第三章 控制系统的数学描述与建模
《控制系统数字仿真与CAD 第4版》课件第3章 控制系统的数字仿真

传递函数如下:
Id (s) 1/ R Ud 0 (s) E(s) Tl s 1
(3-5)
电流与电动势间的传递函数为:
E(s)
R
Id (s) IdL (s) Tms
上述式(3-5)、(3-6)可用图的形式描述,如图3-2所示。
(3-6)
直流电动机与驱动电源的数学模型
Ud0 s
1/ R Tl s 1
直流电动机的转速/电流双闭环PID控制方案
一、 双闭环V-M调速系统的目的
双闭环V-M调速系统着重解决了如下两方面的问题: 1. 起动的快速性问题
借助于PI调节器的饱和非线性特性,使得系统在电动机允许的过载 能力下尽可能地快速起动。
理想的电动机起动特性为
直流电动机的转速/电流双闭环PID控制方案
从中可知 1)偏差使调节器输出电压U无限制地增加(正向或负向)。因此,输 出端加限制装置(即限幅Um)。 2)要使ASR退出饱和输出控制状态,一定要有超调产生。 3)若控制系统中(前向通道上)存在积分作用的环节,则在给定 作用下,系统输出一定会出现超调。
直流电动机的转速/电流双闭环PID控制方案
三、 关于ASR与ACR的工程设计问题
对上式取拉普拉斯变换,可得“频域”下的传递函数模型为:
Ud 0 (s) Uct (s)
K s eTs s
(3-7)
由于式(3-7)中含有指数函数 eTss,它使系统成为“非最小相位系统”;
为简化分析与设计,我们可将 eTss 按泰勒级数展开,则式(3-7)变成:
Ud 0 (s) Uct (s)
KseTss
n hTn 50.01834s 0.0917s
直流电动机的转速/电流双闭环PID控制方案
控制系统的建模与分析

缺点:计算复杂;难于找出系统的结构参数对控制系统性 能影响的一般规律,无法找出改进方案,不便于对系统的分 析和设计。
数学模型的种类
复数域模型: 包括系统传递函数和结构图。 表示系统本身的特性而与输入信号无关;不仅
可以表征系统的动态性能,而且可以研究系统的 结构或参数变化对系统性能的影响。
频率域模型: 主要描述系统的频率特性,具有明确的物理意
义,可用实验的方法来确定.
三类常用数学模型的关系
线性系统
传递函数 拉氏 微分方程 傅氏 频率特性
变换
变换
sp
传递 函数
微分 方程
系统
s j
j p
频率 特性
p d dt
1 仿真分析的意义 2 建模的基本概念 3 建模的步骤 4 直流电机建模实例
5 MATLAB /SIMULINK简介
建立系统模型步骤
1、线性系统微分方程的建立:
① 确定系统的输入量和输出量; ② 将系统划分为若干环节,从输入端开始,按信号传
递的顺序,依据各变量所遵循的物理学定律(牛顿 定律、基尔霍夫电流和电压定律、能量守恒定律) 等,列出各环节的线性化原始方程;
控制系统 建模与仿真分析
问 题?
1、为什么要建立控制系统的数学模型? 2、建模的方法与步骤? 3、控制系统仿真工具?
