恒等证明-第十二讲恒等变形2乘法公式学生版
代数式恒等变形法则归纳

代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
恒等证明-第十二讲恒等变形2乘法公式教师版

第十二讲 恒等变形(2)乘法公式一、 基础知识 (一)乘法公式1. 除了上一讲的几个基本公式外,乘法公式还有如下几条:①) 2222()222a b c a b c ab ac bc ++=+++++②) 222333()()3a b c a b c ab ac bc a b c abc ++++---=++- ③) 123221()().n n n n n n n a b aa b a b ab b a b ------+++++=-④) 2222221[()()()]2a b c ab ac bc a b a c b c ++±±±=±+±+±(二)配方法配方法是乘法公式应用的拓展,在恒等变形中应用十分广泛。
在配方时,还常用到拆项或补项的技巧。
在配方法中要熟悉两组关系:1. x+y 、xy ,与x 2+y 2、x 3+y 3、x 4+y 4、x 7+y 7的关系。
2. x+x -1、x-x -1,与x 2+x -2、x 2-x -2、x 4+x -4、x 4-x -4的关系。
二、名校真题回放例1.(2005~2006首师大附中初一期中测试)x 2+2ax+l6是一个完全平方式,则a 的值是______. 解:4或-4例2.(2005~2006首师大附中初一期中测试)与()()2a 1a a 1-++的积等于a 6-1的多项式是______. 解:3a 1+例3.(2005~2006首师大附中初一期中测试)若()()22223a b +c a b c +=++,则a ,b ,c 三者的关系为_________. 解: a=b=c例4.(2005~2006首师大附中初一期中测试)求证: ()()()()22x x 1x 2x 3x 3x 11+++=++-解:x(x+1)=x 2+x ,则X(x+1)(x+2)=(x 2+x)(x+2)=x 3+3x 2+2x ,所以X(x+1)(x+2)(x+3)=(x 3+3x 2+2x)(x+3)=x 4+3x 3+2x 2+3x 3+9x 2+6x=x 4+6x 3+11x 2+6x 又(x 2+3x+1)2-1=(x 2+3x+1)(x 2+3x+1)-1=x 4+3x 3+x 2+3x 3+9x 2+3x+x 2+3x+1-1 =x 4+6x 3+11x 2+6x+1-1=x 4+6x 3+11x 2+6x三、活题巧解 (一)乘法公式例1.(2000年重庆市初中竞赛题)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=__________. 解:(2000-a )2+(1998-a )2=〔(2000-a)-(1998-a)〕2+2(2000-a)·(1998-a)=4+2×1999=4002例2.(2001年武汉市中考题) 观察下列各式(x -1)(x+1)=x 2-1; (x -1)(x 2+x+1)=x 3-1; (x -1)(x 3+x 2+x+1)=x 4-1. 根据前面的规律可得(x -1)(x n+x n -1+…+x+1)=._____解:x n+1-1例3.(2002年全国初中数学竞赛题) 设a 、b 、c 、x 、y 、z 满足下列等式2222,2,2,362x a b y b c z c a πππ=-+=-+=-+则z ,y ,z 中,至少有一个值( )·(A)大于0 (B)等于0 (c)不大于0 (D)小于0 解: 222222222(1)(1)(1)30x y z a a b b c c a b c ππ++=-+-+-+=-+-+-+->则x ,y ,z 中至少有一个值大于0。
整式恒等变形

第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初一数学竞赛系列讲座(6)整式的恒等变形

初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。
特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
全国高等学校民族预科教材 数学 第一章

于是我们猜想,是不是前n个奇数和 Sn 等于n的平方?即
Sn 1 3 5 (2n 1) n2 ?
解:当x y时,原式为零 ,于是原式有因式 x y
同理知原式还有因式 y z, z x,而原式又是关于 x, y, z 的四次齐次式,故可设
x3( y z) y3(z x) z3(x y) k(x y)( y z)( z x)( x y z)
)
k2 2(k 1)
(k 1) 1 2(k 1)
于是当n=k+1时,原式也成立。 根据1)和2)可知,对大于等于2的任何自然数都成立。
例3 证明:对于任何的自然数n, n3 5n 是6的倍数。
证 1)当n=1时,n3 5n 13 51 6 是6的倍数,所以n=1时命 题正确。 2)假设当n=k时命题正确,即 k3 5k 是6的倍数,又当n=k+1 时有 (k 1)3 5(k 1) k3 3k2 3k 1 5k 5
Байду номын сангаас齐次对称式的一般形式为
a(x3 y3 z3 ) +b(x2 y y2 x x2 z z2 x y2z z2 y) +cxyz
故可设 x y z3 =a(x3 y3 z3) +
b(x2 y y2 x x2 z z2 x y2 z z2 y) +cxyz
于是 a 1,b 0, c 5.
例4表明,有时需要给定的数学式子表示成与它恒等 的另外一种形式,这种新形式中含有待定的系数, 然后根据恒等的性质,求出这些待定系数的值,称 这种方法为待定系数法,它是数学中常用的方法。
整式恒等变形

