安徽省宿州市十三所省重点中学2019-2020学年高一数学上学期期中联考试题【带解析】

合集下载

宿州市联考2019-2020学年高一上期中数学试卷(有答案)(加精)

宿州市联考2019-2020学年高一上期中数学试卷(有答案)(加精)

2019-2020学年安徽省宿州市十三所重点中学联考高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}2.下列函数中,既是偶函数又在(﹣∞,0)单调递减的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|3.函数f(x)=的定义域为()A.(2,+∞)B.[2,+∞)C.(2,3]D.(﹣∞,3]4.下列各函数中,图象完全相同的是()A.y=2lgx和y=lgx2B.y=和y=C.y=和y=xD.y=x﹣3和y=5.已知函数,则f[f()]=()A.4 B.C.﹣4 D.﹣6.设a=log43,b=30.4,c=log3,则()A.b>a>c B.a>c>b C.c>a>b D.a>b>c7.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(﹣2015)=()A.k﹣2 B.2﹣k C.1﹣k D.﹣k﹣18.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1) D.(1,2)9.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),则()A.f(a)<f(a﹣1)<f(a+2)B.f(a﹣1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a﹣1)D.f(a+2)<f(a)<f(a﹣1)10.函数f(x)=,下列结论不正确的()A.此函数为偶函数B.此函数的定义域是RC.此函数既有最大值也有最小值D.方程f(x)=﹣x无解11.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则()A.M=N B.M⊋N C.M⊊N D.M∩N=∅12.若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a (x+k)的图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.已知幂函数y=f(x)的图象过点,则f(2)=.14.若函数y=f(x)的定义域为[﹣3,2],则函数y=f(3﹣2x)的定义域是.15.函数f(x)=4x﹣2x﹣1﹣1取最小值时,自变量x的取值为.16.若函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(m,n),则log m n=.三、解答题(共6小题,满分70分)17.计算:(1)(2)﹣()0﹣(3)+1.5﹣2(2)已知log73=alog74=b,求log748.(其值用a,b表示)18.已知集合A={x|a﹣1<x<a+1},B={x|0<x<1}.(1)若a=﹣,求A∪B;(2)若A∩B=∅,求实数a的取值范围.19.已知f(x)=(1)作出函数f(x)的图象,并写出单调区间;(2)若函数y=f(x)﹣m有两个零点,求实数m的取值范用.20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;(3)求函数f(x)在区间[t﹣1,t]上的最小值g(t).21.已知f(x)是定义在R上的奇函数,且f(x)=.(1)求m,n的值;(2)用定义证明f(x)在(﹣1,1)上为增函数;(3)若f(x)≤对恒成立,求a的取值范围.22.已知函数f(x)是定义在[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1.(1)求函数f(x)的解析式,并判断函数f(x)在[0,1]上的单调性(不要求证明);(2)解不等式f(2x﹣1)﹣≥0.2019-2020学年安徽省宿州市十三所重点中学联考高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}【考点】补集及其运算.【专题】计算题.【分析】根据题意,先用列举法表示集合A,进而由补集的性质,可得B=∁A(∁A B),计算可得答案.【解答】解:根据题意,集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},若C A B={1,3,5},则B=∁A(∁A B)={0,2,4},故选B.【点评】本题考查补集的定义与运算,关键是理解补集的定义.2.下列函数中,既是偶函数又在(﹣∞,0)单调递减的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】综合题;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义结合函数的性质进行判断即可.【解答】解:A.y=x3是奇函数,不满足条件.B.y=|x|+1是偶函数,当x<0时,y=﹣x+1为减函数,满足条件.C.y=﹣x2+1是偶函数,则(﹣∞,0)上为增函数,不满足条件.D.y=2﹣|x|是偶函数,当x<0时,y=2﹣|x|=2x为增函数,不满足条件.故选:B【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3.函数f(x)=的定义域为()A.(2,+∞)B.[2,+∞)C.(2,3]D.