换热器的特点(1)

换热器的特点(1)
换热器的特点(1)

板式换热器的特点

1 传热效率高

板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。

一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。

2 使用安全可靠

在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。

3 占地小,易维护

板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。

4 随机应变

由于换热板容易拆卸,通过调节换热板的数目或者变更

流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。

5 有利于低温热源的利用

由于两种介质几乎是全逆流流动,以及高的传热效果,板式换热器两种介质的最小温差可达到1oC。用它来回收低温余热或利用低温热源都是最理想的设备。在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。

6 阻力损失少

因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。

7 冷却水量小

板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。

8 在投资效率低

相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和

板材薄,设备更显经济.

半容积式换热器:

环保节能传热系数K值高,换热面积大,单罐换热能力为同容积导流型容积式换热器的1.5-2.0倍

容积利用率高,该系列产品换热与贮热两部分完全隔开,贮热部分贮存的全是换热部分的最终热水,无冷、温水区,具有很高的容积利用率。

被加热水侧水头损失≤0.5M,保持了容积式换热器的水压波动小,水头损失低,有利于保持系统冷热水压力平衡之优点。

贮热部分贮存有≥15min设计小时耗热量的调节容积。热媒可按设计小时耗热量供给,无需加大热媒负荷。罐内被加热水的温度变化较平缓,采用可靠、较灵敏的温控装置即可满足自动控制水温之要求。

换热较充分,当以蒸汽压力≤0.4MPa的饱和蒸汽为热媒时,凝结水出水温度约70-75℃,满足一般蒸汽锅炉要求凝结水回水温度≤80℃的要求。

与容积式换热器相比,罐型小、重量轻,方便安装检修。

适用范围:

适用于一般工业及民用建筑的生活热水供热系统。

波纹管换热器特点有:

1、换热能力强由于换热采用波纹形状,管内外流道截面连续不断地突变,造成流体流动,始终处于高度湍流状态,难以形成层流底层,使得对流传热的主要热阻被有效地克服,管内外传热被同时强化,因而传热系数高。同时换热管壁很薄(0.8 mm),极大地降低了管壁热阻,进一步强化了对流传热。对于气氨和水的换热,一方面因为湍流使得对流传热系数较低的管内传热得到加强,另一方面由于波纹管的曲率不断变化,使得管外壁冷凝液能够迅速形成液滴脱落,消除了膜状冷凝热阻,强化了管外氨气冷凝传热,使得总传热系数大大提高。

2、有自然防垢,自然除垢特性流道内流体的高度湍流特性,使得循环水中的微粒难以沉积结垢,即使有少量垢生成,由于波纹管上存在管壳温差应力而产生的应变,这一应变,使得具有弹性特征的波纹管曲率发生微观变化,从而使附着其上的垢膜破裂而脱落。

3、阻力降很小由于波纹管内外流体流动的层流底层极薄,使得流体流动的剪切力很小。

4、承压能力强,安全系数高波纹管管壁厚度很薄(0.8mm),但承压能力很强,其爆破压力达成8MPa,而允许工作压力规定为4MPa

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

换热器特性与用途及优缺点评析

换热器特性与用途及优缺点评析 换热器 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。 英语翻译:heat exchanger 换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造换热器的材料具有抗强腐蚀性能。换热器的分类比较广泛:反应釜压力容器冷凝器反应锅螺旋板式换热器波纹管换热器列管换热器板式换热器螺旋板换热器管壳式换热器容积式换热器浮头式换热器管式换热器热管换热器汽水换热器换热机组石墨换热器空气换热器钛换热器换热设备,要求制造换热器的材料具有抗强腐蚀性能。它可以用石墨、陶瓷、玻璃等非金属材料以及不锈钢、钛、钽、锆等金属材料制成。但是用石墨、陶瓷、玻璃等材料制成的有易碎、体积大、导热差等缺点,用钛、钽、锆等稀有金属制成的换热器价格过于昂贵,不锈钢则难耐许多腐蚀性介质,并产生晶间腐蚀。 换热器在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。 随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求: (1)合理地实现所规定的工艺条件; (2)结构安全可靠; (3)便于制造、安装、操作和维修; (4)经济上合理。 浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。(也可设计成不可拆的)。这样为检修、清洗提供了方便。但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。因此在安装时要特别注意其密封。 浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。 在设计时必须考虑浮头管板的外径Do。该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。