整式恒等变形编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式恒等变形)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为整式恒等变形的全部内容。
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法 强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求的值.模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x2012=__________.(2)已知15x 2-47xy +28y 2=0,求的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.()()()()()()222111111y z z x x y x y z ++++++xy题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x 2+2xy +2y 2+4x +8=0,求x ,y .【练9】已知x 2-6xy +10y 2+2x -8y +2=0,求x ,y .【例10】已知实数a 、b 、c 满足a -b +c =7,ab +bc +b +c 2+16=0.则的值等于____.22365112x x x x ++++ba【练10】已知a -b =4,ab +c 2+4=0,则a +b =________.模块四 恒等变形→乘法公式 知识点睛【常见乘法公式】 1、二元二次:(1)(a +b )(a -b )=__________.(2)(a -b )2=__________. 2、三元二次:(3)(a +b +c )2=_________.(4)a 2+b 2+c 2+ab +bc +ca =_______. 3、二元三次:(5)(a +b )3=______________.(6)a 3+b 3=______________. 4、三元三次:(7)(a +1)(b +1)(c +1)=abc +ab +bc +ca +a +b +c +1(8)(a +b )(b +c )(c +a )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+2abc(9)(a +b +c )(ab +bc +ca )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+3abc(10)a 3+b 3+c 3-3abc =(a +b +c )(a 2+b 2+c 2-ab -bc -ca ) 5、三元四次:(11)(a +b +c )(a +b -c )(b +c -a )(c +a -b )=-a 4-b 4-c 4+2a 2b 2+2b 2c 2+2c 2a 26、二元n 次:(12)a n -b n =(a -b )(a n -1+a n -2b +a n -3b 2+…+ab n -2+b n -1)(13)a n +b n =(a +b )(a n -1-a n -2b +a n -3b 2+…-ab n -2+b n -1)(n 为奇数) 7、n 元二次:(14)(a 1+a 2+…+a n )2=a 12+a 22+…+a n 2+2a 1a 2+2a 1a 3+…+2a 1a n +2a 2a 3+2a 2a 4+…+2a n -1a n .(15)a 12+…+a n 2+a 1a 2+…+a 1a n +a 2a 3+…+a 2a n +…+a n -1a n =[(a 1+a 2)2+…+(a n -1+a n )2] 强化挑战【例11】已知实数a 、b 、x 、y 满足a +b =x +y =3,ax +by =4,求(a 2+b 2)xy +ab (x 2+y 2)的值.【练11】(第6届希望杯初一)已知ax +by =7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,试求1995(x +y )+6xy -(a +b )的值.【例12】若a +b +c =0,a 3+b 3+c 3=0,求证:a2011+b2011+c2011=0.12172【练12】若a +b -c =3,a 2+b 2+c 2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a +b +c =0,a 2+b 2+c 2=1. (1)求ab +bc +ca 的值;(2)求a 4+b 4+c 4的值.【练13】若a +b +c =1,a 2+b 2+c 2=2,a 3+b 3+c 3=,(1)求abc 的值;(2)求a 4+b 4+c 4的值.巅峰突破【例14】若x +y =a +b ,且x 2+y 2=a 2+b 2,求证:x 2014+y 2014=a 2014+b 2014.【练14】已知a +b =c +d ,a 3+b 3=c 3+d 3,求证:a2013+b2013=c2013+d2013.【拓14】已知a +b =c +d ,a 5+b 5=c 5+d 5,求证:a2013+b2013=c2013+d2013.第8讲 课后作业【习l 】已知x 2+x -1=0,求x 8-7x 4+11的值.【习2】已知a +b +c =1,b 2+c 2-4ac +6c +1=0,求abc 的值.【习3】若m =20062+20062×20072+20072,则m ( )A .是完全平方数,还是奇数B .是完全平方数,还是偶数C .不是完全平方数,但是奇数D .不是完全平方数,但是偶数83【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( )A.1个 B.2个 C.3个 D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正 B.恒负 C.可正可负 D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.【习10】(第18届希望杯初一)有理数a,b,c满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试1比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc 的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初中数学重点梳理:恒等式证明