(﹣∞,3]【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由,得0<x﹣2≤1,即2<x≤3.∴函数f(x)=的定义域为(2,3].故选:C.【点评】本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.4.下列各函数中,图象完全相同的是()A.y=2lgx和y=lgx2B.y=和y=C.y=和y=xD.y=x﹣3和y=【考点】判断两个函数是否为同一函数.【专题】函数思想;定义法;函数的性质及应用.【分析】分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:A.y=2lgx的定义域为(0,+∞),y=lgx2的定义域为(﹣∞,0)∪(0,+∞),两个函数的定义域不相同,不是相同函数,B.y==,两个函数的定义域和对应法则相同,是相同函数,C.y==x,函数的定义域为(﹣∞,0)∪(0,+∞),两个函数的定义域不相同,不是相同函数,D.y==|x﹣3|,两个函数的对应法则不相同,不是相同函数,故选:B【点评】本题主要考查函数定义的判断,分别判断函数定义域和对应法则是否相同是解决本题的关键.5.已知函数,则f[f()]=()A.4 B.C.﹣4 D.﹣【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】将函数由内到外依次代入,即可求解【解答】解:根据分段函数可得:,则,故选B【点评】求嵌套函数的函数值,要遵循由内到外去括号的原则,将对应的值依次代入,即可求解.6.设a=log43,b=30.4,c=log3,则()A.b>a>c B.a>c>b C.c>a>b D.a>b>c【考点】对数值大小的比较.【专题】函数思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=log43<1,b=30.4>1,c=log3<0,∴b>a>c.故选:A.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.7.已知f(x)=ax3+bx+1(ab≠0),若f(2015)=k,则f(﹣2015)=()A.k﹣2 B.2﹣k C.1﹣k D.﹣k﹣1【考点】函数奇偶性的性质.【专题】转化思想;构造法;函数的性质及应用.【分析】根据条件构造函数g(x)=f(x)﹣1,判断函数的奇偶性,进行求解即可.【解答】解:∵f(x)=ax3+bx+1(ab≠0),∴f(x)﹣1=ax3+bx,(ab≠0)是奇函数,设g(x)=f(x)﹣1,则g(﹣x)=﹣g(x),即f(﹣x)﹣1=﹣(f(x)﹣1)=1﹣f(x),即f(﹣x)=2﹣f(x),若f(2015)=k,则f(﹣2015)=2﹣f(2015)=2﹣k,故选:B【点评】本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.8.函数f(x)=2x﹣1+log2x的零点所在的一个区间是()A.(,)B.(,)C.(,1) D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增,f(1)=1,f()=﹣1,可判断分析.【解答】解:∵函数f(x)=2x﹣1+log2x,在(0,+∞)单调递增.∴f(1)=1,f()=﹣1,∴根据函数的零点的判断方法得出:零点所在的一个区间是(),故选:C.【点评】本题考查了函数的性质,函数的零点的判断方法,属于容易题.9.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),则()A.f(a)<f(a﹣1)<f(a+2)B.f(a﹣1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a﹣1)D.f(a+2)<f(a)<f(a﹣1)【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】根据已知分析出函数的图象和性质,进而可得三个函数值的大小.【解答】解:∵f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a﹣x),故函数f(x)的图象是开口朝上,且以直线x=a为对称轴的抛物线,∴距离对称轴越近,函数值越小,故f(a)<f(a﹣1)<f(a+2),故选:A.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.10.函数f(x)=,下列结论不正确的()A.此函数为偶函数B.此函数的定义域是RC.此函数既有最大值也有最小值D.方程f(x)=﹣x无解【考点】分段函数的应用.【专题】函数思想;分析法;函数的性质及应用.【分析】由奇偶性的定义,即可判断A;由分段函数的定义域的求法,可判断B;由最值的概念,即可判断C;由函数方程的思想,解方程即可判断D.【解答】解:对于A,若x为有理数,则﹣x为有理数,即有f(﹣x)=f(x)=1;若x为无理数,则﹣x为无理数,f(﹣x)=f(x)=π,故f(x)为偶函数,故正确;对于B,由x为有理数或无理数,即定义域为R,故正确;对于C,当x为有理数,f(x)有最小值1;当x为无理数,f(x)有最大值π,故正确;对于D,令f(x)=﹣x,若x为有理数,解得x=﹣1;若x为无理数,解得x=﹣π,故D不正确.故选:D.【点评】本题考查函数的性质和运用,考查函数的奇偶性和最值,及定义域的求法,考查函数方程思想,属于基础题.11.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则()A.M=N B.M⊋N C.M⊊N D.M∩N=∅【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;综合法;集合.