《管壳式换热器机械设计》参考资料

1前言 (1) 概述 (1) 换热器的类型 (1) 换热器 (1) 设计的目的与意义 (2) 管壳式换热器的发展史 (2) 管壳式换热器的国内外概况 (3) 壳层强化传热 (3) 管层强化传热 (3) 提高管壳式换热器传热能力的措施 (4) 设计思路、方法 (5) 换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 管径 (11) 管子数n (11) 管子排列方式,管间距的确定 (11) 换热器壳体直径的确定 (11) 换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 管板结构尺寸 (16) 管板与壳体的连接 (16) 管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 群座的设计 (27) 基础环设计 (29) 地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×的无缝钢管,材质为20号钢,管长。 管子数n L F n d 均π= (2-1) ()根均5035 .40225.014.3160 F L =??= = ∴ n d n π 其中安排拉杆需减少6根,故实际管数n=503-6=497根 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上 的管数为25,查表7-5取管间距a=32mm. 换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳 l 取d l 2=,()m m 8682522)125(32=??+-?=i D ,

换热器原理及设计大纲.pdf

《换热器原理及设计》教学大纲 Principles and Design of Heat Exchanger 一、课程类别和教学目的 课程类别:专业课 课程教学目标:通过该门课程的学习,使学生了解各种常用热交换器(也称换热器)的工作原理,掌握以满足流动和传热为条件的热交换器的设计方法,了解热交换器的实验研究方法、强化技术和性能评价,为以后的学习、创新和科学研究打下扎实的理论和实践基础。 二、课程教学内容 (一)绪论 介绍热交换器的重要性、分类及其在工业中的应用,换热器设计计算的内容。 (二)热交换器计算的基本原理 介绍传热方程式、热平衡方程式的应用;讲授流体比热或传热系数变化时的平均温差的 计算方法、传热有效度、热交换器计算方法的比较、流体流动计算方法的比较。 (三)管壳式热交换器 介绍管壳式热交换器的类型、标准与结构;讲授管壳式热交换器的结构计算、传热计算和流动阻力计算、管壳式热交换器的设计程序、管壳式冷凝器与蒸发器的工作特点。 (四)高效间壁式热交换器 介绍螺旋板式热交换器、板式热交换器、板翅式热交换器、翅片管热交换器、热管热交 换器、蒸发(冷却)器、微尺度热交换器的结构、工作原理及其设计计算。 (五)混合式热交换器 讲授冷水塔的热力计算、通风阻力计算与设计计算,汽-水喷射式热交换器的相关计算、水-水喷射式热交换器的相关计算;介绍混合式热交换器的分类。 (六)蓄热式热交换器 介绍回转型蓄热式热交换器和阀门切换型蓄热式热交换器的构造和工作原理;讲授蓄热式热交换器的计算、蓄热式热交换器与间壁式热交换器中气流及材料的温度变化比较。 (七)热交换器的试验与研究 介绍传热系数的测定方法、阻力特性实验的测定方法;讲授增强传热的基本途径、热交换器的结垢类型与腐蚀方法、热交换器的优化设计与性能评价方法。 三、课程教学基本要求 (一)绪论

换热器原理介绍

换热器基础知识 简单计算板式换热器板片面积 选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热对数温差 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 换热器的分类与结构形式 换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一、换热器按传热原理可分为: 1、表面式换热器 表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。 2、蓄热式换热器 蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。 3、流体连接间接式换热器 流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。 4、直接接触式换热器 直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。 二、换热器按用途分为: 1、加热器 加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。 2、预热器 预热器预先加热流体,为工序操作提供标准的工艺参数。 3、过热器 过热器用于把流体(工艺气或蒸汽)加热到过热状态。

