核磁共振氢谱
合集下载
核磁共振氢谱(NMR)

氢谱可以用于鉴定生物体内代谢产物的化学结构,有助于了解生物体的代谢过程 和生理状态。
代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。
代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。
第二章核磁共振氢谱

常见基团化学位移
氢核类型 环丙烷 伯烷 仲烷 叔烷 烯丙基取代 碘取代 酯基取代 羧基取代 酰基取代 炔 苯基取代 醚基取代
示例
化学位移δ ppm
0.2 RCH3 R2CH2 R3CH C=C-CH3 I-CH3 H3C-COOR H3C-COOH H3C-COR C≡C-H 0.9 1.3 1.5 1.7 2.0-4.0 2.0-2.2 2.0-2.6 2.0-2.7 2.0-3.0 2.2-3.0 R-O-CH3 3.3-4.0
Δν/J
6.5
5.5
4.5
2.5 1.5 1.5
2.3.4一级谱图的分析
所谓的一级谱,就是核之间的偶合较弱,因而 谱线分裂较简单,并且服从(n+1)分裂规律 (I=1/2)那些NMR谱图。除此外均为高级谱。 一级谱的特征: 1。各组峰的中心为各基团相应质子化学位移 的值。(一般以TMS为原点。) 2。各组峰的面积为各基团相应质子数之比。
H F F
H
X X Ha Ha' Ha Ha'
Hb
Hb'
Y Hb
Y
Y
2.3.3自旋体系(spin system)
1.定义 相互偶合的核组成一个自旋体系.体系内 的核相互偶合但不与体系外任何一个核 偶合.在体系内部不要求一个核和它以外 所有的核都偶合.例如CH3COOC2H5分 别存在A3和A3X2两个自旋体系.
1。考察分子各原子核相对静止状 态
可用对称操作分析两个基团能否相互交 换来判断两个基团(核)是否化学等价.可 分为三种情况.X HaC Nhomakorabea
两个取代基完全相同,Ha,Hb可以用二次 对称轴C2和对称平面相互交换.具有相同 的化学位移,它们是化学等价的.
核磁共振氢谱(1H-NMR)

快速旋转等价
两个或两个以上质子在单键快速旋转过程中位置可对映互换
氯乙烷,乙醇中CH3
对称性化学等价
在分子中通过对称操作而发生互换的核
对称轴
对称面
对称中心
(2)磁等价
化学位移相同,对任意另一核的耦合常数相同
磁不等价
化学位移相同
对任意另一核的耦合常数不相同
双键上同碳质子
带有双键性质的单键质子
(3)不等价质子
δ3=5.25-0.35=4.90
δ4=5.25+2.11=7.36
e芳环氢
δHi=7.26+ΣZi
1溶剂影响:
低极性溶剂,CDCL3,CCL4,δoHi =7.26
高极性溶剂, DMSOδoHi =7.41
2.取代基在邻间对位作用不同
f.芳杂环
环上的氢的化学位移与其相对于杂原子的位置有关
g.醛基氢:9-12ppm
可用重水交换
活泼氢积分面积不足或消失
(5).丙环体系
§3自旋耦合与裂分
n+1规律
1.某组环3;1)取向,使与其发生耦合的核裂分为n+1条峰
2.每相邻的两条谱线间距离都是相等的
3.谱线间强度比为(a+b)n展开式的各项系数
耦合常数
裂分峰的数目和J值可判断相互耦合的氢核数目及基团的连接方式
B.邻近基团的磁各向异性
某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。
(1)芳环
在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。
两个或两个以上质子在单键快速旋转过程中位置可对映互换
氯乙烷,乙醇中CH3
对称性化学等价
在分子中通过对称操作而发生互换的核
对称轴
对称面
对称中心
(2)磁等价
化学位移相同,对任意另一核的耦合常数相同
磁不等价
化学位移相同
对任意另一核的耦合常数不相同
双键上同碳质子
带有双键性质的单键质子
(3)不等价质子
δ3=5.25-0.35=4.90
δ4=5.25+2.11=7.36
e芳环氢
δHi=7.26+ΣZi
1溶剂影响:
低极性溶剂,CDCL3,CCL4,δoHi =7.26
高极性溶剂, DMSOδoHi =7.41
2.取代基在邻间对位作用不同
f.芳杂环
环上的氢的化学位移与其相对于杂原子的位置有关
g.醛基氢:9-12ppm
可用重水交换
活泼氢积分面积不足或消失
(5).丙环体系
§3自旋耦合与裂分
n+1规律
1.某组环3;1)取向,使与其发生耦合的核裂分为n+1条峰
2.每相邻的两条谱线间距离都是相等的
3.谱线间强度比为(a+b)n展开式的各项系数
耦合常数
裂分峰的数目和J值可判断相互耦合的氢核数目及基团的连接方式
B.邻近基团的磁各向异性
某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。
(1)芳环
在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。
核磁共振氢谱