【分析】从元素满足的公共属性的结构入手,对集合N中的k分奇数和偶数讨论,从而可得两集合的关系.【解答】解:对于集合N,当k=2n﹣1,n∈Z,时,N={x|x=,n∈Z}=M,当k=2n,n∈Z,时N={x|x=,n∈Z},∴集合M、N的关系为M⊊N.故选:C.【点评】本题的考点是集合的包含关系判断及应用,解题的关键是对集合M中的k分奇数和偶数讨论.12.若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a (x+k)的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.【解答】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.二、填空题(共4小题,每小题5分,满分20分)13.已知幂函数y=f(x)的图象过点,则f(2)=.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】利用幂函数的定义设幂函数f(x)=xα,再将点的坐标代入,即可求出.【解答】解:设幂函数f(x)=xα,∵幂函数y=f(x)的图象过点,∴=()α,解得α=.∴f(x)=x.则f(2)=故答案为:.【点评】本题主要考查了幂函数的概念、解析式、定义域、值域.熟练掌握幂函数的定义是解题的关键.14.若函数y=f(x)的定义域为[﹣3,2],则函数y=f(3﹣2x)的定义域是[,3].【考点】函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】函数y=f(x)的定义域为[﹣3,2],直接由﹣3≤3﹣2x≤2求得x的范围得答案.【解答】解:∵函数y=f(x)的定义域为[﹣3,2],∴由﹣3≤3﹣2x≤2,解得.故函数y=f(3﹣2x)的定义域是:[,3].故答案为:[,3].【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的解决方法,是基础题.15.函数f(x)=4x﹣2x﹣1﹣1取最小值时,自变量x的取值为﹣2.【考点】函数的最值及其几何意义.【专题】函数思想;换元法;函数的性质及应用.【分析】设2x=t(t>0),则y=t2﹣t﹣1,由配方,可得函数的最小值及对应的自变量x的值.【解答】解:函数f(x)=4x﹣2x﹣1﹣1,设2x=t(t>0),则y=t2﹣t﹣1=(t﹣)2﹣,当t=,即x=﹣2时,取得最小值,且为﹣.故答案为:﹣2.【点评】本题考查函数的最值的求法,注意运用换元法和指数函数的值域,以及二次函数的最值求法,属于中档题.16.若函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(m,n),则log m n=.【考点】对数函数的图像与性质.【专题】计算题;转化思想;数学模型法;函数的性质及应用.【分析】令x﹣3=1,可得函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点坐标,进而得到答案.【解答】解:令x﹣3=1,则x=4,则f(4)=2恒成立,即函数f(x)=log a(x﹣3)+2(a>0且a≠1)的图象过定点(4,2),即m=4,n=2,∴log m n=log42=,故答案为:.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.三、解答题(共6小题,满分70分)17.计算:(1)(2)﹣()0﹣(3)+1.5﹣2(2)已知log73=alog74=b,求log748.(其值用a,b表示)【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(1)利用有理指数幂的运算法则化简求解即可.(2)直接利用对数运算法则化简求解即可.【解答】(本题满分10分)解:(1)(2)﹣()0﹣(3)+1.5﹣2=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)log73=a,log74=b,log748=log7(3×16)=log73+log716=log73+2log74=a+2b.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查对数的运算法则以及有理指数幂的运算法则的应用,考查计算能力.18.已知集合A={x|a﹣1<x<a+1},B={x|0<x<1}.(1)若a=﹣,求A∪B;(2)若A∩B=∅,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;转化思想;综合法;集合.【分析】(1)化简集合A,再求A∪B;(2)若A∩B=∅,则a﹣1≥1或a+1≤0,即可求实数a的取值范围.【解答】解:(1)当a=﹣时,A={x|﹣<x<},﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以A∪B={x|﹣<x<1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)因为A∩B=∅,所以a﹣1≥1或a+1≤0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a≤﹣1或a≥2,所以a的取值范围是(﹣∞,﹣1]∪[2,+∞).﹣﹣﹣﹣﹣﹣【点评】本题考查集合的运算,考查学生的计算能力,比较基础.19.