恒等式证明 知识定位代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.知识梳理知识梳理1:由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).知识梳理2:比较法比较法利用的是:若0,则(作差法);或若1,则(作商法)。
a a b a ba b b-==== 这也是证明恒等式的重要思路之一。
知识梳理3:分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.知识梳理4:其他解题方法及技巧除了上述方法,设k 、换元等方法也可以在恒等式证明中发挥效力.例题精讲【试题来源】【题目】已知x+y+z=xyz ,证明:x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .【答案】因为x+y+z=xyz ,所以左边=x(1-z 2-y 2-y 2z 2)+y(1-z 2-x 2+x 2z 2)+(1-y 2-x 2+x 2y 2)=(x+y+z)-xz 2-xy 2+xy 2z 2-yz 2+yx 2+yx 2z 2-zy 2-zx 2+zx 2y 2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.【解析】将左边展开,利用条件x+y+z=xyz ,将等式左边化简成右边.【知识点】恒等式证明【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知1989x 2=1991y 2=1993z 2,x >0,y >0,z >0,且1111x y z++=198919911993198919911993x y z ++=++ 【答案】令1989x 2=1991y 2=1993z 2=k(k >0),则又因为所以所以【解析】令1989x 2=1991y 2=1993z 2=k(k >0),则本例的证明思路是“相向趋进”,在证明方法上,通过设参数k ,使左右两边同时变形为同一形式,从而使等式成立.【知识点】恒等式证明【适用场合】当堂例题【难度系数】4【试题来源】 【题目】求证:()()()()()()222a bcb ca abc a b a c b c b a c a c b ---+=++++++ 【答案】因为所以所以【解析】用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a ,c 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.【知识点】恒等式证明【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知0a b c ++= ,求证()()24442222a b ca b c ++=++ 。
整式的恒等变形精品讲义