+ C
+ + +
C +
- C
+
C -
- C
+
C -
ห้องสมุดไป่ตู้
- C
+
O -
-
电子云密度小, 屏蔽 电子云密度小,负屏蔽(-)
电子云密度高, 屏蔽 电子云密度高,正屏蔽(+)
1.乙酸乙酯中得的三种类型氢核电子屏蔽效 1.乙酸乙酯中得的三种类型氢核电子屏蔽效 应是否相同?若发生核磁共振, 应是否相同?若发生核磁共振,共振峰应 当怎么排列? 值大小如何? 当怎么排列?δ值大小如何?
3.3 氢键缔合对化学位移的影响
氢核电子云密度减小,其化学位移增大, 氢核电子云密度减小,其化学位移增大,向低场 位移
浓度越大,氢核化学位移向低场移动, 浓度越大,氢核化学位移向低场移动,数值增大
分子间氢键与分子内氢键
3.4 其他因素对化学位移的影响
溶剂、分子内范德华力、 溶剂、分子内范德华力、不对称因素
CH3-COO-CH2-CH3
2. 下列各组化合
1
CH3CH2CH2C
CH
与
CH3CH2CH2CH CH2 O CH3
(
物用箭头标记 的氢核中, 的氢核中,何 者共振峰位于 地场? 地场?为什么 ?
)
CH3
2
与
(
)
O
3
CH3
与
O
(
)
CH3
4
与
H3C
(
)
3.3 氢核交换对化学位移的影响
RCOOHa + R`OHb = RCOOHb + R`OHa 平均峰化学位移δobs = Naδa+ Nbδb 平均峰化学位移 例如:乙酸的浓度是 水也是0.1mol/L,而纯 例如:乙酸的浓度是0.5mol/L, 水也是 , 乙酸和水的化学位移分别为11.6 和5.2 ppm, 计算平均 乙酸和水的化学位移分别为 化学位移
核磁共振氢谱

核磁共振氢谱核磁共振氢谱(NuclearMagneticResonanceSpectroscopy,简称NMR)是一种能用来研究化合物中原子构型的分子物理学技术。
它可以用来研究物质的构造或化学结构,它也可以用来识别和鉴定分子特征。
NMR是一种能识别产生信号的分子,也是一种能探测物质内部构型的技术。
NMR可以用来检测氢原子、碳原子和其他同位素在分子中结合的形式、位置以及构型,并能定位其中自由基的存在。
它可以发现未知的结构,以及识别以相同元素为基础的化合物,帮助我们进行有效的化学研究。
NMR的工作原理是通过对模式分子中的官能团(如氢、氧、碳等)进行磁化,并将其与激发源相互作用,以计算分子中核磁共振部分所产生的信号。
果分子是不对称的,则可以通过磁场的强度及宽度,判断原子结构的结合能力及空间位置。
NMR可以通过电脑模型的研究来模拟出不同的构象,以检测分子的构象。
NMR的应用非常广泛,在科学研究、医疗以及化学工业中都有它的身影。
它不仅可以帮助我们识别和鉴定有机分子的结构,而且可以帮助我们了解有机分子的空间构型,为合成化学提供重要参考依据。
在药物分子研究中,NMR可以帮助我们了解药物分子的结构,寻找新药物的分子结构特征,以及分析药物-蛋白质相互作用的机制。
NMR同时也被用来研究有机合成中涉及的重要反应机理,协助分析过程中发生的变化,研究其机理,从而更好地控制和利用反应。
NMR是一种强大的分子物理学技术。
它的发展为化学研究带来了巨大的进步。
它可以非常准确地识别出物质中不同原子的空间位置,从而为化学研究提供重要的线索和信息。
在合成化学、药物分子研究以及其他生物化学研究中,NMR的应用日益广泛,可以帮助我们更好地了解我们所研究的物质。
第四章 氢谱

各向异性效应
化合物中非球形对称的电子云,如 π电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向相同,对外 磁场起增强作用,产生顺磁性屏蔽的作用。 通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + ”表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -”表示。
磁等价
如果两个原子核不仅化学位移相同( 即化学等价),而且还以相同的耦合常数与 分子中的其他核耦合,则这两个原子核就是磁等价的。 乙醇分子中甲基的三个质子有相同的化学环境,是化学等价的,亚甲基的两个质 子也是化学等价的。同时,甲基的三个质子与亚甲基每个质子的耦合常数都相等 ,所以三个质子是磁等价的,同样的理由,亚甲基的两个质子也是磁等价的。 对位取代苯2,Ha和 Ha’ ,Hb和 Hb’ 是化学等价的,但 Ha与 Hb是间隔三个键的 2 邻位耦合(3J ),Ha’ 与 Hb是间隔五键的对位耦合(5J ),所以它们不是磁等 价的;同样,处于取代基 Y 邻位的 Hb和 Hb 也是化学等价,但不是磁等价的。 如果是对称的三取代苯3,则 Ha和 Ha’ 是磁等价的,因为它们与 Hb都是间位耦 3 合(4J),耦合常数相等。
1H
是有机化合物中最常见的同位素,1H NMR 谱是有机物结构解 析中最有用的核磁共振谱之一。
核磁共振氢谱
6
4 4 4
提供的结构信息: δ、J、峰的裂分情况和峰面积
氢化学位移 δ
1.
化学位移值能反映质子的类型以及所处的化学环境,与分子 结构密切相关
2. 3.
δ (TMS)=0
τ(TMS)=10
第3章核磁共振氢谱