已知f(x)=(1)作出函数f(x)的图象,并写出单调区间;(2)若函数y=f(x)﹣m有两个零点,求实数m的取值范用.【考点】函数单调性的判断与证明;函数零点的判定定理.【专题】函数的性质及应用.【分析】(1)根据函数f(x)的表达式,求出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象读出即可.【解答】解:(1)画出函数f(x)的图象,如图示:,由图象得:f(x)在(﹣∞,0],(0,+∞)单调递增;(2)若函数y=f(x)﹣m有两个零点,则f(x)和y=m有2个交点,结合图象得:1<m≤2.【点评】本题考查了指数函数、对数函数的图象及性质,考查函数的零点问题,是一道基础题.20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;(3)求函数f(x)在区间[t﹣1,t]上的最小值g(t).【考点】二次函数的性质;函数解析式的求解及常用方法;函数单调性的性质;二次函数在闭区间上的最值.【专题】综合题;分类讨论;转化思想;数学模型法;函数的性质及应用.【分析】(1)由已知可得函数图象的顶点为(1,1),将f(0)=3代入,可得f(x)的解析式;(2)若f(x)在区间[3m,m+2]上不单调,则1∈(3m,m+2),解得实数m的取值范围;(3)结合二次函数的图象和性质,分析各种情况下,函数f(x)在区间[t﹣1,t]上的最小值g(t),综合讨论结果,可得答案.【解答】解:(1)∵f(0)=f(2)=3,∴函数图象关于直线x=1对称,又∵二次函数f(x)的最小值为1,∴设f(x)=a(x﹣1)2+1,由f(0)=3得:a=2,故f(x)=2(x﹣1)2+1=2x2﹣4x+3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要使函数在区间[3m,m+2]上不单调,则1∈(3m,m+2),解得:m∈(﹣1,).﹣﹣﹣﹣﹣﹣﹣﹣(3)由(1)知f(x)=2(x﹣1)2+1,所以函数f(x)图象开口向上,对称轴方程为x=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当t﹣1≥1即t≥2时,函数f(x)在区间[t﹣1,t]上单调递增当x=t﹣1时,f(x)的最小值g(t)=2t2﹣4t+9﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t﹣1<1<t.即1<t<2时,函数f(x)在区间[t﹣1,1]上单调递减,在区间[1,t]上单调递增,当x=1时,f(x)的最小值g(t)=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③当t≤1时,函数f(x)在区间[t﹣1,t]上单调递减当x=t时,f(x)的最小值g(t)=2t2﹣4t+3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上所述,g(t)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.21.已知f(x)是定义在R上的奇函数,且f(x)=.(1)求m,n的值;(2)用定义证明f(x)在(﹣1,1)上为增函数;(3)若f(x)≤对恒成立,求a的取值范围.【考点】函数恒成立问题;函数奇偶性的性质.【专题】函数的性质及应用.【分析】(1)根据函数是奇函数,得f(0)=0,f(﹣1)=﹣f(1);(2)根据增函数的定义进行证明;(3)求函数f(x)的最大值即可.【解答】解:∵x∈R,f(x)是定义在R上的奇函数,∴f(0)=0,得m=0(1)因f(x)是定义在R上的奇函数,且f(x)=.所以f(﹣1)=﹣f(1),解得n=0,∴m=n=0(2)任取﹣1<x1<x2<1,===∵﹣1<x1<1,﹣1<x2<1∴﹣1<x1x2<1∴1﹣x1x2>0又x1<x2,∴x1﹣x2<0∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴f(x)在(﹣1,1)上单调递增(3)∵∴f(x)在[﹣上的最大值为f()=,∴,∴.【点评】本题主要考查函数的奇偶性和单调性,已经利用函数的单调性求函数的最值.22.已知函数f(x)是定义在[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1.(1)求函数f(x)的解析式,并判断函数f(x)在[0,1]上的单调性(不要求证明);(2)解不等式f(2x﹣1)﹣≥0.【考点】函数单调性的判断与证明;函数解析式的求解及常用方法;函数奇偶性的性质.【专题】函数的性质及应用.【分析】(1)根据函数奇偶性的定义求出f(x)在x∈[﹣1,0]上的x的范围即可;(2)求出f()的值,问题掌握解不等式f(2x﹣1)≥f(),结合函数的单调性求出不等式的解集即可.【解答】解:(1)∵函数f(x)是定义在[﹣1,1]上的偶函数,∴f(﹣x)=f(x),当x∈[0,1]时,f(x)=()x+log2(﹣x)﹣1,设﹣x∈[0,1],则x∈[﹣1,0],∴f(﹣x)=+log2(+x)﹣1=4x+log2(+x)﹣1=f(x),∴x∈[﹣1,0]时:f(x)=4x+log2(+x)﹣1;f(x)在[﹣1,0)递增,在(0,1]递减;(2)x∈[0,1]时:f(x)递减,而f()=,∴解不等式f(2x﹣1)﹣≥0,即解不等式f(2x﹣1)≥f(),∴0≤2x﹣1≤,解得:≤x≤,根据函数f(x)是偶函数,x∈[﹣1,0]时:﹣≤x≤﹣.【点评】本题考查了求函数的解析式问题,考查函数的奇偶性、单调性的应用,是一道中档题.。

