气态污染物控制技术

合集下载

大气污染控制工程第七章课后习题答案

大气污染控制工程第七章课后习题答案

第七章气态活染物控制技术基础一、填空题1、吸收法净化气态污染物是利用混合气体中各成分在吸收剂中的不同,或与吸收剂中的组分发生,从而将有害组分从气流中分离出来。

【答】溶解度,化学反应2、用水吸收HC1气体属于,用N a OH溶液吸收S02属于,用酸性溶液吸收N H3属于。

【答】物理吸收,化学吸收,化学吸收3、目前工业上常用的吸收设备可分为、和三大类。

【答】表面吸收器,鼓泡式吸收器,喷洒式吸收器4、气体扩散同时发生在气相和液相中,扩散过程既包括,也包括。

【答】分子扩散,湍流扩散5、吸收操作线斜率Ls/G s称为吸收操作的液气比,物理含义为。

【答】处理单位惰性气体所消耗的纯吸收剂的量6、常用的吸收剂有和。

【答】水,碱金属钠、钾、铵或碱土金属钙、镁等的溶液7、防治S02污染的方法主要有清洁生产工艺、采用低硫燃料、、及等。

M g2+, S二酸,氨【答】燃料脱硫,燃料固硫,烟气脱硫8、湿式石灰/石灰石-石膏法存在结垢和堵塞问题,通过在吸收液中加入C a C l2、、、等添加剂可解决此问题。

【答】浆液的p H值,吸收温度,石灰石的粒度9、影响湿式石灰/石灰石-石膏法吸收效率的主要因素有,,,流体力学状态,控制溶液过饱和,吸收剂种类等。

【答】石灰/石灰石法,氧化镁法,钠碱法10、目前应用较多的脱硫方法有、、、氨吸收法、亚硫酸钠法、柠檬酸钠法等。

【答】催化还原法(选择性、非选择性),吸收法,吸附法11、吸附设备主要有、和三种类型。

【答】固定床吸附器,移动床吸附器,流化床吸附器12、影响吸附容量的因素有、、、和。

【答】吸附剂表面积、吸附剂的孔隙大小、孔径分布、分子极性、吸附剂分子上官能团性质13、吸附区高度的计算方法有法和法。

【答】穿透曲线法;希洛夫近似法14、希洛夫方程式为。

【答】x=K L-t015、进入催化燃烧装置的气体首先要除去粉尘、液滴等有害组分,其目的为。

【答】防止中毒16、催化剂的组成为、和。

【答】主活性组分;助催化剂;载体17、催化剂的性能主要指其、和。

大气污染控制工程第四章气态污染物处理技术基础

大气污染控制工程第四章气态污染物处理技术基础
气液间传质速率 M A KG A(PA PA*)
加大MA,可有以下几种途径: 1)加大传质推动力△P=PA-PA* 2)增加气相传质系数KG 3)增加气液两相的有效传质面积A
气体吸附
吸附理论 几种常见的吸附剂 固定床吸附系统 流化床吸附器
吸附理论
吸附机理 物理吸附:气体分子和固体间形成弱键,
X
液相中溶质的摩尔数 液相中溶剂的摩尔数
x 1 x
Y
气相中溶质的摩尔数 气相中惰性组分摩尔数
y 1 y
操作线和平衡线图(见下图)
吸收塔的物料衡算和操作线方程
Gm,1 y1 Lm,2 x2 Gm,2 y2 Lm,1x1
因为总的气体流量 (或液体流量)在塔 顶和塔底是不同的, 上面的方程式一般不 能进一步简化。这个
不同反应类型的增强因子表达式
(1)不可逆瞬时反应
A(溶质) bB(反应物) C(反应产物)
=1+rS
扩散系数比 r ≡ DB/D 计量浓度比 S ≡CBL/bCi
对增强因子的补充说明
扩散系数比r通常接近于1,且难于人为
地改变它;计量浓度比S那可以在很大的
范围内改变,而为影响的主要因素。
当其他条件不变而增大CBL时,则变大, 其极限条件是:当CBL达某一临界浓度 CBLc ,液相对溶质无传质阻力
吸附过程示意图
通常气相吸附质浓度高,过程受固相控 制;气相吸附质浓度低,过程受气膜控 制
吸附平衡
气固两相长时间接触,吸附与脱附达到 动态平衡
吸附等温线 在一定温度下,吸附量与吸附质平衡分 压之间的关系曲线被称为吸附等温线
吸附等温线有五种基本类型(见下图)
基本吸附等温线
(1)型:Langmuir等温吸附 (2)、(3)型:多分子层吸附 (4)、(5)型:多分子层吸附,并且吸附质在吸附