换热器主要参数及性能特点

换热器主要参数及性能特 点 The Standardization Office was revised on the afternoon of December 13, 2020

换热器主要参数及性能特点 主要控制参数 板水加热器的主要控制参数为水加热器的单板换热面积、总换热面积、热水产量、换热量、传热系数K、设计压力、工作压力、热媒参数等。 性能特点 (1)换热量高,传热系数K值在3000~8000W/(m22K)范围,高于其它换热器型式。 (2)板式换热器具有很高的传热系数,就决定了它具有结构紧凑、体积小的特点,在每立方米体积内可以布置250平方米的传热面积,大大优于其它种类的换热器。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

换热器原理与设计(答案)

广东海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

影响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为(C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体(A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器内流体温度高于1000℃时,应采用以下何种换热器(A )

换热器的特点(1)

板式换热器的特点 1 传热效率高 板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。 一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。 2 使用安全可靠 在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。 3 占地小,易维护 板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。 4 随机应变 由于换热板容易拆卸,通过调节换热板的数目或者变更

流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。 5 有利于低温热源的利用 由于两种介质几乎是全逆流流动,以及高的传热效果,板式换热器两种介质的最小温差可达到1oC。用它来回收低温余热或利用低温热源都是最理想的设备。在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 6 阻力损失少 因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。 7 冷却水量小 板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。 8 在投资效率低 相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和

蒸发器动态特性及详细介绍

蒸发器动态特性及详细介绍 摘要:蒸发器是制冷和热泵系统中最重要的组成部分之一,其动态特性的模拟预测和研究无论对蒸发器本身的设计、运行还是对整个制冷热泵系统的优化和控制都具有十分重要的意义。本文以逆流套管式蒸发器为研究对象,从其结构特点出发,经适当假定,运用质量、动量和能量守恒方程建立蒸发器的动态分布参数模型。用数值方法对模型方程进行离散求解。得到并分析了动态过程中蒸发器制冷剂侧及水侧各主要参数的沿程分布及其随时间的变化情 况。 关键词:蒸发器动态模拟动态分布参数 0 引言 制冷与热泵技术与人们日常生活的关系越来越密切,尤其是近年来随着国民经济和人民生活水平的提高,制冷和热泵行业发展迅速,与此同时也造成电耗、燃料消耗的大幅度增加,缺电、缺油、缺煤等信息见诸报端的频率不断升级。据统计,暖通空调能耗约占我国总能耗的22.75%,并有逐渐上升的趋势。在我国经济保持快速增长的同时,重要能源的紧缺正逐 步成为制约我国经济发展的瓶颈,因此,开发和研制高性能、低能耗的制冷、热泵系统是该技术领域的重要课题之一,也是“可持续发展”国策的迫切要求。而蒸发器是制冷、热泵装置中最重要的组成部分之一,它的运行状况直接关系到整个系统性能的优劣,因此,蒸发器的研究一直受到国内外学者的密切关注。 蒸发器动态分布参数模型的建立 实际上,整个制冷、热泵装置均是在动态下工作,纯粹的稳态工况是不存在的。到目前为止,对制冷系统所建立的理论模型中大部分是基于稳态工况下做出的。为对整个制冷、热泵系统的实际运行过程机理有充分的理解,提高系统各部件及系统的效率,实现制冷、热泵系统的最佳匹配及最优控制等,必须建立能描述整个系统的动态数学模型。作为制冷系统的关键设备——换热器仍是研究者们历来研究的重点,其动态性能对整个制冷、热泵系统性能起至关重要的作用。因此,换热器的动态模型已成为整个制冷、热泵系统动态模拟水平高低的一个重要标志。在制冷、热泵装置中,换热器包括蒸发器和冷凝器,二者的研究有相似之处,但也有很大不同。比较而言,蒸发器的研究要比冷凝器复杂得多,它对系统的影响更大,建模过程中要考虑的因素更多。蒸发器模型的建立主要有集中参数和分布参数两种方法,前者具有计算速度快,稳定性好的优点,通常用于定性分析;而后者具有计算精度高、结果可靠、能较好的反映研究对象真实运行状态等优点,采用该方法建模具有现实意义。本文以套管式蒸发器为研究对象,采用分布参数法建立模型,模型中水与制冷剂间的换热视为逆流换热,蒸发器中制冷剂在管内流动,主要经历从两相到过热的过程,但为了增大模型的通用性、更加全面地研究蒸发器的动态特性,在模型中考虑了过冷区以及过冷沸腾区。 在某些工况下,制冷剂虽经膨胀阀后压力下降,但仍有可能以过冷状态进入蒸发器。此

换热器原理与设计复习重点..