宿州市十三所重点中学 2021-2022 学年度期终质量检测 数学(人教版)含答案

宿州市十三所重点中学 2021-2022 学年度期终质量检测 数学(人教版)含答案

宿州市十三所重点中学2021-2022学年度期终质量检测高一数学试卷(人教版)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{lg 0},{0,1,2,3} A xx B =>=∣,则A B = ()A .{2,3}B .{1,2,3}C .(1,)+∞D .(2,3)2.已知5cos 13α=-,且α为第二象限角,则sin α=()A .1213-B .513-C .1213D .1253.已知13x x -+=,则22x x -+=()A .3B .5C .7D .94.已知1sin 63πα⎛⎫+= ⎪⎝⎭,则cos 2+3πα⎛⎫= ⎪⎝⎭()A .79-B .23-C .23D .795.已知函数()sin()f x A x ωϕ=+ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为()A .3π-B.6π-C .6π D.3π6.已知cos1a =,2(log sin1)b =,cos12c =,则a ,b ,c 的大小关系是()A .c a b>>B .b a c>>C .a b c>>D .c b a>>7.设()f x 是定义在R 上的函数且对任意实数x 恒有(2)()f x f x +=-,当[)2,0∈x 时,2()20221x f x =+,则(2022)f =()A .2022B .2-C .2D .20238.若函数()f x 图象上存在不同两点,M N 关于原点对称,则称点对[],M N 是函数()f x 的一对“和谐点对”(点对[],M N 与[],N M 看作同一对“和谐点对”),已知函数()lg(),0sin ,0x x f x x x --<⎧=⎨>⎩,则此函数的“和谐点对”有()A.0对B.1对C.2对D.3对二、选择题:本题共4小题,每小题5分,共20分。

安徽省宿州市十三所省重点中学2019_2020学年高一数学上学期期中联考试题(扫描版)

安徽省宿州市十三所省重点中学2019_2020学年高一数学上学期期中联考试题(扫描版)

宿州市十三所重点中学2019-2020学年度第一学期期中质量检测高一数学参考答案1.A2.B 【解析】 取81,81-=x ,则21,21-=y ,选项B ,D 符合;取1=x ,则1=y ,选项B 符合题意.3.C4.D5.A 解析 由2a <2-a -x ,解得x <-2a ,即B ={x |x <-2a }。

∵A ∩B =A ,∴A ⊆B ,∴2≤-2a ,解得a ≤-1。

6.D 解析:由已知有022010x x x ≤≤⎧⇒<≤⎨≠⎩,答案:D7.B 解析:因为y =log 5x 在定义域内是单调递增函数,所以b <a 。

又log 54<1<log 45,所以a <c ,即b <a <c 。

8.B 解析:由2a =5b =m 得a =log 2m ,b =log 5m ,所以1a +1b=log m 2+log m 5=log m 10. 因为1a +1b =1,所以log m 10=1.所以m =109.C 解析:由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示。

由图可知函数f (x )在定义域内的零点个数为2. 故选C.10.C11.D 解析:当0>a 时 若x ≥1时,f (x )=1+alog 2x ≥1,若x <1时,f (x )=x +4-2a 最大值=)1(f 1+4-2a 必须大于或等于1,才能满足f (x )的值域为R ,可得1+4-2a ≥1解得]2,0(∈a .当0≤a 时,若x ≥1时,f (x )=1+alog 2x ≤1,,若x <1时,f (x )=x +4-2a ≤=)1(f 1+4-2a ,不符合题意,故选D 。

12.B 解析 原不等式变形为m 2-2m <8∙2x, ∵函数y =2x在(-∞,-1]上是增函数, ∴0<2x ≤21,当x ∈(-∞,-1]时,m 2-2m <8∙2x 恒成立等价于 22002m m m ≤⇒≤≤-,故选B.二填空题13.[0,+∞)14.6 解析 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=6.15. ()(],00,1-∞⋃ 解析:当0a =时,()0f x =不符合题意;当0a >时,符合题意,又101a a -≥⇒≤,故(]0,1a ∈;当0a <时,符合题意。