东南大大气污染控制工程课件07气态污染物控制(空气净化技术)

东南大大气污染控制工程课件07气态污染物控制(空气净化技术)

筛 板 塔
➢ 填料吸收塔的设计
• 塔径的计算
处理气量:根据实际的 工业过程而定。
DT
4Q
V0
• 填料塔高度的计算
空塔速度:一般由填料 塔的液泛速率Vt 确定, 通常取V0=0.60-0.70Vt。
由过程吸收速率NA和对吸收效率的要求来确定。
H
G P
d P PA G 1
AG
PA G 2 N A a
✓气相与液相相同为分散相
▪ 按汽液接触方式分类
✓连续接触式 填料塔、喷淋塔、湍球塔
✓间断接触式
板式塔
➢ 常用吸收塔介绍
要求气液有效接触面积大,气液湍动程度高, 设备压力损失小,结构简单,易操作维修, 投资少,操作费用低等。
• 填料塔
结构简单、便于用耐腐蚀材料制造,气液 接触效果好,压降小。 当烟气中含有悬 浮颗粒时,填料容易堵塞,清理检修时填 料损耗大。
液体以液滴形式分散于气体中
空心(喷嘴式)喷洒吸收器 高气速并流喷洒吸收器
机械喷洒吸收器
▪ 按气液两相界面形成原理分类
✓具有固定相界面的吸收设备 ✓在气液两相流动过程中形成相界面的吸收设备
✓有外部能量引入的吸收设备 ▪ 按汽液分散形式分类
板式塔
✓气相分散、液相连续
喷淋塔、填料塔
✓液相分散、气相连续
文丘里吸收塔
环境工程学
第七章 气态污染物控制 (空气净化技术)
主要内容
• 吸收净化 • 吸附净化 • 催化转化 • 燃烧转化 • 冷凝法 • 生物净化 • 其他空气净化方法
第一节 吸收净化
利用气体混合物中不同组分在吸收剂中溶解 度不同,或者与吸收剂发生选择性化学反应, 从而将有害组分从气流中分离出来。

《大气污染控制工程》教案 第七章

《大气污染控制工程》教案 第七章

第七章气态污染物控制技术基础从污染气体中脱除二氧化硫等气态污染物的过程,是化工及有关行业中通用的单元操作过程。

这种单元操作的内容包括流体输送、热量传递和质量传递。

其中质量传递过程主要采用气体吸收、吸附和催化操作。

第一节气体扩散气体的质量传递过程是借助于气体扩散过程来实现的。

扩散过程包括分子扩散和湍流扩散两种方式。

一、气体在气相中的扩散气态污染物通过惰性气体组分B的运动,可用A在B中的扩散系数D AB给出。

D AB与气体B通过气体A的扩散系数D BA相等,可由修正的吉里兰方程给出。

扩散系数是物质的特性常数之一,同一物质的扩散系数随介质的种类、温度、压强及浓度的不同而变化。

二、气体在液体中的扩散第二节气体吸收一、吸收机理气体吸收是溶质从气相传递到液相的相际间传质过程,对于吸收机理以双膜理论模型的应用较广。

把吸收过程简化为通过气液两层层流膜的分子扩散,通过此两层膜的分子扩散阻力就是吸收过程的总阻力。

吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称之为吸收速率。

根据双膜理论,在稳态吸收操作中,从气相主体传递到界面吸收质的通量等于从界面传递到液相主体吸收质的通量,在界面上无吸收质积累和亏损。

吸收传质速率方程的一般表达式为:吸收速率=吸收推动力×吸收系数,或吸收速率=吸收推动力/吸收阻力。

吸收系数和吸收阻力互为倒数。

吸收速率方程表达式有多种,有气相分传质速率方程,液相分传质速率方程及总传质速率方程。

二、气液平衡1.气液相平衡关系式(1)气体在液体中的溶解度(2)亨利定律(3)亨利定律式参数的换算2.吸收系数3.界面浓度(1)作图法(2)解析式三、物理吸收1.吸收操作线方程在吸收操作中,一般采用逆流连续操作,通过对逆流操作吸收塔进行物料衡算,可得出吸收操作线。