绪论: 1.填空: 1.按传递热量的方式,换热器可以分为间壁式, 混合式, 蓄热式 5.换热器设计计算内容主要包括热计算、结构计算流动阻力计算和强度计算 6.按温度状况来分,稳定工况的和非稳定工况的换热器 3.举例说明5种换热器,并说明两种流体的传热方式?说明两种流体的传热机理? 1)蒸发器:间壁式,蒸发相变—导热—对流 2)冷凝器:间壁式,冷凝相变—导热—对流 3)锅炉:间壁式,辐射—导热—对流 4)凉水塔:混合式,接触传热传质 5)空气预热器:蓄热式,对流—蓄热,蓄热—对流 第一章 1.填空: 1.传热的三种基本方式是_导热__、____对流__、和辐射_。 2..两种流体热交换的基本方式是___直接接触式___、_间壁式_、和___蓄热式_。 5.通常对于气体来说,温度升高,其黏度增大,对于液体来说,温度升高,其黏度减小 6.热计算的两种基本方程式是_传热方程式__和热平衡式_。 7.对于传热温差,采用顺流和逆流传热方式中,顺流传热平均温差小,逆流时传热平均温差大。 9.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是增加管外程数和两台单壳程换热器串联工作。 10. 冷凝传热的原理,层流时,相对于横管和竖管,横管传热系数较高。 11.对于单相流体间传热温差,算术平均温差值大于对数平均温差 13.设计计算时,通常对传热面积进行判定,校核计算时,通常对传热量进行判定

2.简答(或名词解释): 1. 什么是效能数?什么是单元数?(要用公式表示) 答:实际情况的传热量q 总是小于可能的最大传热量qmax ,我们将q/qmax 定义为换热器的效能,并用 ε 表示,即 ()()()()max min min h h h c c c h c h c W t t W t t q q W t t W t t ε''''''--≡= =''''-- 换热器效能公式中的 KA 依赖于换热器的设计, W min 则依赖于换热器的运行条件,因此, KA/W min 在一定程度上表征了换热器综合技术经济性能,习惯上将这个比值(无量纲数)定义为传热单元数NTU 4、流体换热的基本方式有哪些? 答:主要分为三种:直接接触式传热,蓄热式换热和间壁式换热。 直接接触式传热 直接接触式传热的特点是冷、热两流体在换热器中以直接混合的方式进行热量交换,也称混合式换热。 蓄热式换热 蓄热式换热器是由热容量较大的蓄热室构成。室中充填耐火砖作为填料,当冷、热流体交替的通过同一室时,就可以通过蓄热室的填料将热流体的热量传递给冷流体,达到两流体换热的目的。 间壁式换热 间壁式换热的特点是冷、热流体被一固体隔开,分别在壁的两侧流动,不相混合,通过固体壁进行热量传递。 3.计算题 1.有一蒸汽加热空气的热交换器,它将流量为5kg/s 的空气从10℃加热到60℃,空气与蒸汽逆流,其比热为1.02KJ/(kg ℃),加热蒸汽系压力为P=0.3Mpa,温度为150℃的过热蒸汽,在热交换器中被冷却为该压力下90℃的过冷水,试求其平均温差。(附:饱和压力为0.3MP,饱和蒸汽焓为2725.5KJ/kg ,饱和水焓为561.4KJ/kg.150℃时,水的饱和温度为133℃,过热蒸汽焓为2768 KJ/kg ,90时,过冷水的焓为377 KJ/kg ) 解:由于蒸汽的冷却存在着相变,因此在整个换热过程中,蒸汽的比热不同,在整个换热过程中的平均温差应该分段计算再求其平均值。 将整个换热过程分为三段:

换热器原理与设计(答案)

海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利影 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为 (C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体 (A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大 8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器流体温度高于1000℃时,应采用以下何种换热器(A )

管壳式换热器设计选型

一、技术参数: 热媒:高温蒸汽:T1=350℃, 冷凝水出口温度,T2=90℃。 循环水进出温度:t1=80℃, t2=90℃ 换热量:W=1200x100x10=1200x104Kcal/h, 热交换器形式采用卧式固定管板式换热器, 换热管采用不锈钢SUS304壳体采用碳钢Q345R。 二、设计选型: 根据GB151-1999《管壳式换热器》标准,及本厂技术样本进行设计计算: 热水进出温度:t1=80℃, t2=90℃ 热媒进出温度:T1=350℃,T2=90℃。 Δt1=T1-t2=260℃,Δt2=T2-t1=10℃ Δt1-Δt2 260-10 对数温差Δtm= = = 76.7℃ 根据热交换器换热面积: F=Cr·W/(ε·K·Δtm) 其中: Cr: 耗热量系数取(1.1~1.2),取Cr=1.15 W:供热量,W=1200×104 Kcal/h ε:污垢系数,ε=0.8 K:传热系数,取800Kcal/ M2.℃·h Δtm:对数温差, Δtm=76.7℃ 则: F= Cr·W/(ε·K·Δtm)

=281m2 根据本厂样本选取型号为: BEM900-290-6000/25X2-1.0/1.0 卧式固定管板式换热器,材质:除换热管为304外,其余全部为碳钢。 浙江杭特容器有限公司 2014年4月22日

一、技术参数: 热媒:高温蒸汽:T1=350℃, 冷凝水出口温度,T2=170℃。 循环水进出温度:t1=80℃, t2=90℃ 换热量:W=1200x100x10=1200x104Kcal/h, 热交换器形式采用卧式固定管板式换热器, 换热管采用不锈钢SUS304壳体采用碳钢Q345R。 二、设计选型: 根据GB151-1999《管壳式换热器》标准,及本厂技术样本进行设计计算: 热水进出温度:t1=80℃, t2=90℃ 热媒进出温度:T1=350℃,T2=170℃。 Δt1=T1-t2=260℃,Δt2=T2-t1=90℃ Δt1-Δt2 260-90 对数温差Δtm= = = 160℃ 根据热交换器换热面积: F=Cr·W/(ε·K·Δtm) 其中: Cr: 耗热量系数取(1.1~1.2),取Cr=1.15 W:供热量,W=1200×104 Kcal/h ε:污垢系数,ε=0.8 K:传热系数,取800Kcal/ M2.℃·h Δtm:对数温差, Δtm=160℃ 则: F= Cr·W/(ε·K·Δtm)

常见换热器结构及优缺点

6.7 换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。 6.7.1 直接接触式(混合式) 在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。 6.7.2 蓄热式 蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。 6.7.3 间壁式 这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。 (1)夹套式换热器 结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。 优点:结构简单,加工方便。 缺点:传热面积A小,传热效率低。 用途:广泛用于反应器的加热和冷却。 为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。 (2)沉浸式蛇管换热器 结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。 优点:结构简单,便于防腐,能承受高压。 缺点:传热面积不大,蛇管外对流传热系数小, 为了强化传热,容器内加搅拌。 (3)喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被

四种换热器的结构特点及优缺点

3、四种换热器的结构特点及优缺点。 (1)固定管板式换热器 组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。 结构特点:管板与壳体之间采用焊接连接。两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。 优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。 缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。 (2)浮头式换热器 组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。 优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。缺点:结构较复杂,操作时浮头盖的密封情况检查困难。 (3)U形管式换热器 组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。 结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。只能为多管程,管板不能兼作法兰,一般有管束滑道。总重轻于固定管板式换热器。优点:结构简单,造价较低,不会产生温差应力,外层管清洗方便。 缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。 (4)填料函式换热器 组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。 结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。管束可抽出,管板不兼作法兰。优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。 缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。