宿州市十三所省重点中学2019_2020学年高二数学上学期期中联考试题理含解析

宿州市十三所省重点中学2019_2020学年高二数学上学期期中联考试题理含解析
16。已知k∈R,P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab的最大值为________.
【答案】9
【解析】
【分析】
先根据直线与圆相交,圆心到直线的距离小于等于半径,以及圆半径为正数,求出k的范围,再根据P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,满足直线与圆方程,代入直线与圆方程,化简,求出用k表示的ab的式子,根据k的范围求ab的最大值.
【详解】因为 表示圆的方程,
所以 ,即 ;
又过点 有两条直线与圆 相切,
所以点 在圆 外,
因此 ,即 ;
综上, 。
故选:C
【点睛】本题主要考查由直线与圆位置关系求参数,熟记过圆外一点的圆的切线条数的判定方法,以及圆的一般方程即可,属于常考题型.
9.已知二面角 的平面角是锐角 , 内一点 到 的距离为3,点C到棱 的距离为4,那么 的值等于
因此直线 与圆 相离,
所以圆 上的点 到直线 距离的最小值为 ,
所以 的最小值为 .
故选:D
【点睛】本题主要考查直线与圆位置关系的综合,熟记直线与圆位置关系,会求圆上的点到直线的距离即可,属于常考题型.
二、填空题:(本大题共4小题,每小题5分,共20分.)
13.以点 为圆心,并且与 轴相切的圆的方程是______.
【答案】 ,定义域为
【解析】
【分析】
设出所截等腰三角形的底边边长为xcm,在直角三角形中根据两条边长利用勾股定理做出四棱锥的高,表示出四棱锥的体积,根据实际意义写出定义域.
【详解】如图,设所截等腰三角形的底边边长为xcm,
在正四棱锥E点,EF⊥BC,EF=5,
12.若圆 : 上的任意一点 关于直线 : 对称的点仍在圆 上,则 的最小值为( )

安徽省宿州市2019-2020学年高一上学期数学期中考试试卷(I)卷

安徽省宿州市2019-2020学年高一上学期数学期中考试试卷(I)卷

安徽省宿州市2019-2020学年高一上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共27分)1. (2分)已知集合,集合,则()A . (-)B . (-]C . [-)D . [-]2. (2分)已知函数的定义域是一切实数,则的取值范围是()A .B .C .D .3. (2分) (2015高一下·嘉兴开学考) 已知a>b>0,且|lga|=|lgb|,则函数f(x)=ax+x﹣b的零点落在区间()A . (﹣2,﹣1)B . (﹣1,0)C . (0,1)D . (1,2)4. (2分) (2017高一上·安庆期末) 若偶函数f(x)在区间[﹣1,0]上是减函数,α,β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是()A . f(cosα)>f(cosβ)B . f(sinα)<f(cosβ)C . f(cosα)<f(sinβ)D . f(sinα)>f(sinβ)5. (2分)若0<x1<x2<1,则()A . ﹣>lnx2﹣lnx1B . ﹣<lnx2﹣lnx1C . x2>x1D . x2<x16. (2分) (2019高一上·赣榆期中) 下列函数中,既是偶函数又在区间上单调递减的是()A .B .C .D .7. (2分)设函数f(x)是定义在R上的以5为周期的偶函数,若f(3)>1,,则实数a的取值范围是()A . (-2,1)B .C . (-1,2)D .8. (2分)已知f(x)是偶函数,当x>0时,f(x)单调递减,设a=-21.2 ,,c=2log52,则f(a),f(b),f(c)的大小关系为()A . f(c)<f(b)<f(a)B . f(c)<f(a)<f(b)C . f(c)>f(b)>f(a)D . f(c)>f(a)>f(b)9. (2分)设,,,则a,b,c的大小顺序为()A . a<b<cB . c<b<aC . c<a<bD . b<a<c10. (2分) (2017高二下·河口期末) 已知函数,若,则()A .B .C .D .11. (2分)关于x的方程(m+3)x2﹣4mx+2m﹣1=0的两根异号,且负根的绝对值比正根大,那么实数m的取值范围为()A . (﹣3,0)B . (0,3)C . (﹣∞,﹣3)∪(0,+∞)D . (﹣∞,0)∪(3,+∞)12. (5分) (2016高一下·六安期中) 函数y=sin2x+2cosx()的最大值与最小值分别为()A . 最大值,最小值为﹣B . 最大值为,最小值为﹣2C . 最大值为2,最小值为﹣D . 最大值为2,最小值为﹣2二、填空题 (共4题;共4分)13. (1分) (2017高一上·连云港期中) 若f(3x+2)=9x+8,则f(8)=________.14. (1分) (2018高二下·齐齐哈尔月考) 已知是定义在上的奇函数,且当时, ,则的值为________.15. (1分)现有40米长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块面积为S 平方米的矩形菜地,则S的最大值为________平方米.16. (1分) (2019高一上·西湖月考) 已知函数, ________,若,则 ________.三、解答题 (共6题;共65分)17. (10分)(2018·潍坊模拟) 已知等比数列的前项和为,,,是,的等差中项.(1)求数列的通项公式;(2)设,数列的前项和为,求 .18. (10分)已知函数﹣,g(x)=(3﹣k2)(logax+logxa),(其中a>1),设t=logax+logxa.(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;(Ⅱ)当x∈(1,+∞)时,若存在x0∈(1,+∞),使f(x0)>g(x0)成立,试求k的范围.19. (10分) (2017高一上·双鸭山月考) 若是定义在上的增函数,且对一切,,满足.(1)求的值;(2)若,解不等式.20. (10分)某市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km)).(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)21. (10分) (2019高一上·安庆月考) 某商品在近30天内每件的销售价格元与时间天的函数关系是 ,该商品的日销售量件与时间天的函数关系是,(1)写出该种商品的日销售额元与时间天的函数关系;(2)求日销售额的最大值.22. (15分) (2016高一上·包头期中) 已知函数f(x)=m﹣(1)若f(x)是R上的奇函数,求m的值(2)用定义证明f(x)在R上单调递增(3)若f(x)值域为D,且D⊆[﹣3,1],求m的取值范围.参考答案一、单选题 (共12题;共27分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。