2.吸收剂用量与液气比设计吸收塔时,所处理的气体流量、进出塔气体溶质浓度均由设计任务而定,吸收剂的种类和入塔浓度由设计者选定,而吸收剂用量和出塔溶液中吸收质浓度需通过计算确定。

气态污染物控制技术基础

气态污染物控制技术基础

吸收习题1、试求293K 下,混合气体中SO 2平衡分压为0.05atm 时,SO 2在水中的溶解度。

已知293K 下H SO2为1.63kmol/(atm.m 3),离解常数为32231m /kmol 107.1]SO []HSO ][H [K --+⨯==,并假设完全解离。

2、试计算以Na 2CO 3溶液吸收CO 2时的增强系数。

已知传质分系数 k L =0.4╳10-4,扩散系数D A =1.5╳10-9m 2/s ,反应速率常数r=1.6s -1(298K)。

3、用HNO 3吸收净化含NH 35%(体积)的废气,为了使吸收过程以较快的速度进行,必须使吸收过程不受在HNO 3液相扩散速率所限制。

试计算吸收时HNO 3的最低浓度为多少?已知:k A G =0.1kmol/(m 2.atm.h),k L =0.72m/h ,D 硝酸=D 氨=D 。

4、采用填料吸收塔净化废气,使尾气中有害组分从0.2%降低至0.02%(按体积计)。

用纯水吸收时,k G a=32kmol/(m 3.atm.h),k L a=0.1h -1,H A ’=0.125atm.m 3/kmol ,液气流量分别为L=700 kmol/m 2.h ,G=100 kmol/ m 2.h ,总压P=1atm,液体的总摩尔浓度为56kmol/ m 3,且假设不变。

今加入活性组分B ,进行极快化学吸收,化学反应式为A+B C 。

当B 的浓度为0.128 kmol/m 3时,比较填料塔高度与用水吸收时的变化。

设D A =D B =D 。

5. 某混合气体中含有2%(体积)CO 2,其余为空气。

混合气体的温度为30℃,总压为500kpa 。

从手册中查得30℃在水中的亨利系数E =1.88╳105kpa,试求溶解度系数H 及相平衡常数m ,并计算每100克与该气体相平衡的水中溶有多少克CO 2。

6.用乙醇胺(MEA )溶液吸收H 2S 气体,气体压力为20atm ,其中含0.1%H 2S (体积)。

生物质燃气化过程中粉尘和气态污染物的排放控制

生物质燃气化过程中粉尘和气态污染物的排放控制

生物质燃气化过程中粉尘和气态污染物的排放控制随着环保意识的不断提升,生物质燃气化技术因其低碳、低排放的特点而备受关注。

然而,生物质燃气化过程中会产生大量粉尘和气态污染物,会对环境和人体健康造成危害。

本文将从排放来源、排放控制技术、运行管理等多方面介绍生物质燃气化过程中粉尘和气态污染物的排放控制。

一、排放来源生物质燃气化过程中产生的主要粉尘和气态污染物有以下几种:1. 烟气中的颗粒物,其中包括飞灰、烟尘等。

2. 烟气中的气态有机物(VOCs)、氮氧化物(NOx)和二氧化硫(SO2)等。

3. 燃烧残渣中产生的灰渣、渣油等。

其中,飞灰和烟尘是由于生物质燃烧时产生的固体粒子,在烟气传输过程中,粒子之间的碰撞和携带空气中的水分等因素会导致其增大,从而形成可见的灰尘和烟雾。

VOCs、NOx和SO2等则是由于生物质燃烧中的一系列化学反应过程中产生的气态污染物。

二、排放控制技术为了减少生物质燃气化过程中的污染物排放,采用以下排放控制技术:1. 循环流化床技术循环流化床技术可以有效控制飞灰和烟尘的排放,具有高效、低能耗、灰渣含碳低等优点。

