基于STM32的红外测距系统设计学士学位论文
基于stm32红外非接触体温仪毕业设计

基于STM32红外非接触体温仪毕业设计一、概述随着全球疫情的爆发,人们对于体温监测的需求日益增加。
在这样的大背景下,红外非接触体温仪成为了一种非常重要的工具。
而在这个毕业设计中,我们将结合STM32芯片,设计一款红外非接触体温仪,并将其加以实践。
二、设计思路1. 红外测温原理在设计红外非接触体温仪前,我们首先需要理解红外测温的原理。
红外测温利用红外线能量与物体表面产生的热量之间的关系,通过检测物体的表面温度来确定物体的温度。
我们将通过研究这些原理,来确定我们的测温方案。
2. STM32芯片的选择在选择芯片时,我们需要考虑到性能、功耗、成本等方面的因素。
经过调研和比较,我们最终选择了STM32作为我们的芯片。
因为它具有性能强劲、低功耗等特点,非常适合用于这样的应用场景。
3. 软件设计在软件设计方面,我们将使用C语言来编写嵌入式程序。
我们需要设计一个用户界面,用于显示测量得到的温度数据,并且需要设计相应的算法,用于对红外信号进行处理,最终得到准确的温度值。
4. 硬件设计在硬件设计方面,我们将搭建红外传感器、显示屏、按钮等硬件模块,并且需要设计相应的电路进行连接。
我们也需要考虑到电源管理、EMI等问题,以确保产品的安全可靠。
三、实施步骤1. 系统框图设计先前设计的理念已经明确,我们需要通过系统框图来具体的描述各个模块之间的关系以及通信方式。
2. 红外传感器选型及连接我们需要选择适合的红外传感器,并且设计相应的电路来进行连接。
在连接的过程中,我们需要注意信号的稳定性、传输速率等问题,以保证数据的准确性。
3. 软件开发从STM32的数据手册以及相应的参考设计中,我们可以获得一些基础的代码框架来开始我们的开发工作。
我们需要编写测温算法、UI设计、以及异常处理等功能。
4. 硬件搭建在硬件搭建阶段,我们需要进行电路的焊接、模块的搭建等工作。
在这个过程中,我们需要注意安全问题,并且需要进行相应的测试。
四、成果展示在毕业设计结束后,我们获得了一款基于STM32的红外非接触体温仪。
基于STM32的红外热成像测温系统的设计

基于STM32的红外热成像测温系统的设计DOI :10.19557/ki.1001-9944.2021.02.010邹连英,徐敏(武汉工程大学电气信息学院,武汉430205)摘要:红外热成像测温是近年来一种新兴的测温技术,和传统的测温方式相比,其具有非接触、运行方便、响应速度快等特点,在军事和民用领域都已得到越来越广泛的应用。
该文设计了一种基于STM32的红外热成像测温系统,以STM32F103微控制器为核心,通过AMG8833红外热像仪传感器获取热红外信息,随后微控制器对数据进行运算,通过LCD 屏实时显示经过插值法增强处理后的热图像和被测物体温度,同时温度高于所设阈值时会触发报警装置。
该系统硬件结构精简,便于集成,适合制成便携式手持红外热像仪。
关键词:红外测温;STM32F103;图像增强;红外热像仪中图分类号:TH811文献标志码:A文章编号:1001⁃9944(2021)02⁃0050⁃04Design of Infrared Thermal Imaging Temperature Measuring System Based on STM32ZOU Lian ⁃ying ,XU Min(School of Electrical and Information ,Wuhan Institute of Technology ,Wuhan 430205,China )Abstract :Infrared thermal imaging temperature measurement is a new technology in recent pared with the traditional temperature measurement method ,it has the characteristics of non ⁃contact ,convenient operation and fast re ⁃sponse speed.It has been more and more widely used in military and civil fields.This paper designed a kind of in ⁃frared thermal imaging temperature mea surement system based on STM32,with STM32F103microcontroller as the core ,through AMG8833infrared thermal imager sensor for thermal infrared information ,then the micro controller ,op ⁃erations on data through real ⁃time display LCD screen after dealing with the interpolation method to enhance the thermal image and the temperature of the object to be tested ,at the same time ,the temperature is higher than the set threshold will trigger the alarm device.The hardware structure of the system is simple ,easy to integrate and suit ⁃able for making portable hand ⁃held infrared thermography.Key words :infrared temperature measurement ;STM32F103;image enhancement ;thermal infrared imager收稿日期:2020-11-18;修订日期:2021-01-19作者简介:邹连英(1977—),女,博士,副教授,研究方向为嵌入式系统设计、FPGA 系统设计;徐敏(1997—),男,硕士研究生,研究方向为嵌入式系统设计。
基于单片机的红外测距系统

第一章绪论1
1.1设计背景1
1.2红外线简介1
1.3红外传感器概述2
1.3.1红外传感器的分类2
1.3.2红外线传感器的应用5
第二章红外测距的方法和原理6
2.1几种红外测距原理及选择6
In order to achieve the objects at close range, high-precision wireless measurement, I used the infrared transmitter receiver module as the distance sensor, microcontroller as the processor to write the A / D conversion, display and communication with the PC program, developed a will to push infrared distance measurement systems, high-precision real-time system can display the measured distance, and distance measuring can be sent through the serial port to a PC display processing, the system structure is simple and reliable, small size, high accuracy, ease of use, while this system the formation of a complete set of hardware and software development platform can be extended, transplantation, and further development.