宿州市十三所省重点中学2019_2020学年高一数学上学期期末联考试题含解析

宿州市十三所省重点中学2019_2020学年高一数学上学期期末联考试题含解析
3.已知AM是 的BC边上的中线,若 , ,则 等于( )
A。 B。 C. D.
【答案】C
【解析】
【分析】
结合向量加法与平行四边形法则即可求解
【详解】由向量的加法法则作出 的和向量 ,因为 是 中点,
则 ,故
故选:C
【点睛】本题考查向量的加法运算和平行四边形法则,属于基础题
4.已知 ,则 的值为( )
综上所述,角 的终边在第四象限
故答案为:D
【点睛】本题考查由三角函数的正负值判断具体角所在象限,属于基础题
9.已知向量 ,则下列结论正确的是( )
A. B. C. D.
【答案】D
【解析】
因为 ,所以 ,即 ,则 ,即 都不正确,即答案A,B ,C都不正确.而 ,则 ,应选答案D.
10.集合 是( )
(1)求 ,并证明 为奇函数;
(2)判断并证明 的单调性。
【答案】(1) ,见解析(2)减函数.见解析
【解析】
【分析】
(1)令 即可求解 ;令 可根据奇函数定义求证;
令 , ,代入 ,结合条件①即可求证;
【详解】(1)令 ,代入 得 ,即 ;
令 ,则 ,故 为奇函数;
(2)令 , ,代入 得 ,又①中,当 时, ,故 ,即 ,函数 为减函数
6.函数 的图象必不过( )
A。 第一象限B. 第二象限C. 第三象限D. 第四象限
【答案】A
【解析】
【分析】
结合对数函数增减性和函数平移法则即可求解
【详解】由 可判断 为减函数,再根据函数平移法则, 应由 向左平移两个单位,如图,
故 的图象必不过第一象限
故选:A
【点睛】本题考查对数函数增减性的识别,函数图像平移法则,属于基础题