循环流化床技术是将生物质原料通过气流送入反应器,在高温下进行氧化反应生成气体和灰渣。

2. 湿式电除尘技术湿式电除尘技术能够去除烟气中的颗粒物和气态污染物。

湿式电除尘技术是将烟气通过高压喷雾装置与水接触,使颗粒物和气态污染物被湿润和沉降,再通过高电场区域使其离子化并聚集,最终在电极上沉积下来。

3. SCR技术SCR技术主要用于NOx的控制。

SCR技术是通过向烟气中喷入一定量的氨水,使氨水与NOx反应生成氮和水蒸气。

三、运行管理在生物质燃气化过程中,为了保持机器的正常运行,需要进行日常维护和管理。

具体操作如下:1. 清理烟道和换热器生物质燃气化过程中,烟气通过烟道和换热器输送,在传输过程中可能会堵塞烟道和换热器,导致烟气流量减少或甚至停滞。

应每年对烟道和换热器进行清理,保证畅通。

2. 控制燃料的质量和含水率燃料的质量和含水率对生物质燃气化过程中的排放影响很大。

7种主要气态污染物的处理技术

7种主要气态污染物的处理技术

班级环本二班学号 1105430232 姓名蒋佳分数第二次作业下列7种主要气态污染物的处理技术:一、粉尘控制技术1.高压静电除尘技术将50赫兹、220伏交流电变成100千瓦以上直流电加到电晕极(阴极)形成不均匀高压电场,使气体电离产生大量的负离子和电子,使进入电场的气体粉尘荷电,在电场力的作用下,荷电粉尘趋向相反的电极上,一般阳极为集尘极,依靠振打落入灰斗排出,完成净化除尘过程。

高压静电除尘器高效低阻可广泛用于建材、冶金、化工等行业粉尘污染场合。

它处理粉尘浓度高,对001微米微细或高比电阻粉尘,除尘效果更为明显,系列产品满足不同风量的烘干设备,匹配灵活,适合烘干机废气特性的粉尘治理。

2.旋风除尘技术工作原理是在风机的作用下,含尘气流由进口以较高的速度沿切线方向进入除尘器蜗壳内,自上而下作螺旋形旋转运动,尘粒在离心力的作用下,被甩向外壁,并沿壁面下旋,随着圆锥体的收缩而转向轴心,受下部阻力而返回,沿轴心由下而上螺形旋转经芯管排出。

外壁的尘粒在重力和向下运动的气流带动下,沿壁面落入灰斗,达到除尘的目的。

由于旋风除尘器是依靠尘粒惯性分离,除尘效率与粒径成正比,粒径大除尘效果好;粒径小,除尘效果差,一般处理20微米以上的粉尘,除尘效率在70%~90%。

3.袋除尘技术对颗粒0.1微米含尘气体,除尘效率可高达99%,烘干机废气除尘选用袋除尘器不用考虑排放浓度超标问题。

烘干机抗结露玻纤袋除尘器是目前理想的除尘净化设备。

该设备采用微机控制,分室反吹,定时清灰,并装有温度检测显示,超温报警装置,采用CW300—FcA抗结露玻纤滤袋,可有效防止滤袋结露,也不会烧坏滤袋。

4.湿法除尘技术含尘气体由引风机通过风管送入除尘塔下部,由于断面变大,流速降低,并且粗颗粒粉尘先在气流中沉降,较细粉尘随气流上升,喷淋下来水珠与粉尘气流逆向运动,粉尘被湿润自重不断增加,在重力作用下,克服气流的升力而下降成泥浆水,通过下部管道进入沉淀池,达到除尘的目的。