1 仿真分析的意义 2 建模的基本概念
3 建模的步骤 4 直流电机建模实例 5 MATLAB /SIMULINK简介
1、仿真分析的意义
科学研究方法:理论、仿真、实验验证相结合 计算机仿真:一门新兴技术学科,涉及到专业理论和技术, 比如系统分析、控制理论和计算方法等,当在实际系统上进 行试验研究比较困难,或者无法实现时,仿真就必不可少了。 系统仿真:即模型实验,建立在模型系统上的实验技术,指 通过模型实验去研究一个已经存在的或者正在设计的系统的 过程。
控制基本模型-概述说明以及解释

控制基本模型-概述说明以及解释1.引言1.1 概述概述在控制理论和应用中,控制基本模型是指用于描述和分析控制系统的数学模型。
控制基本模型是控制工程师和研究人员研究和设计控制系统时的基础,它提供了系统动力学行为的描述以及控制方法的分析和设计。
控制基本模型可以采用多种形式,包括传递函数模型、状态空间模型和输入-输出模型等。
这些模型通常基于系统动力学方程和输出-输入关系来建立。
通过对模型进行数学分析和仿真实验,我们可以深入了解和预测控制系统的行为,并针对不同的应用需求进行优化设计。
本文将重点介绍控制基本模型的定义和控制方法的介绍。
首先,我们将详细讨论基本模型的定义,包括传递函数模型、状态空间模型和输入-输出模型的基本原理和特点。
然后,我们将介绍一些常用的控制方法,如比例积分微分控制(PID控制),模糊控制和自适应控制等。
这些控制方法可以根据系统的需求和特点来选择和应用。
通过本文的学习,读者将能够理解和掌握控制基本模型的概念和基本原理,了解不同类型的控制方法的适用范围和特点。
同时,读者还将能够应用所学知识来设计和优化控制系统,提高系统的性能和稳定性。
总之,控制基本模型是控制系统设计和分析的基础,具有重要的理论和实际意义。
通过研究和应用控制基本模型,我们可以不断改进和优化控制系统,提高系统的性能和效果。
1.2文章结构1.2 文章结构本文的目的是探讨控制基本模型,并介绍相关的控制方法。
为了更好地组织本文的内容,文章结构如下所示:引言部分将在1.1概述中简要介绍控制基本模型的背景和意义,并在1.3目的中明确阐述本文的研究目标。
正文部分将分为两个小节进行讲解。
首先,在2.1基本模型定义中,我们将详细阐述控制基本模型的定义和内容,包括其在控制系统中的作用和应用领域。
其次,在2.2控制方法介绍中,我们将介绍几种常见的控制方法,包括PID控制器、模糊控制和神经网络控制等,以及它们在控制基本模型中的应用。
结论部分将在3.1总结中对本文进行总结,回顾并强调本文的重点内容和研究成果。
matlab控制系统课程设计

matlab控制系统课程设计一、课程目标知识目标:1. 学生能掌握MATLAB软件的基本操作,并运用其进行控制系统的建模与仿真。
2. 学生能理解控制系统的基本原理,掌握控制系统的数学描述方法。
3. 学生能运用MATLAB软件分析控制系统的稳定性、瞬态响应和稳态性能。
技能目标:1. 学生能运用MATLAB软件构建控制系统的模型,并进行时域和频域分析。
2. 学生能通过MATLAB编程实现控制算法,如PID控制、状态反馈控制等。
3. 学生能对控制系统的性能进行优化,并提出改进措施。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术的兴趣和热情,提高创新意识和实践能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能认识到控制系统在现代工程技术中的重要作用,增强社会责任感和使命感。
课程性质:本课程为实践性较强的课程,注重理论知识与实际应用相结合。
学生特点:学生具备一定的数学基础和控制理论基础知识,对MATLAB软件有一定了解。
教学要求:教师需采用案例教学法,引导学生运用MATLAB软件进行控制系统设计,注重培养学生的实际操作能力和解决问题的能力。
同时,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 控制系统概述:介绍控制系统的基本概念、分类及发展历程,使学生了解控制系统的基本框架。