整式的恒等变形1. 乘法公式也叫作简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
⒉ 基本公式就是最常用、最基础的公式,并且可以由此而推导出其他公式。
完全平方公式:()2222a b a ab b ±=±+,平方差公式:()()22a b a b a b +-=-. 立方和(差)公式:()()2233a b a ab b a b ±+=±.⒊ 公式的推广:①多项式平方公式:()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:()3322333a b a a b ab b ±=+±()4432234464a b a a b a b ab b ±=±+±+()554322345510105a b a a b a b a b ab b ±=±+±+±…………注意观察右边展开式的项数、指数、系数、符号的规律 ③由平方差、立方和(差)公式引伸的公式()()322344a b a a b ab b a b +-+-=-()()43223455a b a a b a b ab b a b +-+-+=+()()5432234566a b a a b a b a b ab b a b +-+-+-=-…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数()()2122232222122n n n n n n n a b a a b a b ab b a b -----+-+-+-=-()()2212222122121n n n n n n n a b a a b a b ab b a b ---+++-+--+=+类似地: ()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-⒋ 公式的变形及其逆运算由()2222a b a ab b +=++得()2222a b a b ab +=+-由()()3322333333a b a a b ab b a b ab a b +=+++=+++得()()3333a b a b ab a b +=+-+ 由公式的推广③可知:当n 为正整数时 n n a b -能被a b -整除, 2121n n a b +++能被a b +整除,22n n a b -能被a b +及a b -整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲 恒等变形(2)乘法公式
一、 基础知识 (一)乘法公式
1. 除了上一讲的几个基本公式外,乘法公式还有如下几条:
①) 2
2
2
2
()222a b c a b c ab ac bc ++=+++++
②) 2
2
2
3
3
3
()()3a b c a b c ab ac bc a b c abc ++++---=++- ③) 1
23221()().n n n n n n n a b a
a b a b ab b a b ------+++++=-
④) 2222221
[()()()]2
a b c ab ac bc a b a c b c ++±±±=
±+±+±
(二)配方法
配方法是乘法公式应用的拓展,在恒等变形中应用十分广泛。
在配方时,还常用到拆项或补项的技巧。
在配方法中要熟悉两组关系:
1. x+y 、xy ,与x 2+y 2、x 3+y 3、x 4+y 4、x 7+y 7的关系。
2. x+x -、x-x -,与x 2+x -2、x 2-x -2、x 4+x -4、x 4-x -4的关系。
二、名校真题回放
例1.(2005~2006首师大附中初一期中测试)x 2+2ax+l6是一个完全平方式,则a 的值是______.
例2.(2005~2006首师大附中初一期中测试)与()()
2a 1a a 1-++的积等于a 6-1的多项式是______.
例3.(2005~2006首师大附中初一期中测试)若(
)()2
222
3a b +c
a b c +=++,则a ,b ,c 三者的关系为
_________.
例4.(2005~2006首师大附中初一期中测试)求证: ()()()()
2
2
x x 1x 2x 3x 3x 11+++=++-
三、活题巧解 (一)乘法公式
例1.(2000年重庆市初中竞赛题)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=__________.
例2.(2001年武汉市中考题) 观察下列各式
(x -1)(x+1)=x 2
-1; (x -1)(x 2
+x+1)=x 3-1; (x -1)(x 3
+x 2
+x+1)=x 4
-1. 根据前面的规律可得(x -1)(x n
+x
n -1
+…+x+1)=._____
例3.(2002年全国初中数学竞赛题) 设a 、b 、c 、x 、y 、z 满足下列等式
2222,2,2,3
6
2
x a b y b c z c a π
π
π
=-+
=-+
=-+
则z ,y ,z 中,至少有一个值( )·
(A)大于0 (B)等于0 (c)不大于0 (D)小于0
例4.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上二数之和
都相等,如果13、9、3的对面的数分别为a 、b 、c ,
则222a b c ab bc ac ++---的值为_____.
例5.(希望杯训练题)已知a+a 1
=5,则2
241a
a a ++=._____
例6.(2000年重庆市竞赛题) 乘积(1-221)(1-231)…(1-219991)(1-2
2000
1
)等于( )。
A 、
20001999 B 、20002001 C 、4000
1999 D 、40002001
例7. 已知a 3+b 3+c 3=a 2+b 2+c 2= a+b+c=1,求证:abc=0.
例8. (北京市竞赛题)若x+y=a+b,且x2+y2= a2+b2.证明:x1997+y1997=a1997+b 1997
例9.(2001年黄冈市竞赛题)
观察:1⨯2⨯3⨯4+1=52
2⨯3⨯4⨯5+1=112
3⨯4⨯5⨯6+1=192
…
(1)请写出一个具有普通性的结论,并给出证明;
(2)根据(1),计算2000⨯2001⨯2002⨯2003+1 的结果(有一个最简式子表示). (二)配方法
例10. (希望杯竞赛题)已知x、y满足x2+y2+5
4
=2x+y,则代数式
xy
x y
+
的值为()
A.1
3
B.
2
3
C.1
D.
4
3
例11.(太原市竞赛题)已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤y B.x≥y C.x<y D.x>y
例12. (希望杯训练题)已知12x x +=,求221x x + 和 331
x x
+ 的值。
例13.(北京市竞赛题)已知a+b=p ,ab=q ,求55a b +的值.
例14. (西安市竞赛题)设a+b=1,a 2+b 2=2,则a 7
+b 7
的值为_____________.
四、练习
1.(第13届希望杯全国数学邀请赛试题)已知a+
1a =-2,则441a a +=_________,441
a a
-=______.
2. (2002年全国初中竞赛题)已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a 2+b 2+c 2-ab-bc-ac 的值为( )
** B.1 C.2 D.2
3.(2003年重庆市初中数学竞赛试题)若1
3x x
+=,则242
1x x x ++的值为 ( ) ** B .8 C . D .
4.(2002年全国初中竞赛题)设a <b <0 , a 2+b 2=2.5ab,则
a b
a b
+- 的值为( ) A.1.5 B.3.5 C.2 D.3
与负的场数;用x 2,y 2顺序表示第二号选手胜与负的场数;……;用x 10,y 10顺次表示第十号选手胜与负的场数.
求证:222222
12101210............x x x y y y +++=+++.
6.(希望杯训练题)已知a-b=4,ab+c 2+4=0,则a+b=( ) A .4 B .0 C .2 D .-2
7.(2001年天津市选拔赛试题) 已知2
2
2
246140x y z x y z ++-+-+=则x+y+z=_____.
8.(2003年河北省竞赛题) 已知a 满足等式a 2
-a-1=0,求代数式847a a -+的值.
五、难度系数
(1)活题巧解 题号 1 2 3 4 5 星级 ★★★ ★★★ ★★★ ★★★ ★★★ 题号 6 7 8 9 10 星级 ★★★★ ★★★★ ★★★★ ★★★★ ★★ 题号 11 12 13 14 星级 ★★★
★★★
★★★
★★★★
(2)练习 题号 1 2 3 4 星级 ★★ ★★★ ★★★ ★★★ 题号 5 6 7 8 星级 ★★★
★★★
★★★
★★★★。