气态污染物控制

气态污染物控制
气态污染物控制
b、常用的吸收剂: ①水 优点:价廉易得;缺点:溶解度随温
度变化; ②碱性吸收液 用于与碱起反应的有害气体; ③酸性吸收液 ④有机吸收液 洗油吸收苯和沥青烟等。
气态污染物控制
5、吸收设备: 作用: ①使气液两相充分接触,以便很好的传
递; ②提供大的接触面; ③最大限度的减少阻力和增大推动力。
气态污染物控制
②吸附等温式 常用的有: a、朗格缪尔吸附等温式(Longmuir) 用于恒温下,均一表面上的单层可逆吸
附。
q0—吸附剂表面吸满单层时的吸附量g /g a—常数
气态污染物控制
为了计算方便,常改写倒数关系:
说明1/q与1/Ce呈直线关系,即可求出q0、a
气态污染物控制
b、弗兰德利希 指数函数型经验公式 q=k·Ce1/n 或 XT=k·p1/n k—弗兰德利希常数 n>1的常数 将上式两边取对数 lgq=lgk+(1/n)lgCe 或 lgXT=lgk+(1/n)lgp
Pi ----组分分压 Pa Ei ----组分的亨利系数,Pa
xi----摩尔分数
Ci---平衡浓度
Hi……i气体在溶液中的溶解度系数,mol/(m3·Pa)
气态污染物控制
c、传质吸收过程的判断 相平衡过程是质量传递的动态平衡过程。
若气相中溶质组分浓度y高于气相平衡时的 气相组分平衡浓度,即y>yi*则传质过程为吸 收过程;反之,y<yi*则传质过程为解吸过程。

含有约为初
始浓度进0气.3%S的O2
尾气

预除尘 和水分
段间冷却 的四层催
化床
填充 床吸 收塔
第二级 催化床
填充 床吸 收塔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气污染控制工程下册
有害气体的净化
2、净化方法
冷凝法(蒸气态污染物)一级处理 液体吸收法 固体吸附法
催化转化法 直接燃烧1000℃以上
燃烧法 热力燃烧700-800℃ 催化燃烧300-400℃
大型脱硫设备
有 机 废 气 浓 缩 吸 附 净 化 设 备
酸碱废气净化塔
第七章 气态污染物控制技术基础
则: Y * P *
PT
又∵ ∴
P* EX
Y* E X mX PT
m —相平衡常数
P T (为气相总压)
②溶质含量以浓度 C (mol/m3,kmol/m3)表示时,亨利定律可表示为
P* C/H 或 C* PH
C —溶质在液相中的浓度 kmol/m3 物理吸收——完全溶解量 化学吸收——剩余溶解量
1、当溶解达到平衡时,平衡溶解度 C
(* 气液平衡)
A
CA* f PA
PA* FCA
2、享利定律 对于压力不太大的稀溶液,在一定温度下,气体在液
体中的溶解度与该气体的平衡分压成正比。 ①当溶质含量以 X 表示(单组分) ②溶质含量以浓度 C (mol/m3,kmol/m3)表示时
①当溶质含量以 X 表示(单组分) P EX
每个微表面元与气体接触时间都为 界面上微表面元在暴露时间内的吸收
速率是变化的
气液界面 流体微元
液体主相
吸收机理
3.表面更新模型
➢假定:
各表面微元具有不同的暴露时间,t=0- 各表面元的暴露时间(龄期)符合正态分布
4. 其它模型
➢表面更新模型的修正 ➢基于流体力学的传质模型 ➢界面效应模型气液界 Nhomakorabea 流体微元
气体扩散
气体在气相中的扩散 气体在液相中的扩散
气体吸收
吸收机理 气液平衡 物理吸收 化学吸收
第一节 气体扩散
气态污染物脱除过程的单元操作
流体输送
热量传递 质量传递 气体扩散过程
➢分子扩散-分子运动引起 ➢湍流扩散-流体质点运动引起
气体扩散
在气相中的扩散(Gilliland 方程)
D A B1.8 10 4[V A 0.5 T 0 V .5B 0.5]2M A A M 1AM 1A 0.5
在液相中的扩散系数 ➢估算方程
DAB7.41010
(MB)0.5T V0.6
BA
B ——液体的粘度,cPa
——溶剂的缔结因数,水2.6,甲醇1.9。乙醇1.5,
非缔结溶剂如苯、乙醚均为1.0
扩散系数随溶液浓度变化很大 上式只适用于稀溶液
气体在液相中的扩散
某些物质在水中的扩散系数(20oC,稀溶液)
吸收系数
吸收系数的不同形式
传质阻力
传质阻力-吸收系数的倒数
➢ 传 质 总 阻 力 = 气 相 传 质 阻 力 + 液 相 传 质 阻 力 ➢ 液 膜 例 控 : 制 ( k m x k 1 y K , 1 yK 1 y k 1 y k m xk m ) x
思考题
气体在气相中的扩散与液相中的 扩散有什么不同?
扩散与去除有害气体的相互关系 是什么?
第二节 气体的吸收
吸收设备
污染气体 入口
搅拌器
清洁气体 出口
水洗喷管
循环泵 氧化空气 入口
去湿器 浆液喷嘴
多孔板
吸收设备
填料塔
填 料 塔
泡沫颗粒滤珠填料(EPS发泡塑料滤珠) 直径50空心球
供应丝网波纹填料
X —吸收质在液相中的摩尔分率
对 X 来说: 物理吸收—溶解于液相中的吸收质的量