- 教材章节:第一章 控制系统概述2. 控制系统的数学模型:讲解控制系统的数学描述方法,包括微分方程、传递函数、状态空间方程等。
- 教材章节:第二章 控制系统的数学模型3. MATLAB软件操作基础:介绍MATLAB软件的基本操作,包括数据类型、矩阵运算、函数编写等。
- 教材章节:第三章 MATLAB软件操作基础4. 控制系统建模与仿真:利用MATLAB软件进行控制系统的建模与仿真,分析系统的稳定性、瞬态响应和稳态性能。
- 教材章节:第四章 控制系统建模与仿真5. 控制算法及其MATLAB实现:讲解常见控制算法,如PID控制、状态反馈控制等,并通过MATLAB编程实现。
第三章 计算机控制系统的数学描述2差分方程

脉冲传递函数 G(z) 的求法:
·对 G(s) 做拉氏反变换 g(t) ? L?1?G(s)?,求得脉冲响应。
·对 g(t) 响应)。
采样,求得采样信号 g*(t) (离散系统脉冲 ? g * (t ) ? ? g ( kT )? (t ? kT ) k?0
(1)迭代法 若看作数学问题求解,需考虑初始条件。 例3.8 已知差分方程为
y(k) ? y(k ?1)? r(k) ? 2r(k ? 2)
设初始条件 y(0) ? 2 ,求 y(k) 。 解: 将差分方程式写成递推形式
y(k) ? r(k) ? 2r(k? 2)? y(k?1)
令 k?1 ,则 y(1)? r(1)? 2r(?1)? y(0)
·对采样信号 g*(t) 进行拉氏变换,得 G(z)
?
G (z) ? L?g * (t)?? ? g (kT )z? k k? ? 0
G ( z) ? Z ?g (t ) ?? ? g ( kT ) z ? k k?0
G ( z ) ? Z ?G ( s ) ?
以上3式均可通用。
2、差分方程与脉冲传递函数 已知差分方程为
如果差分方程为
y(k) ? a1y(k ? 1) ? ???? an y(k ? n) ? b0r (k) ? b1r (k ? 1)? ??? bmr (k ? m)
n
m
y(k) ? ? ai y(k ? i) ? ? b jr (k ? j)
i?1
j?0
n
m
? ? Y(z) ? ai z?iY(z) ? b j z? jR(z)
i?1
j? 0
控制工程基础(第三章,控制系统的复数域描述)

负载效应
2、动态结构图的等效变换 结构图表示了系统中各信号之间的传递与运算的全部关 系。但有时结构图比较复杂,需简化后才能求出传递函数, 等效原则是:对结构图任何部分进行变换时,变换前后该 部分的输入量、输出量及其相互之间的数学关系应保持不 变。 (1)串联环节的简化
X 0 (s)
G1 ( s )
4. 积分环节 积分环节的动态方程和传递函数分别为
c (t ) K r (t ) dt
K G (s) s
特点:输出量与输入量的积分成正比例,当输入 消失,输出具有记忆功能。 实例:电动机角速度与角度间的传递函数、电容 充电、模拟计算机中的积分器等。
5. 二阶振荡环节
振荡环节的运动方程和传递函数分别为
(a)
(b)
结构图的相加点(a)和分支点(b)
绘制系统方框图的一般步骤 1) 写出系统中每一个部件的运动方程式 2) 根据部件的运动方程式写出相应的传递函数,一个 部件用一个方框表示在框中填入相应的传递函数
3)根据信号的流向,将各方框单元依次连接起来,并 把系统的输入量置于系统方框图的最左端,输出量置 于最右端 例 绘制下图所示电路的方框图 方程有
Gs 就是该系统的传递函数 阵
用拉氏变换做微分方程组的传递函数矩阵,中间变量的消元
三、典型环节的传递函数 1. 比例环节
比例环节又称放大环节,该环节的运动方程和相 对应的传递函数分别为
c(t ) Kr (t )
式中K为增益。
C ( s) G( s) K R( s )
特点:输入输出量成比例,无失真和时间延迟。
R-L-C电路
c
弹簧-质量-阻尼器系统
6. 纯时间延时环节
延时环节的动态方程和传递函数分别为