安徽省宿州市十三所省重点中学2019-2020学年高一上学期期末考试数学试题 扫描版含答案

安徽省宿州市十三所省重点中学2019-2020学年高一上学期期末考试数学试题 扫描版含答案

宿州市十三所重点中学2019-2020学年度第一学期期末质量检测高一数学试卷(参考答案)CBCCB ABDDA CA 3 452)4323sin(+-=πx y 17.解:原式=)cos (tan sin )cos (322θθθθ-⋅⋅-=θθθ222cos tan sin ⋅-=1.................10分19. f (x )=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6………………………………4分(1)2k π+π2≤2x +π6≤2k π+3π2⇔k π+π6≤x ≤k π+2π3(k ∈Z ), ∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z )………8分 (1)函数g (x )=f (x ),x ∈⎣⎢⎡⎦⎥⎤-7π12,5π12的图像如图所示:列表:略………………………………10分……………………………… 12分20.(1))0(f =0, ………………………………………………………………2分证明奇函数…………………………………………………………5分 (2)令2121,,x x x x x y x >==+且,由)()()(y f x f y x f +=+得)()()(2121x x f x f x f -=-, 当0>x 时,0)(<x f 且021>-x x 0)(21<-∴x x f ,)()(,0)()(2121x f x f x f x f <<-∴即,分平行与时,分分平行时与)当(分时分时当分解:12...............)()(110...............13628. (11)232)()(26.).........()(11012634..........0)1,3()12,2()()(2...).........1,3()12,2()1,2()2,1()1(.18k k k k k k k k k k k k k k k b a b a k b a k k k b a k -+-=∴-=∴+=-∴+=--+-⊥+=∴=∴=++-∴=⋅+--⊥+=-+-=-+=+)(x f ∴为减函数.……………………………………………………………12分21.(1)51)sin(,53)sin(=-=+B A B A ⎪⎩⎪⎨⎧=+=+∴51sin cos cos sin 53sin cos cos sin B A B A B A B A ,⎪⎩⎪⎨⎧==∴51sin cos 52cos sin B A B A 2tan tan =∴BAB A tan 2tan =∴…………………………………………………5分 (2),53)sin(,2=+<+<B A B A ππ43tan tan 1tan tan ,43)tan(-=-+∴-=+∴B A B A B A ,由B A tan 2tan =∴得01tan 4tan 22=--B B ,62tan 2tan ,262tan +==∴+=∴B A B .…………………………9分 设AB 边上的高为CD ,则AB=AD+DB=,623tan tan +=+CDB CD A CD .623+=∴=CD AB , …………………………………………………12分22.(1)∵tan 7α=,α∈[0,2π],∴ , ,1010cos sin αα==∵OA 与OC 的夹角为α,OA OCOA OC⋅=, ∵OC mOA nOB =+,|OA |=|OB |=1,|OC |=,∴10=,①…………………………………………………3分 又∵OB 与OC 的夹角为45°,OB OC OB OC⋅==,②…………………………………5分 又()345 45 455cos AOB cos cos cos sin sin ααα∠=︒+=︒-︒=- ∴3cos 5OA OB OA OB AOB ⋅=∠=-, 将其代入①②得313,1555m n m n -=-+=,从而57,44m n ==, 故5577log log n m -=55777log log 15n m ==-…………………………………7分 (2)由(1)得57,44m n ==,又()()22112188f x ax ax a x a =-+=-+-,0a <,故()f x 在57,44⎡⎤⎢⎥⎣⎦上单调递减,所以5224f a ⎛⎫=⇒=- ⎪⎝⎭…………………………12分。

2019-2020学年安徽省宿州市高一上学期期中联考试题 数学

2019-2020学年安徽省宿州市高一上学期期中联考试题 数学

宿州市十三所重点中学2019-2020学年度第一学期期中质量检测高一数学试卷(满分150分,时间120分钟)第I卷(60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合要求的。

)1.映射f:A→B,在f作用下A中元素(x,y)与B中元素(x-1,3-y)对应,则与B中元素(0,1)对应的A中元素是A.(-1,2)B.(0,3)C.(1,2)D.(-1,3)2.函数13y x=的图象是3.已知A={x|-1<x<k,x∈N},若集合A中恰有3个元素,则实数k的取值范围是A.(2,3)B.[2,3)C.(2,3]D.[2,3]4.下列表示错误的是A.∅⊆{∅}B.{1}∈{{0},{1}}C.A∪∅=AD.R Q=无理数5.已知集合A={x|1<x<2},关于x的不等式2a<2-a-x的解集为B,若A∩B=A,则实数a 的取值范围是A.(-∞,-1]B.(-∞,-1)C.(-1,+∞)D.[-1,+∞)6.若函数y=f(x+1)的定义域是[-1,1],则函数g(x)=(2)2f x的定义域是A.[-12,12] B.[-12,0)∪(0,12] C.[0,1)∪(1,4] D.(0,1]7.设a=log54,b=log53,c=log45,则a,b,c的大小关系为A.a<c<bB.b<a<cC.a<b<cD.b<c<a8.设2a=5b=m,且111a b+=,则m等于10 B.10 C.20 D.1009.函数f(x)=|x -2|-lnx 在定义域内的零点的个数为 A.0 B.1 C.2 D.310.若函数y =a x +b -1(a >0且a ≠1)的图象不经过第一象限,则有 A.a>1且b≤0 B.a>1且b≤1 C.0<a<1且b≤0 D.0<a<1且b≤111.已知函数242,1()1log ,1x ax x f x a x x +-<⎧=⎨+≥⎩的值域为(-∞,+∞),则实数aA.(1,2]B.(-∞,2]C.2D.(0,2] 12.当x ∈(-∞,-1]时,不等式(m 2-2m)4-x -2-x +3<0恒成立,则实数m 的取值范围是A.(0,2)B.[0,2]C.(-2,4)D.[-2,4]第II 卷(90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.函数f(x)=lg(2x 2+1)的值域为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档