化学吸收—未参加反应的量
E —享利系数,单位与气相压相同(atm)
气体在水中的亨利系数值见下表
气体在水中的亨利系数值
当以气体的摩尔分率 Y 表示时,则又可写成
Y* mX
Y ——为溶质在气相中的摩尔分率
推导: 据Dolton定律 P* PTY*
第二节 气体吸收
吸收机理
1.双膜模型(应用最广)
➢假定: 界面两侧存在气膜和液膜,膜内 为层流, 传质阻力只在膜内 气膜和液膜外湍流流动,无浓度 梯度, 即无扩散阻力 气液界面上,气液达溶解平衡 即:CAi=HPAi 膜内无物质积累,即达稳态.
吸收机理
2.渗透模型
假定:
气液界面上的液体微元不断被液相主 体中浓度为CAL的微元置换
扩散系数的测量
Stephan过程
DABPln(P RBT 1/PB2)M AA l L2 22tL1 2
A l ——液体A的密度,g/m3
L 1 ——液体的初始高度,cm
L 2 ——液体的最终高度,cm
t ——变化时间,s
PB1 , PB 2 ——分别为初始和最终时的空气分压
气体在液相中的扩散
H ——溶解度系数 kmol/m3atm
注:H f t 气体溶解度大小的指标,温度越高,H越小,易溶气体H大,难溶气体H小)
由于 P* EX P* C/H
说明 E 与 H 存在一定的关系
对于稀溶液 E 1 0
H M0 0 ——溶剂密度,k g / m 3 M 0 ——液体的平均分子量(kg/mol)
D A B ——扩散系数,cm2/s T ——绝对温度,K M ——气体的摩尔质量 V ——气体在沸点下呈液态时的摩尔体积,
cm3/mol
气体在气相中的扩散
扩散系数
➢物质的特性常数之一 ➢影响因素:
l 介质的种类 l 温度 l 压强 l 浓度
气体在气相中的扩散
部分气体在空气中的扩散系数(0oC,101.33kPa)
H c/(x E)
H S /(MS E)
一、气体在液相中的平衡溶解度
溶解度是系统的温度、总压、气相组成的函数
即 CAt,P,PA
当 P 不太高<5atm时,认为P对溶解度的影响可忽略,
当温度 t 一定时。
CA f PA
P A —A组分在气相中的分压。
若以组成在溶液中的浓度为自变量,则
PA* FCA
液体主相
双膜理论
双膜模型
气相分传质速率
NA ky ( y A yAi )
液相分传质速率NA kg( pA pAi )
NA kx(x Ai xA)
总传质速率方程NA kl(cAi cA)
xAL
NAKy(yAyA *) NAKA g(pAp* A)
NAKx(xA *xA) NAKA l(c* AcA)
鲍耳环填料
拉西环,矩鞍环,异鞍环,十字环,鲍尔环
气液平衡
平衡-吸收过程的传质速率等于解吸过 程
溶解度
每100kg水中溶解气体的kg数
气液平衡
常见气体的平衡溶解度
亨利定律
亨利定律
一定温度下,稀溶液中溶质的溶解度与气相 中溶质的平衡分压成正比
参数换算
c H p* x p*/E y* m x
相关文档
最新文档