基于STM32的智能家居红外控制系统研究与设计共3篇

基于STM32的智能家居红外控制系统研究与设计共3篇基于STM32的智能家居红外控制系统研究与设计1智能家居系统在当今社会已经得到了广泛的应用,而红外控制技术也是其中的重要一环。
本文将对基于STM32的智能家居红外控制系统进行研究与设计,主要包括系统设计方案、硬件设计、软件设计等方面的内容。
一、系统设计方案系统的整体设计方案如下:1、硬件系统设计(1)基于STM32微控制器的控制板设计。
(2)通过红外传感器采集红外信号。
(3)通过继电器实现对家居电器的远程遥控。
2、软件系统设计(1)通过编写C语言程序,实现红外信号采集、远程遥控等功能。
(2)通过TCP/IP协议实现智能家居控制,并实现移动端APP对智能家居的远程控制。
二、硬件设计基于STM32F407VG微控制器,我们设计了控制板。
控制板的主要功能是通过GPIO口采集红外信号,并实现对家居电器的远程控制。
同时,设计一组2路继电器可实现对两路不同设备的控制。
此外,我们在控制板中加入了W5500以太网模块,以实现智能家居系统的远程控制。
它支持TCP/IP协议,可将设备与云端进行通信。
三、软件设计在软件方面,我们采用Keil软件开发环境,通过编写C语言程序实现各项功能。
红外信号采集:通过GPIO口的中断方式方便地实现对红外信号的采集。
远程控制:通过电路板上的两个继电器实现对家庭电器的控制。
使用TCP/IP协议实现控制面板与PC、手机等设备的远程控制通信。
移动端APP设计:手机APP通过连接TCP/IP协议,实现对家居设备的遥控。
APP采用Android平台进行开发,具有简单、易操作、界面友好等特点。
四、系统实现效果对系统进行实际测试,能够实现对家庭电器的控制。
在APP上,用户可以实时查看设备状态,并可对设备进行控制。
本系统能实现智能家居的简易、实用、高效的控制,满足用户的基本需求。
综上所述,本文对基于STM32的智能家居红外控制系统进行了研究与设计,详细分析了硬件系统和软件系统的设计,通过实际测试验证了系统的实现效果,证明本系统能够实现对家庭电器的控制,而且使用方便,界面友好,具有很高的实用价值。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术广泛应用于机器人、智能家居、无人驾驶等领域。
本文旨在设计一个基于STM32单片机的高精度超声波测距系统,该系统通过超声波测距原理,实现对目标物体的精确测距。
二、系统设计要求1. 高精度:系统应具备高精度的测距能力,误差应控制在一定范围内。
2. 稳定性:系统应具有良好的稳定性,能够在不同环境下保持稳定的测距性能。
3. 实时性:系统应具备实时测距功能,能够快速响应并输出测距结果。
4. 易于集成:系统应易于与其他设备进行集成,方便实际应用。
三、硬件设计1. 主控制器:采用STM32单片机作为主控制器,负责整个系统的控制与数据处理。
2. 超声波传感器:选用高性能的超声波传感器,实现测距功能。
3. 电源模块:为系统提供稳定的电源,保证系统的正常工作。
4. 通信接口:根据实际需求,可扩展串口、I2C、SPI等通信接口,实现与其他设备的通信。
四、软件设计1. 驱动程序设计:编写超声波传感器的驱动程序,实现对传感器的控制与数据读取。
2. 数据处理程序:对读取的超声波数据进行处理,计算目标物体的距离。
3. 实时性处理:采用中断或定时器等方式,实现实时测距功能。
4. 通信程序设计:根据实际需求,编写与其他设备进行通信的程序。
五、系统实现1. 超声波传感器的工作原理是通过发送超声波并接收其反射回来的时间来计算距离。
系统通过STM32单片机的GPIO口控制超声波传感器的发送与接收。
2. 在软件设计中,通过编写驱动程序,实现对超声波传感器的控制与数据读取。
数据处理由STM32单片机进行计算,将读取的超声波数据进行处理,得到目标物体的距离。
3. 为了保证系统的实时性,采用中断或定时器等方式,实现实时测距功能。
当超声波传感器接收到反射回来的超声波时,中断或定时器触发,STM32单片机立即进行数据处理,并输出测距结果。