控制系统数学模型

控制系统数学模型
控制系统数学模型是指用数学方法对控制系统进行建模和分析
的过程。
控制系统是指对一些物理过程进行控制的系统,包括机电控制系统、化工控制系统、航空航天控制系统等。
数学模型是指对一个系统或过程进行描述的数学式子或方程组。
建立控制系统的数学模型是控制工程的重要基础之一。
通过建立数学模型,可以更加深入地理解系统的特性,优化控制策略,提高系统的效率和稳定性。
在建立控制系统数学模型时,需要先对被控系统进行分析,确定系统的物理特性和运动规律。
然后,根据控制对象的特性,选择适当的数学模型进行建立。
常用的控制系统数学模型包括线性时不变系统模型、非线性系统模型、时变系统模型等。
线性时不变系统模型是指系统的输出与输入之间满足线性关系,且系统的特性不随时间变化。
非线性系统模型是指系统的输出与输入之间不满足线性关系。
时变系统模型是指系统的特性随时间变化。
除了建立数学模型外,还需要对模型进行分析和仿真。
常用的分析方法包括传递函数法、状态空间法等。
仿真可以通过计算机模拟系统运动过程,验证控制策略的有效性。
总之,控制系统数学模型是控制工程的重要基础之一,对于提高控制系统的性能和稳定性具有重要意义。
- 1 -。
自动控制原理控制系统的数学模型

自动控制原理控制系统的数学模型自动控制原理是现代控制工程学的基础,在控制系统的设计中起着至关重要的作用。
控制系统的数学模型是指通过数学方法对控制系统进行建模和描述,以便分析和设计控制系统的性能和稳定性。
控制系统的数学模型可以分为时域模型和频域模型两种形式。
一、时域模型时域模型是描述控制系统在时间域上动态行为的数学表达式。
时域模型是基于系统的差分方程或微分方程的。
1.线性时不变系统的时域模型对于线性时不变系统,可以通过系统的微分方程或差分方程来建立时域模型。
常见的时域模型包括:-一阶系统的时域模型:y(t)=K*(1-e^(-t/T))*u(t)-二阶系统的时域模型:y(t)=K*(1-e^(-t/T))*(1+t/Td)*u(t)2.非线性系统的时域模型对于非线性系统,时域模型可以通过系统的状态空间方程来建立。
常见的非线性系统时域模型包括:- Van der Pol方程: d^2x/dt^2 - μ(1 - x^2) * dx/dt + x = 0 - Lorenz方程:dx/dt = σ * (y - x), dy/dt = rx - y - xz, dz/dt = xy - βz二、频域模型频域模型是描述控制系统在频域上动态行为的数学表达式。
频域模型是基于系统的传递函数或频率响应函数的。
1.传递函数模型传递函数是系统的输入和输出之间的关系,是频域模型的核心。
传递函数可以通过系统的拉普拉斯变换或Z变换得到。
常见的传递函数模型包括:-一阶系统的传递函数模型:G(s)=K/(T*s+1)-二阶系统的传递函数模型:G(s)=K/(T^2*s^2+2ξ*T*s+1)2.频率响应模型频率响应函数是系统在不同频率下的输出和输入之间的关系。
频率响应函数可以通过系统的传递函数模型进行计算。
常见的频率响应模型包括:-幅频特性:描述系统在不同频率下的增益变化-相频特性:描述系统在不同频率下的相位变化控制系统的数学模型是对系统动态行为的数学描述,通过对控制系统进行数学建模和分析,可以有效地设计和优化控制系统,提高系统的性能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,串联:series 格式: [a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2) %串联连接两个状态空间系统. [a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2,out1,in2) %out1和in2分别指定系统1的部分输出和系统2的部分输 入进行连接. [num,den]=series(num1,den1,num2,den2) %将串联连接的传递函数进行相乘.
