//"。

2. 判定方法:a. 同位角判定法:当一条直线与两条平行线相交时,对应的同位角相等。

b. 内错角判定法:当一条直线与两条平行线相交时,内错角互补(和为180°)。

3. 平行线的性质:a. 平行线之间没有交点。

b. 平行线与同位角、内错角的关系(根据判定方法)。

c. 平行线与平行线之间的夹角相等。

4. 常见应用:a. 利用平行线的性质进行几何证明。

b. 在地理测量中用于绘制平行线的基准。

二、垂直线的性质1. 定义:在平面上,如果两条直线相交且相交的角度为90°,那么这两条直线被称为垂直线。

符号表示为"⊥"。

2. 判定方法:a. 直角判定法:当两条直线的斜率乘积为-1时,这两条直线互相垂直。

b. 垂直角判定法:当一条直线与两条垂直线相交时,所得的垂直角是相等的。

3. 垂直线的性质:a. 垂直线与同位角、垂直角的关系。

b. 垂直线与平行线之间的夹角为90°。

4. 常见应用:a. 建筑工程中垂直线用于确定垂直方向。

b. 在图形绘制中用于绘制垂直线的基准。

三、平行线与垂直线的关系1. 平行线与垂直线之间的关系:a. 平行线与垂直线是两种互补的关系。

b. 两条直线同时与第三条直线平行,则这两条直线之间也是垂直的。

2. 平行线与垂直线在日常生活中的应用:a. 建筑中,平行线和垂直线的运用可以保证建筑物的稳定和平衡。

b. 导航中,平行线与垂直线的使用可以确定航线和方位。

综上所述,平行线与垂直线是几何学中的重要概念,具有各自的定义、判定方法和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂线和平行线
一、本节学习指导
本节我们重点掌握垂线和平行线的概念和性质,知识点不多,注意多动手操作。

对于垂线和平行线的画法我们必须掌握。

二、知识要点
1、垂直与平行:
(1)在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

如下图一:“直线A和直线B是平行线;直线A的平行线是直线B”
(2)如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

如下图二:“直线A和直线B相互垂直;直线A是直线B的垂线;点C是垂足。


2、画垂线:
(1)过直线上一点画这条直线的垂线方法?
把三角尺的一条直角边靠近直线,三角尺上的直角顶点靠近直线上的点,然后用笔沿另一条直角边画出直线就可以了。

(2)过直线外一点画这条直线的垂线方法?
把三角尺的一条直角边靠近直线,三角尺上的另一条边靠近直线外的点,然后用笔沿这条边画直线就可以了。

(3)把直线外一点A与直线上任意一点连接,所画线段哪个最短?
小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”
3、画平行线:
(1):怎样画平行线?
可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。

(2):在两条平行线之间画几条与平行线垂直的线段,这些线段的长度特点?
小结:两条平行线之间的距离是相等的。

下图中,直线AB和直线CD平行,123三条线段垂直于AB,CD,则123条线段相等。

三、经验之谈:
记住本节中有两个非常重要的结论,一、直线外一点到直线的线段中垂线段最短;二、两条平行线之间的距离是相等的。

相关文档
最新文档