4. 根据实际需求,可扩展串口、I2C、SPI等通信接口,实现与其他设备的通信。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断进步,测量技术在众多领域中的应用日益广泛。
高精度超声波测距系统,以其非接触式、测量速度快和成本低廉的优点,被广泛应用于智能机器人、车辆导航、无人机飞行控制等场景。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计,包括系统架构、硬件设计、软件设计以及实验结果分析等方面。
二、系统架构本系统采用STM32单片机作为主控制器,通过超声波传感器进行测距。
系统主要由STM32单片机、超声波传感器、电源模块、信号处理模块等部分组成。
其中,STM32单片机负责控制超声波传感器的发射与接收,以及处理测距数据;超声波传感器负责将超声波信号发送出去并接收反射回来的信号;电源模块为系统提供稳定的电源;信号处理模块用于对接收到的信号进行滤波、放大等处理,以提高测距精度。
三、硬件设计1. STM32单片机:选用性能稳定、功能强大的STM32系列单片机作为主控制器,负责控制整个系统的运行。
2. 超声波传感器:选用高精度的超声波传感器,具有灵敏度高、测量范围广等优点。
通过单片机的GPIO口控制传感器的发射与接收。
3. 电源模块:为系统提供稳定的电源,包括电池或外接电源两种供电方式。
4. 信号处理模块:对接收到的超声波信号进行滤波、放大等处理,以提高测距精度。
四、软件设计1. 初始化:对STM32单片机进行初始化设置,包括GPIO口、时钟等。
2. 控制超声波传感器:通过GPIO口控制超声波传感器的发射与接收,发送一定频率的超声波信号并等待接收反射回来的信号。
3. 信号处理:对接收到的信号进行滤波、放大等处理,然后通过ADC(模数转换器)将信号转换为数字信号。
4. 距离计算:根据测量的时间差(即超声波信号往返的时间),结合声速,计算出物体与传感器之间的距离。
5. 显示与输出:将测量的距离通过LCD或LED等方式显示出来,同时可通过串口或蓝牙等方式将数据传输到其他设备。
基于STM32的非接触式红外体温检测系统设计

基于STM32的非接触式红外体温检测系统设计目录一、内容概括 (2)1.1 研究背景 (3)1.2 研究目的与意义 (4)1.3 研究内容与方法 (5)二、系统设计与实现 (6)2.1 系统总体设计 (7)2.1.1 硬件设计 (8)2.1.2 软件设计 (10)2.2 系统实现与调试 (11)2.2.1 硬件实现与调试 (12)2.2.2 软件实现与调试 (14)三、系统功能测试与分析 (15)3.1 功能测试 (16)3.1.1 红外体温检测功能测试 (18)3.1.2 数据处理与存储功能测试 (19)3.2 性能分析 (19)3.2.1 系统响应时间分析 (21)3.2.2 系统精度分析 (22)四、系统总结与展望 (23)4.1 系统总结 (24)4.2 研究不足与展望 (25)一、内容概括硬件设计:详细阐述系统的硬件组成,包括STM32主控芯片的选择与配置、红外温度传感器件的选择与接口设计、外围电路(如电源电路、信号调理电路等)的设计原则和要求。
软件设计:介绍系统的软件架构,包括STM32的软件编程环境、主程序设计思路、中断服务程序的设计、数据处理与显示方法等。
红外测温原理及实现:介绍红外测温技术的基本原理,包括红外辐射定律、测温公式等,以及如何实现非接触式测温,如温度信号的采集与处理、测温精度的保证等。
系统调试与优化:阐述系统在开发过程中可能遇到的问题及解决方案,如温度测量的准确性、系统稳定性、响应速度等方面的调试与优化方法。
系统性能评估:对设计完成的系统进行性能评估,包括测温范围、测温精度、稳定性、功耗等方面的测试与分析。
实际应用及展望:介绍系统在实际应用场景中的表现,如医疗、工业等领域的体温检测应用,并展望未来的发展方向,如提高测温精度、降低成本、实现多参数检测等。
本设计旨在实现一个高性能、低成本、易于实现的红外体温检测系统,具有一定的市场应用前景。
1.1 研究背景全球气候变化和公共卫生问题日益严重,如流感、新型冠状病毒感染等传染病频繁爆发,严重威胁着人类的生命安全和身体健康。
基于STM32的智能家居红外控制系统研究与设计