第一节
系统的分类
按系统性能分:线性系统和非线性系统;连续系统和离散 系统;定常系统和时变系统;确定系统和不确定系统. 1,线性连续系统:用线性微分方程式来描述,如果微分方程 的系数为常数,则为定常系统;如果系数随时间而变化, 则为时变系统.今后我们所讨论的系统主要以线性定常连 续系统为主. 2,线性定常离散系统:离散系统指系统的某处或多处的信号 为脉冲序列或数码形式.这类系统用差分方程来描述. 3,非线性系统:系统中有一个元部件的输入输出特性为非线 性的系统.
一,连续系统的传递函数模型
连续系统的传递函数如下:
C ( s ) b1s m + b2 s m 1 + ... + bn s + bm +1 G( s) = = R( s ) a1s n + a2 s n 1 + ... + an s + an +1
对线性定常系统,式中s的系数均为常数,且a1不等于零, 这时系统在MATLAB中可以方便地由分子和分母系数构 成的两个向量唯一地确定出来,这两个向量分别用num和 den表示. num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s的降幂进行排列的.
例exp3_1.m
电路图如下,R=1.4欧,L=2亨,C=0.32法,初始 状态:电感电流为零,电容电压为0.5V,t=0时 刻接入1V的电压,求0<t<15s时,i(t),vo(t)的值, 并且画出电流与电容电压的关系曲线.
R t=0 i (t ) ± Vs=1V
L + C vo (t )
第三节 传递函数描述
12 s 3 + 24 s 2 + 20 举例:传递函数描述 1)G ( s ) = 2s 4 + 4s 3 + 6s 2 + 2s + 2
》num=[12,24,0,20];den=[2 4 6 2 2];
4( s + 2)( s 2 + 6 s + 6) 2 2) G ( s ) = s( s + 1)3 ( s 3 + 3s 2 + 2 s + 5)
0.25i 0.25i 2 + + 4)已知部分分式: G ( s ) = 2 + s 2i s + 2i s + 1
》r=[-0.25i,0.25i,-2]; 》p=[2i,-2i,-1];k=2; 》[num,den]=residue(r,p,k) 》num= 2 0 9 1 》den= 1 1 4 4 注意余式一定要与极点相对应.
第二节 线性定常连续系统的微分方程模型
微分方程是控制系统模型的基础,一般来讲,利用 机械学,电学,力学等物理规律,便可以得到控制 系统的动态方程,这些方程对于线性定常连续系统 而言是一种常系数的线性微分方程. 如果已知输入量及变量的初始条件,对微分方程进 行求解,就可以得到系统输出量的表达式,并由此 对系统进行性能分析. 通过拉氏变换和反变换,可以得到线性定常系统的 解析解,这种方法通常只适用于常系数的线性微分 方程,解析解是精确的,然而通常寻找解析解是困 难的.MATLAB提供了ode23,ode45等微分方程 的数值解法函数,不仅适用于线性定常系统,也适 用于非线性及时变系统.
二,模型的连接
1,并联:parallel 格式: [a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2) %并联连接两个状态空间系统. [a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2,inp1,inp2,out1,out2) %inp1和inp2分别指定两系统中要连接在一起的输入端编号,从 u1,u2,…,un依次编号为1,2,…,n; out1 out2 u1,u2,…,un 1,2,…,n out1和out2分别指定要作相加的 输出端编号,编号方式与输入类似.inp1和inp2既可以是标量也可 以是向量.out1和out2用法与之相同.如inp1=1,inp2=3表示系统1 的第一个输入端与系统2的第三个输入端相连接. 若inp1=[1 3],inp2=[2 1]则表示系统1的第一个输入与系统2的第二个 输入连接,以及系统1的第三个输入与系统2的第一个输入连接. [num,den]=parallel(num1,den1,num2,den2) %将并联连接的传递函数进行相加.