自旋角动量: P h I(I1)
2
核磁矩: •P
I:自旋量子数; h:普朗克常数; γ:磁旋比;
4
第一节 基本原理
➢ 自旋量子数(I)不为零的核都具有磁矩,
➢ 原子的自旋情况可以用(I)表征
自旋量子数与原子核的质量数及质子数关系
质量数(a)原子序数(Z)自旋量子(I) 例子
偶数
偶数
0
12C, 16O, 32S
H2,2个氢,1个直立氢Ha,1个平展氢He。 H3,1个直立氢Ha。-OH在平展位。 H4,Ha还是He?
41
第二节 核磁共振氢谱的主要参数
例题 据化合物C10H10O的氢谱,推测其结构 Ω=6,可能有苯环
3 1
6
J=18Hz
HO CC
H
C CH3
42
第二节 核磁共振氢谱的主要参数
3. 远程偶合(long range coupling) (4J或J远)
➢ 自旋系统:分子中相 互偶合的核构成一个 自旋系统。
OCH 3
➢ 系统内部的核互相偶 合,但不和系统外的 任何核相互作用。
➢ 系统与系统之间是隔
离的.
O
O
CH3
51
第二节 核磁共振氢谱的主要参数
自旋系统表示方法
互相偶合核的Δ较大时(Δυ≥J),用A,M,X表示, 字母右下标数字表示磁全同质子的数目。
44
第二节 核磁共振氢谱的主要参数
• 磁等价
• 分子中一组化学等价核(化学位移相同)对组外其它 任何一个核的偶合相等,则这组核称为磁等价核。
H CH H
化学等价 磁等价
H HCF
F
H H2 H HCC CH
HH
核磁共振氢谱

核磁共振光谱仪的简单构造示意图
实现核磁共振的方法,只有以下两种: (1)B0不变,改变v 方法是将样品置于强度固定的外加磁场中,并逐步改 变照射用电磁辐射的频率,直至引起共振为止,这种方 法叫扫频(frequency sweep)。 (2)v不变,改变B0 方法是将样品用固定电磁辐射进行照射,并缓缓改变 外加磁场的强度,达到引起共振为止。这种方法叫扫场 (field sweep)。 通常,在实验条件下实现NMR多用2法。
h 2
m:磁量子数(magnetic quantum number), m = I, I-1, I-2,…-I
对于I = 1/2的核,如1H, 13C,m = 1/2, -1/2
自旋运动的原子核与外加磁场的作用能量:
E =- B0
h E Z B0 m B0 大小: 2 1 h 1 h E1 B0 E B 1 0 I = 1/2时, 2 2 2 2 2 2
能级差:
E E
1 2
E1
2
h B0 2
h B0 2
任意两个能级的能量差:
E m
量子力学选律: m = 1的跃迁是许可跃迁 任意相邻两个能级的能量差:
h E B0 2
核磁共振现象:Larmor(拉莫)进动
当原子核的核磁矩处于外加磁场B0 中,由于核自身 的旋转,而外加磁场又力求它取向于磁场方向,在这两 种力的作用下,核会在自旋的同时绕外磁场的方向进行 回旋,这种运动称为Larmor (拉莫)进动。 近似于陀 螺在重力场中的进动 两种取向不完全与外磁场平行,相互作用, 产生进动 (拉莫进动)进动频率 ; 角速度; = 2 = B0 磁旋比; B0外磁场强度; 两种进动取向不同的氢核之间的能级差:E= B0 (磁矩)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核磁共振氢谱是一种重要的分析技术,用于研究物质中氢原子的核自旋行为。其基本原理是利用原子核的自旋和磁矩,在磁场中产生能级裂分,通过测量物,其核磁共振氢谱可以显示出不同化学环境下的氢原子信号,从而揭示出分子的结构特征。影响化学位移的因素包括电子云密度、键合情况、邻近基团的影响等,这些因素会导致不同位置的氢原子在谱图上出现不同的位移。此外,自旋偶合与裂分也是核磁共振氢谱中的重要现象,它与分子中氢原子之间的相互作用有关,进一步提供了分子结构的信息。通过对甲酸的核磁共振氢谱进行解析,我们可以深入了解其分子结构,为化学研究提供有力支持。