基于STM32的智能家居红外控制系统研究与设计基于STM32的智能家居红外控制系统研究与设计智能家居系统已经成为人们生活中不可或缺的一部分。
随着科技的发展,越来越多的设备和家居设施可以通过智能控制实现自动化操作,为人们的生活带来更多的便利和舒适。
红外控制技术作为智能家居的一个重要组成部分,在家电遥控、安防监控、照明控制等方面有着广泛的应用。
本文将重点介绍一种采用STM32微控制器的智能家居红外控制系统的研究与设计。
该系统以红外控制为基础,通过智能算法和网络通信实现对家居设备的远程控制和监控。
首先,我们介绍STM32微控制器。
STM32是意法半导体公司推出的一系列基于ARM Cortex-M内核的微控制器产品,具有性能高、功耗低、易于开发等特点。
它具备丰富的外设资源和强大的处理能力,非常适合用于智能家居系统的设计。
基于STM32的智能家居红外控制系统主要包括硬件设计和软件设计两部分。
在硬件设计方面,系统通过红外收发模块实现与家电设备的红外通信。
同时,通过传感器模块采集环境数据,如温度、湿度、光照等信息,以实现对室内环境的感知和控制。
此外,为了实现远程控制和监控,系统还需要集成网络通信模块,如Wi-Fi或以太网模块,用于与用户手机或电脑进行数据交互。
在软件设计方面,系统主要包括红外通信协议解析、数据处理和网络通信等功能。
首先,红外通信协议解析模块负责解析红外遥控信号,将其转换为控制指令。
然后,数据处理模块根据用户的控制指令对家居设备进行相应操作。
最后,网络通信模块将室内环境数据和设备状态等信息发送到用户的手机或电脑上,实现远程监控和控制。
智能算法是该系统的关键技术之一。
通过分析室内环境数据和用户的使用习惯,系统可以学习并优化设备的控制策略,提高用户体验和设备能效。
比如,根据室内温度和湿度的变化,系统可以自动调整空调的运行模式,实现温湿度的舒适控制。
另外,系统也可以根据用户的作息时间和习惯,自动调节灯光亮度和色温,提供个性化的照明服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于STM32的红外测距系统设计摘要随着现代科学技术的发展,出现了很多新的领域,为了实现对物体近距离、高精度的无线测量,本论文对红外测距领域进行了研究。
本论文采用单片机作为处理器,编写A/D转换程序及LCD显示程序,红外传感器作为工作模块,完成一套高精度显示、实时测量的红外测距系统。
本系统结构简单、体积小、测量精度高、成本低、方便使用。
本论文所介绍的是一种基于STM32单片机并运用日本夏普公司型号为GP2Y0A21的红外传感器所设计的红外测距系统。
首先,介绍红外线及红外传感器的分类及应用、STM32单片机的简介与功能;其次,阐述红外测距系统工作原理及基本结构并对单片机、红外传感器、LCD液晶显示屏的工作电路做了介绍;再次,对系统进行了整体设计构想,先后对系统硬件及软件进行设计,并对整个系统的功能进行了调试。
最后对整个设计进行总结,说明红外测距系统实现的可行性。
关键词红外测距;单片机;A/D转换;LCDSTM32-based infrared ranging system designAbstractWith the development of modern science and technology, there are many new areas, in order to achieve the object close range, high-precision wireless measurement,this topic of infrared ranging is studied. This topic using SCM as the processor, to write A/D converter and LCD display program, an infrared sensor as a working module, complete set of precision display, real-time measurement of infrared ranging system. This system has the advantages of simple structure, small size and