借助多项式乘法函数conv来处理: 》num=4*conv([1,2],conv([1,6,6],[1,6,6])); 》den=conv([1,0],conv([1,1],conv([1,1],conv([1,1], [1,3,2,5]))));
s 3 + 11s 2 + 30 s 零极点增益模型: G ( s ) = 4 s + 9 s 3 + 45s 2 + 87 s + 50 》num=[1,11,30,0];
x = Ax + Bu y = Cx + Du
在MATLAB中,系统状态空间用(A,B,C,D)矩阵组表示.
举例:Leabharlann 1 6 9 10 4 3 12 6 8 2 x + x= 4 7 9 11 2 5 12 13 14 1 0 0 2 1 y= x 8 0 2 2
6 4 u 2 0
系统为一个两输入两输出系统 》A=[1 6 9 10; 3 12 6 8; 4 7 9 11; 5 12 13 14]; 》B=[4 6; 2 4; 2 2; 1 0]; 》C=[0 0 2 1; 8 0 2 2]; 》D=zeros(2,2);
y = [1 3]x + u
1 x + 2
0 1 u
2)已知一个单输入三输出系统的传递函数模型为:
y1(s) 2 s 5 G11(s) = = 3 G21(s) = 3 2 u(s) s + 6s +11 + 6 s s + 6s2 +11 + 6 s s + 2s G31(s) = 3 2 s + 6s +11 + 6 s
k= 2
0.0000+2.0000i 0.0000-2.0000i -1.0000
0.25i 0.25i 2 + + 结果表达式: G ( s ) = 2 + s 2i s + 2i s + 1
第四节
状态空间描述
状态方程与输出方程的组合称为状态空间表达式,又称 为动态方程,经典控制理论用传递函数将输入—输出关 系表达出来,而现代控制理论则用状态方程和输出方程 来表达输入—输出关系,揭示了系统内部状态对系统性 能的影响.
》z=[-3];p=[-1,-2,-5];k=6; 》[num,den]=zp2tf(z,p,k) 》num= 0 0 6 18 den= 1 8 17 10 》[a,b,c,d]=zp2ss(z,p,k) 》a= -1.0000 0 0 b=1 2.0000 -7.0000 -3.1623 1 0 3.1623 0 0 c= 0 0 1.8974 d=0 注意:零极点的输入可以写出行向量,也可以写出列向量.
CH3,控制系统的数学描述与建模
控制系统的数学模型在控制系统的研究中有着相当重要的 地位,要对系统进行仿真处理,首先应当知道系统的数学 模型,然后才可以对系统进行模拟.同样,如果知道了系 统的模型,才可以在此基础上设计一个合适的控制器,使 得系统响应达到预期的效果,从而符合工程实际的需要. 在线性系统理论中,一般常用的数学模型形式有:传递函 数模型(系统的外部模型),状态方程模型(系统的内部模 型),零极点增益模型和部分分式模型等.这些模型之间都 有着内在的联系,可以相互进行转换.
3,反馈:feedback
格式: [a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2) %将两个系统按反馈方式连接,一般而言,系统1为对象,系统2 为反馈控制器. [a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,sign) %系统1的所有输出连接到系统2的输入,系统2的所有输出连接到 系统1的输入,sign用来指示系统2输出到系统1输入的连接符号, sign缺省时,默认为负,即sign= -1.总系统的输入/输出数等同于 系统1. [a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,inp1,out1) %部分反馈连接,将系统1的指定输出out1连接到系统2的输入, 系统2的输出连接到系统1的指定输入inp1,以此构成 闭环系统. [num,den]=feedback(num1,den1,num2,den2,sign) %可以得到类似的连接,只是子系统和闭环系统均以传递函数的 形式表示.sign的含义与前述相同.
部分分式展开: 》num=[2,0,9,1]; 》den=[1,1,4,4]; [r,p,k]=residue(num,den) 》 r= p= 0.0000-0.2500i 0.0000+0.2500i -2.0000
2s 3 + 9s + 1 G( s ) = 3 2 s + s + 4s + 4