换热器温度前馈控制

目录 1引言 (2) 2 设计任务与方案分析 (2) 2.1 设计任务 (2) 2.2 方案分析 (2) 3 建模分析 (3) 3.1 换热器的静态特性分析 (3) 3.2 换热器的静态放大系数 (4) 3.3 被控过程分析 (5) 4 前馈控制器的设计 (6) 4.1 前馈控制通用模型分析 (6) 4.2 静态前馈控制器的设计 (7) 4.3前馈控制的动态补偿 (8) 5 调节阀和检测变送元件介绍 (9) 5.1 调节阀的选择 (9) 5.2 温度变送器 (10) 5.3 流量传感器 (10) 6 参数整定及系统实现 (11) 6.1 静态工作点 (11) 6.2动态补偿参数的整定 (11) 7 小结体会 (13) 8 参考文献 (14)

换热器温度前馈控制 1引言 换热器作为工艺过程中必不可少的单元设备,广泛地应用于石油、化工、动力、轻工、机械、冶金、交通、制药等工程领域中。据统计,在现代石油化工企业中换热器投资约占装置建设总投资的 30%~40%;在合成氨厂中,换热器约占全部设备总台数40%。由此可见,换热器对整个企业的建设投资及经济效益有着重要的影响。化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到避面的一侧(对流传热),通过间壁内的热传导,再由间壁的另一侧将热传递给冷流体,从而使热物流被冷却,冷物流被加热,满足化工生产中对冷物流或热物流温度的控制要求。 目前,换热器控制中大多数仍采用传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统,对于存在大的负荷干扰且对于控制品质要求较高的应用场合,多采用加入负荷干扰的前馈控制构成前馈反馈控制系统.本文就通过对干扰的分析,重点阐述前馈对于干扰的控制作用。 2 设计任务与方案分析 2.1 设计任务 本文以用蒸汽液化给工艺介质加热为代表介绍换热器温度控制系统,针对工艺介质出口温度的主要干扰进行分析,并对扰动实施前馈控制以达到扰动补偿的目的。具体要求为:扰动分析,扰动补偿中的变送器选择、执行器选择、控制器控制方案选择和参数整定并进行系统仿真。充分利用前馈控制的在扰动对控制过程影响之前就加以抑制的特点达到控制温度要求,避免较大超调的要求。 2.2 方案分析 前馈控制的特点是扰动补偿。 在扰动还未影响输出以前,直接改变操作变量,以使输出不受或少受外部扰动的影响。这就是前馈控制的思想。 对于换热器控制系统为什么采用前馈控制策略而不采用单回路的反馈控制

热交换器原理与设计

绪论 1. 2.热交换器的分类: 1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等 2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式 4)按照传送热量的方法来分:间壁式,混合式,蓄热式 恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。 过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。 第一章 1.Mc1℃是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。 2.W—对应单位温度变化产生的流动流体的能量存储速率。 4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。 5.P(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。 6.R—冷流体的热容量与热流体的热容量之比。(定义式P12) 7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。 (P22 例1.1) 8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。 9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。意义:以温度形式反映出热、冷流体可用热量被利用的程度。 10.根据ε的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。 11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于 流动方向上(横向)不能自由运动,也就不可能自身进行混合,

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

换热器主要参数及性能特点

换热器主要参数及性能特点 主要控制参数 板水加热器的主要控制参数为水加热器的单板换热面积、总换热面积、热水产量、换热量、传热系数K、设计压力、工作压力、热媒参数等。 性能特点 (1)换热量高,传热系数K值在3000~8000W/(m22K)范围,高于其它换热器型式。 (2)板式换热器具有很高的传热系数,就决定了它具有结构紧凑、体积小的特点,在每立方米体积内可以布置250平方米的传热面积,大大优于其它种类的换热器。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。 (3)板式换热器还具有组装灵活,拆卸清洗方便的特点,可以用增减板片数量

相关文档
最新文档