high accuracy, low cost and convenient use. This paper introduced is based STM32 microcontroller and use of Japan's Sharp Corporation model GP2Y0A21 infrared sensor designed infrared ranging system. Firstly, introduce the classification and application of infrared distance measurement,it also introduces the function of STM32 microcontroller. Then illustrate the work theory and basic structure of it and introduce the LCD screen and work circuit. Again, the system has carried on the overall design idea, successively on the system hardware and software design, and probes into the function of the whole system debugging. Finally, summarize the entire design to illustrate the feasibility of infrared distance measurement.Keywords Infrared range, SCM, A/D converter, LCD目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景及意义 (1)1.2 本论文主要研究内容 (1)第2章红外测距系统硬件设计 (3)2.1 红外测距系统的工作原理 (3)2.1.1 时间差法测距原理 (3)2.1.2 反射能量法测距原理 (3)2.1.3 相位法测距原理 (3)2.1.4三角法测距原理 (3)2.2 红外测距系统的基本结构 (4)2.2.1 红外传感器模块 (5)2.2.2 单片机处理模块 (6)2.2.3 LCD显示模块 (12)2.3 本章小结 (12)第3章红外测距系统的软件设计及功能调试 (14)3.1 红外测距系统工作流程 (14)3.2 软件程序设计 (14)3.3 硬件功能调试 (15)3.4 软件功能调试 (16)3.5 测量数据绘图 (16)3.6 本章小结 (19)结论 (20)致谢 (21)参考文献 (22)附录A (24)附录B (30)附录C (33)第1章 绪论1.1 课题研究背景及意义随着科学技术的不断发展,在测距领域也先后出现了激光测距、微波雷达测距、超声波测距及红外线测距等方式。
激光测距是以激光为传输信号对目标物体进行精确的测量。
激光测距在工作开始瞬间向物体发射出一束很细的激光,并由接受端接收物体反射回来的激光束,同时计时器通过测定激光束从发射到接收的时间进而计算出从测量者到物体的距离。
该方法对使用环境要求较高,应用范围较少。
微波雷达测距是军事和工业上开发采用的技术,其技术要求严格和设备价格非常之高,在民用市场上几乎得不到应用。
超声波测距原理与激光测距原理相似,只不过是以声音为传输介质,但是此方法灵活性差、组件造价相对昂贵,在市场开拓空间并不大。
作为一种应用广泛、测量精度高的测量方式,红外测距利用红外线传播时不扩散、折射率小的特性,根据红外线从发射模块发出到被物体反射回来被接受模块接受所需要的时间,采用相应的测距公式来实现对物体距离的测量。
红外测距最早出现于上世纪60年代,是一种以红外线作为传输介质的测量方法。
红外测距的研究有着非比寻常的意义,其本身具有其他测距方式没有的特点,技术难度相对不大,系统构成成本较低、性能良好、使用方便、简单,对各行各业均有着不可或缺的贡献,因而其市场需求量更大,发展空间更广。
