有限元法

合集下载

第1章有限元法简介

第1章有限元法简介

Fix uix k ii 0 F v iy iy 0 0 K = = F jx u jx k ji 0 F jy v jy 0 0
k ij 0 uix 1 v 0 0 iy EA 0 l 1 k jj 0 u jx 0 0 0 v jy
钱学森
钱伟长
胡海昌
杨桂通
徐芝伦
软件名称
简介
MSC/Nastran
LS-Dyna MSC/Dytran MSC/Marc ANSYS FLUENT ABAQUS
著名结构分析程序,最初由NASA研制。
动力学分析程序(大多为显式算法) 非线性分析软件 通用结构分析软件(耦合场分析) 流场分析软件 非线性分析软件(非协调单元,非线性 直接解算方法)
令杆件两端节点分别产生单位位移,可以计算产生这样的单 位位移所需要的力,而力的大小就是刚度系数。 EA 首先取 ui 1,u j 0, 此 时 需 要 压 力 ui。 按 照 局 部 坐 标 系 l EA EA 和力的规定, Fi ui,F j ui, 则 l l EA EA ui l k , k
单元2 3
F3 10N
x
考虑y方向的单元刚度矩阵
Fi k ii k ij ui EA 1 1 ui = u l F u k k 1 1 jj j j ji j
若考虑y方向,则有:
——宏观假设
弹性力学的基本假定
2、线弹性(Linear elastic)
物体的变形与外力作用的关系是线性的, 除去外力,物体可回复原状 ,而且这个关系和 时间无关,也和变形历史无关,称为完全线弹 性材料

有限元法概述

有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。

计算电磁学中的有限元方法

计算电磁学中的有限元方法

计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。

有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。

本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。

一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。

这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。

有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。

其中建模是有限元方法中最重要的一个环节。

在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。

然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。

一旦有限元模型被建立,我们就可以进行求解了。

具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。

这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。

最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。

二、有限元法应用领域有限元法在计算电磁学中广泛应用。

其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。

有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。

在电力电子领域中,有限元法可用于设计电感元件和变压器等。

另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。

三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。

有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。

此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。

有限元法的原理_求解域_概述及解释说明

有限元法的原理_求解域_概述及解释说明

有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。

它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。

有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。

1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。

1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。

通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。

此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。

2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。

它将求解域划分为许多小单元,每个小单元称为有限元。

在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。

2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。

这是通过将原始方程乘以一个测试函数并进行积分得到的。

这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。

2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。

有限元法介绍

有限元法介绍

通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。

这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。

有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。

五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。

由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。

有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。

事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。

理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。

为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。

有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。

大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。

有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。

有限元法概述

有限元法概述
但真正的应用实际问题是到1960年以后,随着电子数 值计算机的广泛应用和发展,有限单元法的发展速度才显 著加快。现代有限元法第一个成功的尝试,是将刚架位移 法推广应用于弹性力学平面问题,这是Turner,Clough 等人在分析飞机结构时于1956年得到的成果。他们第一 次给出了用三角形单元求得平面应力问题的正确解答。
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。

有限元法及应用总结

有限元法及应用总结

有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。

它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。

有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。

1.建立初始网格:将连续介质分割为离散的小单元。

可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。

初始网格的密度应根据问题的要求进行合理的选择。

2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。

同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。

3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。

有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。

4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。

常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。

根据问题的特点选择合适的求解方法。

5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。

常见的评估方法有误差分析、收敛性分析、模型验证等。

有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。

通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。

在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。

在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。

在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。

在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。

有限元法PPT课件

有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法
第一章绪论
1.有限元法的定义:有限元法是近似求解一般连续场问题的数值方法。

2.有限元法的特点:A物理概念清晰。

B复杂的结构适应性。

C各种物理问题的适用性。

D适合计算机实现的高效性。

3.有限元法的基本思想:首先,将表示结构的连续体离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示全求解域内待求的未知场变量。

每个单元内的近似函数用未知场变量函数在单元各个节点上的数值和与其对应的插值函数表示。

最后,通过和原问题数学模型等效的变分原理或加权余量法,建立求解基本未知量的代数方程组或常微分方程组,应用数值方法求解,从而得到问题的解答。

4.有限元法的基本步骤:从选择未知量的角度有限元法分为三类:位移法、力法和混合法。

位移法求解步骤:A结构的离散化。

B单元分析。

C单元集成。

D引入约束条件,求解线性方程组,得出节点位移。

E由节点位移计算单元的应力与应变。

5.有限元法的优缺点:优点:a有限元法可以模拟各种几何形状复杂的结构,得出其近似解。

B有限元法的解题步骤可以系统化、标准化,能够开发出灵活通用的计算机程序,使其能够广泛地应用于各种场合。

c 边界条件是在建立结构总体刚度方程后再引入的,边界条件和结构模型具有相对独立性,可以从其他CAD 软件中导入创建好的模型。

有限元法不需要适用于整个结构的插值函数,而是每个单元本身有各自的插值函数。

这就使得数学处理比较方便,对复杂形状的结构也能适用。

e有限元法很容易处理非均匀连续介质,可以求解非线性问题和进行耦合场分析。

F有限元法可以与优化设计方法相结合,以便发挥各自的优点。

缺点:a有限单元对于复杂问题的分析计算所耗费的计算资源是相当惊人的。

b对无限求解域问题没有较好的处理方法。

c有限元软件在具体应用时需依赖使用者的经验,而且在精度分析时需耗费相当大的计算资源。

6.屈曲:载荷的大小超过一定的数值,变形的形状与此之前变形的形状发生了不同的变化,从而承担载荷的能力减少了,把这一现象称为屈曲。

屈曲模态:对于屈曲,即使相同的的构件,如果端部的支持状态不同,则屈曲载荷的大小或屈曲的变形形状也不同。

我们把这种变形形状称为屈曲模态
第三章弹性力学基础知识
1.弹性力学又称弹性理论,主要研究弹性体在外力作用或温度变化等外力因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。

2.弹性力学的几个基本假定:A连续性假定。

B弹性假定。

C均匀性和各向同性假定。

D小变形假定。

E无初应力假定。

3.外力分为面力和体积力。

面力:指分布在物体表面上的外力,如内压力、接触压力等。

面力是位置坐标的函数,即物体表面各点所受的面力是不同的。

体积力:指分布在物体体积内的外力,通常与物体的质量成正比,且是各质点位置的函数,如重力、惯性力等。

4.弹性力学的平面问题:弹性力学可分为空间问题和平面问题。

平面问题有两种情况:一种是平面应力问题,所考察的弹性体为一个等厚度的薄板,薄板所受到的载荷不沿板的厚度方向变化,且板的表面无载荷作用;另一种是平面应变问题,适用于很长的等截面柱体,其上作用的载荷均平行于横截面,而且沿柱长方向不变化。

第四章平面问题的有限元法
1.常用的平面单元形状有三角形、四边形等。

2.集中力、集中力偶、分布载荷强度的突变点、分布载荷与自由边界的分界点、支承点都应取为节点。

3.整体刚度矩阵的性质:a整体刚度矩阵[K]中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标轴方向发生单位位移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力。

b整体刚度矩阵[K]中的主对角元素总是正的。

c整体刚度矩阵[K]是一个对称矩阵。

d整体刚度矩阵[K]是一个带状分布的稀疏矩阵。

e整体刚度矩阵[K]是一个奇异矩阵,在排除刚体位移后,它是正定阵。

4.如有侵权请联系告知删除,感谢你们的配合!
5.
6.
7.。

相关文档
最新文档