红外测距仪是指用调制的红外光进行精密的距离测量,测量范围一般为1-5公里,在100米以内的范围内则超声波测距更有优势,但是超声波测距无法检测到1米以内的区域距离,而红外测距可以精准的测出这一段距离,本论文研究的就是这一种情况的红外线测距。
1.2 本论文主要研究内容红外线别名红外光或者热辐射线,是一种波长比红色可见光(约-47.510⨯㎜)较长、比微波(约1㎜)较短的电磁波。
以波长长度为基准,红外线可分为三部分,即近红外线是波长为-3-30.7510 3.010⨯⨯ ㎜之间;中红外线是波长为-3-23.010 4.010⨯⨯ ㎜之间;远红外线是波长为-24.010 1.0⨯ ㎜之间。
物质本身温度在不低于绝对零度(-273.15℃)的情况下均可以产生红外线。
它不能引起人的视觉反应,有显著的热效应(易被物体吸收而转化为内能)。
能产生反射、折射、干涉、衍射等光学现象。
不易被云雾等悬浮微粒散射而具有较强的穿透力。
凭借着诸多优点,红外线在军事、人造卫星以及工业、卫生、科研等工作领域方面的应用日益广泛,有着不可替代的作用及研究价值。
红外测距传感器是以红外线为传输介质的精确测量系统,主要应用于现代科学技术、国防军队建设、工业和农业等领域。
按照其功能可以分为五种类型:(1)辐射计,又称“发射计”,是一种用于电磁辐射和光谱测量的装置。
第2章 红外测距系统硬件设计2.1 红外测距系统的工作原理2.1.1 时间差法测距原理时间差法测距原理是将红外测距传感器的红外发射端发送信号与接收端接受信号的时间差t 写入单片机中,通过光传播距离公式来计算出传播距离L ,见公式(2-1)。
t L c =* (2-1) 式中c 是光的传播速度为8310m /s ⨯ 。
2.1.2 反射能量法测距原理反射能量法是由发射控制电路控制发光元件发出信号(通常为红外线)射向目标物体,经物体反射后传回系统的接收端,通过光电转换器接收的光能量大小进而计算出目标物体的距离L ,见公式(2-2)。
3P L Kd ⎛⎫= ⎪⎝⎭(2-2) 式中P 为接收端接收到的能量,K 为常数,其大小由发射系统输出功率、转换效率决定,d 为被测目标漫反射率。
2.1.3 相位法测距原理相位测距法是利用无线电波段的频率,对红外激光束进行幅度调制并测定调制光往返一次所产生的相位延迟ϕ ,再根据调制光的波长,换算出此相位延迟所代表的距离D ,此方式测量精度非常之高,相对误差可以保持在百分之一以内,但要求被测目标必须能主动发出无线电波产生相应的相位值。
见公式(2-3)。
/2D c ϕω= (2-3) 式中c 是光的传播速度为8310m /s ⨯,ω 是调制信号的角频率。
2.1.4 三角法测距原理三角法测距原理是由一个红外发射管和一个PSD (Position Sensing Device位置敏感检测装置)以及相应的计算电路来实现的。
而夏普公司的PSD具有更优良的性能,它可以检测到光点落在它上面微小的位移,分辨率达微米,红外传感器GP2Y0A21正是利用了这个特性来实现对目标物体距离的精确测量。
如图1所示。
图1 三角法测距原理红外测距传感器首先通过红外发射管发出红外线,遇到障碍物反射回来落在PSD上形成了一个等腰三角形。
而两个底角是固定的,由发射管来确定,且红外发射管到PSD的距离为已知,此时便可运用三角函数来推算出高,即我们要测量的距离。
本论文就是采用此原理来实现对物体距离的测量。
2.2红外测距系统的基本结构红外测距系统主要有红外传感器模块(包括红外发射端和红外接收端两部分)、单片机处理模块、LCD显示模块三大部分组成。
如图2所示。
图2 红外测距系统基本结构图3为红外测距系统整体硬件原理图,对应系统组成的三大部分,由图可知,系统工作核心为单片机,红外传感器及LCD液晶显示屏分别接收单片机发出的指令来实现各自的功能,最后结合各个部分的功能来实现整个红外测距系统的运作。
对于单片机、红外传感器、LCD液晶显示屏的工作原理及实现功能在下文会一一对其进行介绍。
2.2.1红外传感器模块本模块选用的是由日本夏普公司研发的型号为GP2Y0A21的红外传感器。
引脚图如图4所示。
此红外传感器一共有三个引脚,其中VCC(电源电压)为信号接入,接入电源电压为4.5-5.5V,单片机5V工作电压即可;GND为接地引脚,连接地线即可;V out为模拟电压输出引脚,此引脚输出的模拟电压值为0.4-2.4V,相对应的距离范围是80-10㎝。